order.hom.basicMathlib.Order.Hom.Basic

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -1270,7 +1270,7 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
   map_rel_iff' a b :=
     ⟨fun h => by replace h := map_rel g h;
       rwa [Equiv.coe_fn_mk, show g (f a) = (g : β →o α).comp (f : α →o β) a from rfl,
-        show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h ,
+        show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h,
       fun h => (f : α →o β).Monotone h⟩
 #align order_iso.of_hom_inv OrderIso.ofHomInv
 -/
@@ -1630,7 +1630,7 @@ theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
 theorem OrderIso.complementedLattice [ComplementedLattice α] : ComplementedLattice β :=
   ⟨fun x => by
     obtain ⟨y, hy⟩ := exists_is_compl (f.symm x)
-    rw [← f.symm_apply_apply y] at hy 
+    rw [← f.symm_apply_apply y] at hy
     refine' ⟨f y, f.symm.is_compl_iff.2 hy⟩⟩
 #align order_iso.complemented_lattice OrderIso.complementedLattice
 -/
Diff
@@ -140,7 +140,7 @@ instance [LE α] [LE β] [OrderIsoClass F α β] : CoeTC F (α ≃o β) :=
 -- See note [lower instance priority]
 instance (priority := 100) OrderIsoClass.toOrderHomClass [LE α] [LE β] [OrderIsoClass F α β] :
     OrderHomClass F α β :=
-  { EquivLike.toEmbeddingLike with map_rel := fun f a b => (map_le_map_iff f).2 }
+  { EquivLike.toEmbeddingLike with mapRel := fun f a b => (map_le_map_iff f).2 }
 #align order_iso_class.to_order_hom_class OrderIsoClass.toOrderHomClass
 -/
 
@@ -149,12 +149,12 @@ namespace OrderHomClass
 variable [Preorder α] [Preorder β] [OrderHomClass F α β]
 
 #print OrderHomClass.monotone /-
-protected theorem monotone (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
+protected theorem monotone (f : F) : Monotone (f : α → β) := fun _ _ => mapRel f
 #align order_hom_class.monotone OrderHomClass.monotone
 -/
 
 #print OrderHomClass.mono /-
-protected theorem mono (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
+protected theorem mono (f : F) : Monotone (f : α → β) := fun _ _ => mapRel f
 #align order_hom_class.mono OrderHomClass.mono
 -/
 
@@ -237,7 +237,7 @@ protected theorem mono (f : α →o β) : Monotone f :=
 instance : OrderHomClass (α →o β) α β where
   coe := toFun
   coe_injective' f g h := by cases f; cases g; congr
-  map_rel f := f.Monotone
+  mapRel f := f.Monotone
 
 #print OrderHom.toFun_eq_coe /-
 @[simp]
@@ -851,7 +851,7 @@ is weakly monotone. -/
 @[simps (config := { fullyApplied := false })]
 def toOrderHom : α →o β where
   toFun := f
-  monotone' := StrictMono.monotone fun x y => f.map_rel
+  monotone' := StrictMono.monotone fun x y => f.mapRel
 #align rel_hom.to_order_hom RelHom.toOrderHom
 -/
 
Diff
@@ -257,7 +257,7 @@ theorem coe_mk {f : α → β} (hf : Monotone f) : (mk f hf : α → β) = f :=
 -- See library note [partially-applied ext lemmas]
 @[ext]
 theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
-  FunLike.coe_injective h
+  DFunLike.coe_injective h
 #align order_hom.ext OrderHom.ext
 -/
 
@@ -286,7 +286,7 @@ theorem coe_copy (f : α →o β) (f' : α → β) (h : f' = f) : ⇑(f.copy f'
 
 #print OrderHom.copy_eq /-
 theorem copy_eq (f : α →o β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
-  FunLike.ext' h
+  DFunLike.ext' h
 #align order_hom.copy_eq OrderHom.copy_eq
 -/
 
@@ -892,7 +892,7 @@ theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
 -- See note [partially-applied ext lemmas]
 @[ext]
 theorem ext {f g : α ≃o β} (h : (f : α → β) = g) : f = g :=
-  FunLike.coe_injective h
+  DFunLike.coe_injective h
 #align order_iso.ext OrderIso.ext
 -/
 
@@ -1265,8 +1265,8 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
     where
   toFun := f
   invFun := g
-  left_inv := FunLike.congr_fun h₂
-  right_inv := FunLike.congr_fun h₁
+  left_inv := DFunLike.congr_fun h₂
+  right_inv := DFunLike.congr_fun h₁
   map_rel_iff' a b :=
     ⟨fun h => by replace h := map_rel g h;
       rwa [Equiv.coe_fn_mk, show g (f a) = (g : β →o α).comp (f : α →o β) a from rfl,
Diff
@@ -3,11 +3,11 @@ Copyright (c) 2020 Johan Commelin. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin
 -/
-import Mathbin.Logic.Equiv.Option
-import Mathbin.Order.RelIso.Basic
-import Mathbin.Tactic.Monotonicity.Basic
-import Mathbin.Tactic.AssertExists
-import Mathbin.Order.Disjoint
+import Logic.Equiv.Option
+import Order.RelIso.Basic
+import Tactic.Monotonicity.Basic
+import Tactic.AssertExists
+import Order.Disjoint
 
 #align_import order.hom.basic from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
 
Diff
@@ -239,16 +239,18 @@ instance : OrderHomClass (α →o β) α β where
   coe_injective' f g h := by cases f; cases g; congr
   map_rel f := f.Monotone
 
+#print OrderHom.toFun_eq_coe /-
 @[simp]
 theorem toFun_eq_coe {f : α →o β} : f.toFun = f :=
   rfl
 #align order_hom.to_fun_eq_coe OrderHom.toFun_eq_coe
+-/
 
-#print OrderHom.coe_fun_mk /-
+#print OrderHom.coe_mk /-
 @[simp]
-theorem coe_fun_mk {f : α → β} (hf : Monotone f) : (mk f hf : α → β) = f :=
+theorem coe_mk {f : α → β} (hf : Monotone f) : (mk f hf : α → β) = f :=
   rfl
-#align order_hom.coe_fun_mk OrderHom.coe_fun_mk
+#align order_hom.coe_fun_mk OrderHom.coe_mk
 -/
 
 #print OrderHom.ext /-
@@ -259,8 +261,10 @@ theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
 #align order_hom.ext OrderHom.ext
 -/
 
+#print OrderHom.coe_eq /-
 theorem coe_eq (f : α →o β) : coe f = f := by ext <;> rfl
 #align order_hom.coe_eq OrderHom.coe_eq
+-/
 
 /-- One can lift an unbundled monotone function to a bundled one. -/
 instance : CanLift (α → β) (α →o β) coeFn Monotone where prf f h := ⟨⟨f, h⟩, rfl⟩
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2020 Johan Commelin. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module order.hom.basic
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Logic.Equiv.Option
 import Mathbin.Order.RelIso.Basic
@@ -14,6 +9,8 @@ import Mathbin.Tactic.Monotonicity.Basic
 import Mathbin.Tactic.AssertExists
 import Mathbin.Order.Disjoint
 
+#align_import order.hom.basic from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
+
 /-!
 # Order homomorphisms
 
Diff
@@ -344,7 +344,7 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
   invFun f :=
     ⟨Function.uncurry fun x => f x, fun x y h => (f.mono h.1 x.2).trans <| (f y.1).mono h.2⟩
   left_inv f := by ext ⟨x, y⟩; rfl
-  right_inv f := by ext (x y); rfl
+  right_inv f := by ext x y; rfl
   map_rel_iff' f g := by simp [le_def]
 #align order_hom.curry OrderHom.curry
 -/
@@ -575,8 +575,8 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i
     where
   toFun f i := (Pi.evalOrderHom i).comp f
   invFun := pi
-  left_inv f := by ext (x i); rfl
-  right_inv f := by ext (x i); rfl
+  left_inv f := by ext x i; rfl
+  right_inv f := by ext x i; rfl
   map_rel_iff' f g := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
 -/
Diff
@@ -89,7 +89,6 @@ structure OrderHom (α β : Type _) [Preorder α] [Preorder β] where
 #align order_hom OrderHom
 -/
 
--- mathport name: «expr →o »
 infixr:25 " →o " => OrderHom
 
 #print OrderEmbedding /-
@@ -100,7 +99,6 @@ abbrev OrderEmbedding (α β : Type _) [LE α] [LE β] :=
 #align order_embedding OrderEmbedding
 -/
 
--- mathport name: «expr ↪o »
 infixl:25 " ↪o " => OrderEmbedding
 
 #print OrderIso /-
@@ -111,7 +109,6 @@ abbrev OrderIso (α β : Type _) [LE α] [LE β] :=
 #align order_iso OrderIso
 -/
 
--- mathport name: «expr ≃o »
 infixl:25 " ≃o " => OrderIso
 
 section
@@ -154,11 +151,15 @@ namespace OrderHomClass
 
 variable [Preorder α] [Preorder β] [OrderHomClass F α β]
 
+#print OrderHomClass.monotone /-
 protected theorem monotone (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
 #align order_hom_class.monotone OrderHomClass.monotone
+-/
 
+#print OrderHomClass.mono /-
 protected theorem mono (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
 #align order_hom_class.mono OrderHomClass.mono
+-/
 
 instance : CoeTC F (α →o β) :=
   ⟨fun f =>
@@ -173,35 +174,43 @@ section LE
 
 variable [LE α] [LE β] [OrderIsoClass F α β]
 
+#print map_inv_le_iff /-
 @[simp]
 theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a := by
   convert (map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_le_iff map_inv_le_iff
+-/
 
+#print le_map_inv_iff /-
 @[simp]
 theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b := by
   convert (map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align le_map_inv_iff le_map_inv_iff
+-/
 
 end LE
 
 variable [Preorder α] [Preorder β] [OrderIsoClass F α β]
 
-include β
-
+#print map_lt_map_iff /-
 theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
   lt_iff_lt_of_le_iff_le' (map_le_map_iff f) (map_le_map_iff f)
 #align map_lt_map_iff map_lt_map_iff
+-/
 
+#print map_inv_lt_iff /-
 @[simp]
 theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a := by
   convert (map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_lt_iff map_inv_lt_iff
+-/
 
+#print lt_map_inv_iff /-
 @[simp]
 theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b := by
   convert (map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align lt_map_inv_iff lt_map_inv_iff
+-/
 
 end OrderIsoClass
 
@@ -216,13 +225,17 @@ instance : CoeFun (α →o β) fun _ => α → β :=
 
 initialize_simps_projections OrderHom (toFun → coe)
 
+#print OrderHom.monotone /-
 protected theorem monotone (f : α →o β) : Monotone f :=
   f.monotone'
 #align order_hom.monotone OrderHom.monotone
+-/
 
+#print OrderHom.mono /-
 protected theorem mono (f : α →o β) : Monotone f :=
   f.Monotone
 #align order_hom.mono OrderHom.mono
+-/
 
 instance : OrderHomClass (α →o β) α β where
   coe := toFun
@@ -234,16 +247,20 @@ theorem toFun_eq_coe {f : α →o β} : f.toFun = f :=
   rfl
 #align order_hom.to_fun_eq_coe OrderHom.toFun_eq_coe
 
+#print OrderHom.coe_fun_mk /-
 @[simp]
 theorem coe_fun_mk {f : α → β} (hf : Monotone f) : (mk f hf : α → β) = f :=
   rfl
 #align order_hom.coe_fun_mk OrderHom.coe_fun_mk
+-/
 
+#print OrderHom.ext /-
 -- See library note [partially-applied ext lemmas]
 @[ext]
 theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
   FunLike.coe_injective h
 #align order_hom.ext OrderHom.ext
+-/
 
 theorem coe_eq (f : α →o β) : coe f = f := by ext <;> rfl
 #align order_hom.coe_eq OrderHom.coe_eq
@@ -259,14 +276,18 @@ protected def copy (f : α →o β) (f' : α → β) (h : f' = f) : α →o β :
 #align order_hom.copy OrderHom.copy
 -/
 
+#print OrderHom.coe_copy /-
 @[simp]
 theorem coe_copy (f : α →o β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
   rfl
 #align order_hom.coe_copy OrderHom.coe_copy
+-/
 
+#print OrderHom.copy_eq /-
 theorem copy_eq (f : α →o β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
   FunLike.ext' h
 #align order_hom.copy_eq OrderHom.copy_eq
+-/
 
 #print OrderHom.id /-
 /-- The identity function as bundled monotone function. -/
@@ -286,25 +307,34 @@ instance : Preorder (α →o β) :=
 instance {β : Type _} [PartialOrder β] : PartialOrder (α →o β) :=
   @PartialOrder.lift (α →o β) (α → β) _ coeFn ext
 
+#print OrderHom.le_def /-
 theorem le_def {f g : α →o β} : f ≤ g ↔ ∀ x, f x ≤ g x :=
   Iff.rfl
 #align order_hom.le_def OrderHom.le_def
+-/
 
+#print OrderHom.coe_le_coe /-
 @[simp, norm_cast]
 theorem coe_le_coe {f g : α →o β} : (f : α → β) ≤ g ↔ f ≤ g :=
   Iff.rfl
 #align order_hom.coe_le_coe OrderHom.coe_le_coe
+-/
 
+#print OrderHom.mk_le_mk /-
 @[simp]
 theorem mk_le_mk {f g : α → β} {hf hg} : mk f hf ≤ mk g hg ↔ f ≤ g :=
   Iff.rfl
 #align order_hom.mk_le_mk OrderHom.mk_le_mk
+-/
 
+#print OrderHom.apply_mono /-
 @[mono]
 theorem apply_mono {f g : α →o β} {x y : α} (h₁ : f ≤ g) (h₂ : x ≤ y) : f x ≤ g y :=
   (h₁ x).trans <| g.mono h₂
 #align order_hom.apply_mono OrderHom.apply_mono
+-/
 
+#print OrderHom.curry /-
 /-- Curry/uncurry as an order isomorphism between `α × β →o γ` and `α →o β →o γ`. -/
 def curry : (α × β →o γ) ≃o (α →o β →o γ)
     where
@@ -317,16 +347,21 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
   right_inv f := by ext (x y); rfl
   map_rel_iff' f g := by simp [le_def]
 #align order_hom.curry OrderHom.curry
+-/
 
+#print OrderHom.curry_apply /-
 @[simp]
 theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (x, y) :=
   rfl
 #align order_hom.curry_apply OrderHom.curry_apply
+-/
 
+#print OrderHom.curry_symm_apply /-
 @[simp]
 theorem curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f x = f x.1 x.2 :=
   rfl
 #align order_hom.curry_symm_apply OrderHom.curry_symm_apply
+-/
 
 #print OrderHom.comp /-
 /-- The composition of two bundled monotone functions. -/
@@ -336,10 +371,12 @@ def comp (g : β →o γ) (f : α →o β) : α →o γ :=
 #align order_hom.comp OrderHom.comp
 -/
 
+#print OrderHom.comp_mono /-
 @[mono]
 theorem comp_mono ⦃g₁ g₂ : β →o γ⦄ (hg : g₁ ≤ g₂) ⦃f₁ f₂ : α →o β⦄ (hf : f₁ ≤ f₂) :
     g₁.comp f₁ ≤ g₂.comp f₂ := fun x => (hg _).trans (g₂.mono <| hf _)
 #align order_hom.comp_mono OrderHom.comp_mono
+-/
 
 #print OrderHom.compₘ /-
 /-- The composition of two bundled monotone functions, a fully bundled version. -/
@@ -349,13 +386,17 @@ def compₘ : (β →o γ) →o (α →o β) →o α →o γ :=
 #align order_hom.compₘ OrderHom.compₘ
 -/
 
+#print OrderHom.comp_id /-
 @[simp]
 theorem comp_id (f : α →o β) : comp f id = f := by ext; rfl
 #align order_hom.comp_id OrderHom.comp_id
+-/
 
+#print OrderHom.id_comp /-
 @[simp]
 theorem id_comp (f : α →o β) : comp id f = f := by ext; rfl
 #align order_hom.id_comp OrderHom.id_comp
+-/
 
 #print OrderHom.const /-
 /-- Constant function bundled as a `order_hom`. -/
@@ -367,46 +408,60 @@ def const (α : Type _) [Preorder α] {β : Type _} [Preorder β] : β →o α 
 #align order_hom.const OrderHom.const
 -/
 
+#print OrderHom.const_comp /-
 @[simp]
 theorem const_comp (f : α →o β) (c : γ) : (const β c).comp f = const α c :=
   rfl
 #align order_hom.const_comp OrderHom.const_comp
+-/
 
+#print OrderHom.comp_const /-
 @[simp]
 theorem comp_const (γ : Type _) [Preorder γ] (f : α →o β) (c : α) :
     f.comp (const γ c) = const γ (f c) :=
   rfl
 #align order_hom.comp_const OrderHom.comp_const
+-/
 
+#print OrderHom.prod /-
 /-- Given two bundled monotone maps `f`, `g`, `f.prod g` is the map `x ↦ (f x, g x)` bundled as a
 `order_hom`. -/
 @[simps]
 protected def prod (f : α →o β) (g : α →o γ) : α →o β × γ :=
   ⟨fun x => (f x, g x), fun x y h => ⟨f.mono h, g.mono h⟩⟩
 #align order_hom.prod OrderHom.prod
+-/
 
+#print OrderHom.prod_mono /-
 @[mono]
 theorem prod_mono {f₁ f₂ : α →o β} (hf : f₁ ≤ f₂) {g₁ g₂ : α →o γ} (hg : g₁ ≤ g₂) :
     f₁.Prod g₁ ≤ f₂.Prod g₂ := fun x => Prod.le_def.2 ⟨hf _, hg _⟩
 #align order_hom.prod_mono OrderHom.prod_mono
+-/
 
+#print OrderHom.comp_prod_comp_same /-
 theorem comp_prod_comp_same (f₁ f₂ : β →o γ) (g : α →o β) :
     (f₁.comp g).Prod (f₂.comp g) = (f₁.Prod f₂).comp g :=
   rfl
 #align order_hom.comp_prod_comp_same OrderHom.comp_prod_comp_same
+-/
 
+#print OrderHom.prodₘ /-
 /-- Given two bundled monotone maps `f`, `g`, `f.prod g` is the map `x ↦ (f x, g x)` bundled as a
 `order_hom`. This is a fully bundled version. -/
 @[simps]
 def prodₘ : (α →o β) →o (α →o γ) →o α →o β × γ :=
   curry ⟨fun f : (α →o β) × (α →o γ) => f.1.Prod f.2, fun f₁ f₂ h => prod_mono h.1 h.2⟩
 #align order_hom.prodₘ OrderHom.prodₘ
+-/
 
+#print OrderHom.diag /-
 /-- Diagonal embedding of `α` into `α × α` as a `order_hom`. -/
 @[simps]
 def diag : α →o α × α :=
   id.Prod id
 #align order_hom.diag OrderHom.diag
+-/
 
 #print OrderHom.onDiag /-
 /-- Restriction of `f : α →o α →o β` to the diagonal. -/
@@ -416,32 +471,43 @@ def onDiag (f : α →o α →o β) : α →o β :=
 #align order_hom.on_diag OrderHom.onDiag
 -/
 
+#print OrderHom.fst /-
 /-- `prod.fst` as a `order_hom`. -/
 @[simps]
 def fst : α × β →o α :=
   ⟨Prod.fst, fun x y h => h.1⟩
 #align order_hom.fst OrderHom.fst
+-/
 
+#print OrderHom.snd /-
 /-- `prod.snd` as a `order_hom`. -/
 @[simps]
 def snd : α × β →o β :=
   ⟨Prod.snd, fun x y h => h.2⟩
 #align order_hom.snd OrderHom.snd
+-/
 
+#print OrderHom.fst_prod_snd /-
 @[simp]
 theorem fst_prod_snd : (fst : α × β →o α).Prod snd = id := by ext ⟨x, y⟩ : 2; rfl
 #align order_hom.fst_prod_snd OrderHom.fst_prod_snd
+-/
 
+#print OrderHom.fst_comp_prod /-
 @[simp]
 theorem fst_comp_prod (f : α →o β) (g : α →o γ) : fst.comp (f.Prod g) = f :=
   ext _ _ rfl
 #align order_hom.fst_comp_prod OrderHom.fst_comp_prod
+-/
 
+#print OrderHom.snd_comp_prod /-
 @[simp]
 theorem snd_comp_prod (f : α →o β) (g : α →o γ) : snd.comp (f.Prod g) = g :=
   ext _ _ rfl
 #align order_hom.snd_comp_prod OrderHom.snd_comp_prod
+-/
 
+#print OrderHom.prodIso /-
 /-- Order isomorphism between the space of monotone maps to `β × γ` and the product of the spaces
 of monotone maps to `β` and `γ`. -/
 @[simps]
@@ -453,12 +519,15 @@ def prodIso : (α →o β × γ) ≃o (α →o β) × (α →o γ)
   right_inv f := by ext <;> rfl
   map_rel_iff' f g := forall_and.symm
 #align order_hom.prod_iso OrderHom.prodIso
+-/
 
+#print OrderHom.prodMap /-
 /-- `prod.map` of two `order_hom`s as a `order_hom`. -/
 @[simps]
 def prodMap (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
   ⟨Prod.map f g, fun x y h => ⟨f.mono h.1, g.mono h.2⟩⟩
 #align order_hom.prod_map OrderHom.prodMap
+-/
 
 variable {ι : Type _} {π : ι → Type _} [∀ i, Preorder (π i)]
 
@@ -554,10 +623,12 @@ theorem dual_id : (OrderHom.id : α →o α).dual = OrderHom.id :=
 #align order_hom.dual_id OrderHom.dual_id
 -/
 
+#print OrderHom.dual_comp /-
 @[simp]
 theorem dual_comp (g : β →o γ) (f : α →o β) : (g.comp f).dual = g.dual.comp f.dual :=
   rfl
 #align order_hom.dual_comp OrderHom.dual_comp
+-/
 
 #print OrderHom.symm_dual_id /-
 @[simp]
@@ -566,11 +637,13 @@ theorem symm_dual_id : OrderHom.dual.symm OrderHom.id = (OrderHom.id : α →o 
 #align order_hom.symm_dual_id OrderHom.symm_dual_id
 -/
 
+#print OrderHom.symm_dual_comp /-
 @[simp]
 theorem symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ) :
     OrderHom.dual.symm (g.comp f) = (OrderHom.dual.symm g).comp (OrderHom.dual.symm f) :=
   rfl
 #align order_hom.symm_dual_comp OrderHom.symm_dual_comp
+-/
 
 #print OrderHom.dualIso /-
 /-- `order_hom.dual` as an order isomorphism. -/
@@ -607,12 +680,14 @@ def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
 #align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbedding
 -/
 
+#print RelEmbedding.orderEmbeddingOfLTEmbedding_apply /-
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
     {f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)} {x : α} :
     RelEmbedding.orderEmbeddingOfLTEmbedding f x = f x :=
   rfl
 #align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_apply
+-/
 
 namespace OrderEmbedding
 
@@ -625,36 +700,50 @@ def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β 
 #align order_embedding.lt_embedding OrderEmbedding.ltEmbedding
 -/
 
+#print OrderEmbedding.ltEmbedding_apply /-
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
   rfl
 #align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_apply
+-/
 
+#print OrderEmbedding.le_iff_le /-
 @[simp]
 theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
   f.map_rel_iff
 #align order_embedding.le_iff_le OrderEmbedding.le_iff_le
+-/
 
+#print OrderEmbedding.lt_iff_lt /-
 @[simp]
 theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
   f.ltEmbedding.map_rel_iff
 #align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_lt
+-/
 
+#print OrderEmbedding.eq_iff_eq /-
 @[simp]
 theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
   f.Injective.eq_iff
 #align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eq
+-/
 
+#print OrderEmbedding.monotone /-
 protected theorem monotone : Monotone f :=
   OrderHomClass.monotone f
 #align order_embedding.monotone OrderEmbedding.monotone
+-/
 
+#print OrderEmbedding.strictMono /-
 protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 #align order_embedding.strict_mono OrderEmbedding.strictMono
+-/
 
+#print OrderEmbedding.acc /-
 protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
 #align order_embedding.acc OrderEmbedding.acc
+-/
 
 #print OrderEmbedding.wellFounded /-
 protected theorem wellFounded :
@@ -704,11 +793,13 @@ def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀
 #align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIff
 -/
 
+#print OrderEmbedding.coe_ofMapLEIff /-
 @[simp]
 theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
     ⇑(ofMapLEIff f h) = f :=
   rfl
 #align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIff
+-/
 
 #print OrderEmbedding.ofStrictMono /-
 /-- A strictly monotone map from a linear order is an order embedding. -/
@@ -717,11 +808,13 @@ def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : Str
 #align order_embedding.of_strict_mono OrderEmbedding.ofStrictMono
 -/
 
+#print OrderEmbedding.coe_ofStrictMono /-
 @[simp]
 theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β} (h : StrictMono f) :
     ⇑(ofStrictMono f h) = f :=
   rfl
 #align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMono
+-/
 
 #print OrderEmbedding.subtype /-
 /-- Embedding of a subtype into the ambient type as an `order_embedding`. -/
@@ -763,11 +856,13 @@ def toOrderHom : α →o β where
 
 end RelHom
 
+#print RelEmbedding.toOrderHom_injective /-
 theorem RelEmbedding.toOrderHom_injective
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) :
     Function.Injective (f : ((· < ·) : α → α → Prop) →r ((· < ·) : β → β → Prop)).toOrderHom :=
   fun _ _ h => f.Injective h
 #align rel_embedding.to_order_hom_injective RelEmbedding.toOrderHom_injective
+-/
 
 end RelHom
 
@@ -785,16 +880,20 @@ instance : OrderIsoClass (α ≃o β) α β where
   coe_injective' f g h₁ h₂ := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
   map_le_map_iff f _ _ := f.map_rel_iff'
 
+#print OrderIso.toFun_eq_coe /-
 @[simp]
 theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
   rfl
 #align order_iso.to_fun_eq_coe OrderIso.toFun_eq_coe
+-/
 
+#print OrderIso.ext /-
 -- See note [partially-applied ext lemmas]
 @[ext]
 theorem ext {f g : α ≃o β} (h : (f : α → β) = g) : f = g :=
   FunLike.coe_injective h
 #align order_iso.ext OrderIso.ext
+-/
 
 #print OrderIso.toOrderEmbedding /-
 /-- Reinterpret an order isomorphism as an order embedding. -/
@@ -803,27 +902,37 @@ def toOrderEmbedding (e : α ≃o β) : α ↪o β :=
 #align order_iso.to_order_embedding OrderIso.toOrderEmbedding
 -/
 
+#print OrderIso.coe_toOrderEmbedding /-
 @[simp]
 theorem coe_toOrderEmbedding (e : α ≃o β) : ⇑e.toOrderEmbedding = e :=
   rfl
 #align order_iso.coe_to_order_embedding OrderIso.coe_toOrderEmbedding
+-/
 
+#print OrderIso.bijective /-
 protected theorem bijective (e : α ≃o β) : Function.Bijective e :=
   e.toEquiv.Bijective
 #align order_iso.bijective OrderIso.bijective
+-/
 
+#print OrderIso.injective /-
 protected theorem injective (e : α ≃o β) : Function.Injective e :=
   e.toEquiv.Injective
 #align order_iso.injective OrderIso.injective
+-/
 
+#print OrderIso.surjective /-
 protected theorem surjective (e : α ≃o β) : Function.Surjective e :=
   e.toEquiv.Surjective
 #align order_iso.surjective OrderIso.surjective
+-/
 
+#print OrderIso.apply_eq_iff_eq /-
 @[simp]
 theorem apply_eq_iff_eq (e : α ≃o β) {x y : α} : e x = e y ↔ x = y :=
   e.toEquiv.apply_eq_iff_eq
 #align order_iso.apply_eq_iff_eq OrderIso.apply_eq_iff_eq
+-/
 
 #print OrderIso.refl /-
 /-- Identity order isomorphism. -/
@@ -832,15 +941,19 @@ def refl (α : Type _) [LE α] : α ≃o α :=
 #align order_iso.refl OrderIso.refl
 -/
 
+#print OrderIso.coe_refl /-
 @[simp]
 theorem coe_refl : ⇑(refl α) = id :=
   rfl
 #align order_iso.coe_refl OrderIso.coe_refl
+-/
 
+#print OrderIso.refl_apply /-
 @[simp]
 theorem refl_apply (x : α) : refl α x = x :=
   rfl
 #align order_iso.refl_apply OrderIso.refl_apply
+-/
 
 #print OrderIso.refl_toEquiv /-
 @[simp]
@@ -856,15 +969,19 @@ def symm (e : α ≃o β) : β ≃o α :=
 #align order_iso.symm OrderIso.symm
 -/
 
+#print OrderIso.apply_symm_apply /-
 @[simp]
 theorem apply_symm_apply (e : α ≃o β) (x : β) : e (e.symm x) = x :=
   e.toEquiv.apply_symm_apply x
 #align order_iso.apply_symm_apply OrderIso.apply_symm_apply
+-/
 
+#print OrderIso.symm_apply_apply /-
 @[simp]
 theorem symm_apply_apply (e : α ≃o β) (x : α) : e.symm (e x) = x :=
   e.toEquiv.symm_apply_apply x
 #align order_iso.symm_apply_apply OrderIso.symm_apply_apply
+-/
 
 #print OrderIso.symm_refl /-
 @[simp]
@@ -873,26 +990,36 @@ theorem symm_refl (α : Type _) [LE α] : (refl α).symm = refl α :=
 #align order_iso.symm_refl OrderIso.symm_refl
 -/
 
+#print OrderIso.apply_eq_iff_eq_symm_apply /-
 theorem apply_eq_iff_eq_symm_apply (e : α ≃o β) (x : α) (y : β) : e x = y ↔ x = e.symm y :=
   e.toEquiv.apply_eq_iff_eq_symm_apply
 #align order_iso.apply_eq_iff_eq_symm_apply OrderIso.apply_eq_iff_eq_symm_apply
+-/
 
+#print OrderIso.symm_apply_eq /-
 theorem symm_apply_eq (e : α ≃o β) {x : α} {y : β} : e.symm y = x ↔ y = e x :=
   e.toEquiv.symm_apply_eq
 #align order_iso.symm_apply_eq OrderIso.symm_apply_eq
+-/
 
+#print OrderIso.symm_symm /-
 @[simp]
 theorem symm_symm (e : α ≃o β) : e.symm.symm = e := by ext; rfl
 #align order_iso.symm_symm OrderIso.symm_symm
+-/
 
+#print OrderIso.symm_injective /-
 theorem symm_injective : Function.Injective (symm : α ≃o β → β ≃o α) := fun e e' h => by
   rw [← e.symm_symm, h, e'.symm_symm]
 #align order_iso.symm_injective OrderIso.symm_injective
+-/
 
+#print OrderIso.toEquiv_symm /-
 @[simp]
 theorem toEquiv_symm (e : α ≃o β) : e.toEquiv.symm = e.symm.toEquiv :=
   rfl
 #align order_iso.to_equiv_symm OrderIso.toEquiv_symm
+-/
 
 #print OrderIso.trans /-
 /-- Composition of two order isomorphisms is an order isomorphism. -/
@@ -902,33 +1029,45 @@ def trans (e : α ≃o β) (e' : β ≃o γ) : α ≃o γ :=
 #align order_iso.trans OrderIso.trans
 -/
 
+#print OrderIso.coe_trans /-
 @[simp]
 theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘ e :=
   rfl
 #align order_iso.coe_trans OrderIso.coe_trans
+-/
 
+#print OrderIso.trans_apply /-
 @[simp]
 theorem trans_apply (e : α ≃o β) (e' : β ≃o γ) (x : α) : e.trans e' x = e' (e x) :=
   rfl
 #align order_iso.trans_apply OrderIso.trans_apply
+-/
 
+#print OrderIso.refl_trans /-
 @[simp]
 theorem refl_trans (e : α ≃o β) : (refl α).trans e = e := by ext x; rfl
 #align order_iso.refl_trans OrderIso.refl_trans
+-/
 
+#print OrderIso.trans_refl /-
 @[simp]
 theorem trans_refl (e : α ≃o β) : e.trans (refl β) = e := by ext x; rfl
 #align order_iso.trans_refl OrderIso.trans_refl
+-/
 
+#print OrderIso.symm_trans_apply /-
 @[simp]
 theorem symm_trans_apply (e₁ : α ≃o β) (e₂ : β ≃o γ) (c : γ) :
     (e₁.trans e₂).symm c = e₁.symm (e₂.symm c) :=
   rfl
 #align order_iso.symm_trans_apply OrderIso.symm_trans_apply
+-/
 
+#print OrderIso.symm_trans /-
 theorem symm_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) : (e₁.trans e₂).symm = e₂.symm.trans e₁.symm :=
   rfl
 #align order_iso.symm_trans OrderIso.symm_trans
+-/
 
 #print OrderIso.prodComm /-
 /-- `prod.swap` as an `order_iso`. -/
@@ -938,15 +1077,19 @@ def prodComm : α × β ≃o β × α where
 #align order_iso.prod_comm OrderIso.prodComm
 -/
 
+#print OrderIso.coe_prodComm /-
 @[simp]
 theorem coe_prodComm : ⇑(prodComm : α × β ≃o β × α) = Prod.swap :=
   rfl
 #align order_iso.coe_prod_comm OrderIso.coe_prodComm
+-/
 
+#print OrderIso.prodComm_symm /-
 @[simp]
 theorem prodComm_symm : (prodComm : α × β ≃o β × α).symm = prodComm :=
   rfl
 #align order_iso.prod_comm_symm OrderIso.prodComm_symm
+-/
 
 variable (α)
 
@@ -957,27 +1100,35 @@ def dualDual : α ≃o αᵒᵈᵒᵈ :=
 #align order_iso.dual_dual OrderIso.dualDual
 -/
 
+#print OrderIso.coe_dualDual /-
 @[simp]
 theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
   rfl
 #align order_iso.coe_dual_dual OrderIso.coe_dualDual
+-/
 
+#print OrderIso.coe_dualDual_symm /-
 @[simp]
 theorem coe_dualDual_symm : ⇑(dualDual α).symm = ofDual ∘ ofDual :=
   rfl
 #align order_iso.coe_dual_dual_symm OrderIso.coe_dualDual_symm
+-/
 
 variable {α}
 
+#print OrderIso.dualDual_apply /-
 @[simp]
 theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
   rfl
 #align order_iso.dual_dual_apply OrderIso.dualDual_apply
+-/
 
+#print OrderIso.dualDual_symm_apply /-
 @[simp]
 theorem dualDual_symm_apply (a : αᵒᵈᵒᵈ) : (dualDual α).symm a = ofDual (ofDual a) :=
   rfl
 #align order_iso.dual_dual_symm_apply OrderIso.dualDual_symm_apply
+-/
 
 end LE
 
@@ -987,35 +1138,47 @@ section Le
 
 variable [LE α] [LE β] [LE γ]
 
+#print OrderIso.le_iff_le /-
 @[simp]
 theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
   e.map_rel_iff
 #align order_iso.le_iff_le OrderIso.le_iff_le
+-/
 
+#print OrderIso.le_symm_apply /-
 theorem le_symm_apply (e : α ≃o β) {x : α} {y : β} : x ≤ e.symm y ↔ e x ≤ y :=
   e.rel_symm_apply
 #align order_iso.le_symm_apply OrderIso.le_symm_apply
+-/
 
+#print OrderIso.symm_apply_le /-
 theorem symm_apply_le (e : α ≃o β) {x : α} {y : β} : e.symm y ≤ x ↔ y ≤ e x :=
   e.symm_apply_rel
 #align order_iso.symm_apply_le OrderIso.symm_apply_le
+-/
 
 end Le
 
 variable [Preorder α] [Preorder β] [Preorder γ]
 
+#print OrderIso.monotone /-
 protected theorem monotone (e : α ≃o β) : Monotone e :=
   e.toOrderEmbedding.Monotone
 #align order_iso.monotone OrderIso.monotone
+-/
 
+#print OrderIso.strictMono /-
 protected theorem strictMono (e : α ≃o β) : StrictMono e :=
   e.toOrderEmbedding.StrictMono
 #align order_iso.strict_mono OrderIso.strictMono
+-/
 
+#print OrderIso.lt_iff_lt /-
 @[simp]
 theorem lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
   e.toOrderEmbedding.lt_iff_lt
 #align order_iso.lt_iff_lt OrderIso.lt_iff_lt
+-/
 
 #print OrderIso.toRelIsoLT /-
 /-- Converts an `order_iso` into a `rel_iso (<) (<)`. -/
@@ -1024,15 +1187,19 @@ def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < 
 #align order_iso.to_rel_iso_lt OrderIso.toRelIsoLT
 -/
 
+#print OrderIso.toRelIsoLT_apply /-
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
   rfl
 #align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_apply
+-/
 
+#print OrderIso.toRelIsoLT_symm /-
 @[simp]
 theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT :=
   rfl
 #align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symm
+-/
 
 #print OrderIso.ofRelIsoLT /-
 /-- Converts a `rel_iso (<) (<)` into an `order_iso`. -/
@@ -1042,29 +1209,37 @@ def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
 #align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLT
 -/
 
+#print OrderIso.ofRelIsoLT_apply /-
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) (x : α) : ofRelIsoLT e x = e x :=
   rfl
 #align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_apply
+-/
 
+#print OrderIso.ofRelIsoLT_symm /-
 @[simp]
 theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) :
     (ofRelIsoLT e).symm = ofRelIsoLT e.symm :=
   rfl
 #align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symm
+-/
 
+#print OrderIso.ofRelIsoLT_toRelIsoLT /-
 @[simp]
 theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
     ofRelIsoLT (toRelIsoLT e) = e := by ext; simp
 #align order_iso.of_rel_iso_lt_to_rel_iso_lt OrderIso.ofRelIsoLT_toRelIsoLT
+-/
 
+#print OrderIso.toRelIsoLT_ofRelIsoLT /-
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : toRelIsoLT (ofRelIsoLT e) = e := by
   ext; simp
 #align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLT
+-/
 
 #print OrderIso.ofCmpEqCmp /-
 /-- To show that `f : α → β`, `g : β → α` make up an order isomorphism of linear orders,
@@ -1080,6 +1255,7 @@ def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β
 #align order_iso.of_cmp_eq_cmp OrderIso.ofCmpEqCmp
 -/
 
+#print OrderIso.ofHomInv /-
 /-- To show that `f : α →o β` and `g : β →o α` make up an order isomorphism it is enough to show
     that `g` is the inverse of `f`-/
 def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f : F) (g : G)
@@ -1096,6 +1272,7 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
         show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h ,
       fun h => (f : α →o β).Monotone h⟩
 #align order_iso.of_hom_inv OrderIso.ofHomInv
+-/
 
 #print OrderIso.funUnique /-
 /-- Order isomorphism between `α → β` and `β`, where `α` has a unique element. -/
@@ -1107,11 +1284,13 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
 #align order_iso.fun_unique OrderIso.funUnique
 -/
 
+#print OrderIso.funUnique_symm_apply /-
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
     ((funUnique α β).symm : β → α → β) = Function.const α :=
   rfl
 #align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_apply
+-/
 
 end OrderIso
 
@@ -1127,17 +1306,21 @@ def toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) : α
 #align equiv.to_order_iso Equiv.toOrderIso
 -/
 
+#print Equiv.coe_toOrderIso /-
 @[simp]
 theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
     ⇑(e.toOrderIso h₁ h₂) = e :=
   rfl
 #align equiv.coe_to_order_iso Equiv.coe_toOrderIso
+-/
 
+#print Equiv.toOrderIso_toEquiv /-
 @[simp]
 theorem toOrderIso_toEquiv (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
     (e.toOrderIso h₁ h₂).toEquiv = e :=
   rfl
 #align equiv.to_order_iso_to_equiv Equiv.toOrderIso_toEquiv
+-/
 
 end Equiv
 
@@ -1170,34 +1353,47 @@ protected def OrderIso.dual [LE α] [LE β] (f : α ≃o β) : αᵒᵈ ≃o β
 
 section LatticeIsos
 
+#print OrderIso.map_bot' /-
 theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x ≤ x')
     (hy : ∀ y', y ≤ y') : f x = y := by refine' le_antisymm _ (hy _);
   rw [← f.apply_symm_apply y, f.map_rel_iff]; apply hx
 #align order_iso.map_bot' OrderIso.map_bot'
+-/
 
+#print OrderIso.map_bot /-
 theorem OrderIso.map_bot [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (f : α ≃o β) : f ⊥ = ⊥ :=
   f.map_bot' (fun _ => bot_le) fun _ => bot_le
 #align order_iso.map_bot OrderIso.map_bot
+-/
 
+#print OrderIso.map_top' /-
 theorem OrderIso.map_top' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x' ≤ x)
     (hy : ∀ y', y' ≤ y) : f x = y :=
   f.dual.map_bot' hx hy
 #align order_iso.map_top' OrderIso.map_top'
+-/
 
+#print OrderIso.map_top /-
 theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (f : α ≃o β) : f ⊤ = ⊤ :=
   f.dual.map_bot
 #align order_iso.map_top OrderIso.map_top
+-/
 
+#print OrderEmbedding.map_inf_le /-
 theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : α ↪o β) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
   f.Monotone.map_inf_le x y
 #align order_embedding.map_inf_le OrderEmbedding.map_inf_le
+-/
 
+#print OrderEmbedding.le_map_sup /-
 theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ↪o β) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
   f.Monotone.le_map_sup x y
 #align order_embedding.le_map_sup OrderEmbedding.le_map_sup
+-/
 
+#print OrderIso.map_inf /-
 theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
   by
@@ -1205,110 +1401,145 @@ theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β
   apply f.symm.le_iff_le.1
   simpa using f.symm.to_order_embedding.map_inf_le (f x) (f y)
 #align order_iso.map_inf OrderIso.map_inf
+-/
 
+#print OrderIso.map_sup /-
 theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
   f.dual.map_inf x y
 #align order_iso.map_sup OrderIso.map_sup
+-/
 
+#print Disjoint.map_orderIso /-
 /-- Note that this goal could also be stated `(disjoint on f) a b` -/
 theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
     {a b : α} (f : α ≃o β) (ha : Disjoint a b) : Disjoint (f a) (f b) := by
   rw [disjoint_iff_inf_le, ← f.map_inf, ← f.map_bot]; exact f.monotone ha.le_bot
 #align disjoint.map_order_iso Disjoint.map_orderIso
+-/
 
+#print Codisjoint.map_orderIso /-
 /-- Note that this goal could also be stated `(codisjoint on f) a b` -/
 theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
     {a b : α} (f : α ≃o β) (ha : Codisjoint a b) : Codisjoint (f a) (f b) := by
   rw [codisjoint_iff_le_sup, ← f.map_sup, ← f.map_top]; exact f.monotone ha.top_le
 #align codisjoint.map_order_iso Codisjoint.map_orderIso
+-/
 
+#print disjoint_map_orderIso_iff /-
 @[simp]
 theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
     {a b : α} (f : α ≃o β) : Disjoint (f a) (f b) ↔ Disjoint a b :=
   ⟨fun h => f.symm_apply_apply a ▸ f.symm_apply_apply b ▸ h.map_orderIso f.symm, fun h =>
     h.map_orderIso f⟩
 #align disjoint_map_order_iso_iff disjoint_map_orderIso_iff
+-/
 
+#print codisjoint_map_orderIso_iff /-
 @[simp]
 theorem codisjoint_map_orderIso_iff [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
     {a b : α} (f : α ≃o β) : Codisjoint (f a) (f b) ↔ Codisjoint a b :=
   ⟨fun h => f.symm_apply_apply a ▸ f.symm_apply_apply b ▸ h.map_orderIso f.symm, fun h =>
     h.map_orderIso f⟩
 #align codisjoint_map_order_iso_iff codisjoint_map_orderIso_iff
+-/
 
 namespace WithBot
 
+#print WithBot.toDualTopEquiv /-
 /-- Taking the dual then adding `⊥` is the same as adding `⊤` then taking the dual.
 This is the order iso form of `with_bot.of_dual`, as proven by `coe_to_dual_top_equiv_eq`.
 -/
 protected def toDualTopEquiv [LE α] : WithBot αᵒᵈ ≃o (WithTop α)ᵒᵈ :=
   OrderIso.refl _
 #align with_bot.to_dual_top_equiv WithBot.toDualTopEquiv
+-/
 
+#print WithBot.toDualTopEquiv_coe /-
 @[simp]
 theorem toDualTopEquiv_coe [LE α] (a : α) :
     WithBot.toDualTopEquiv ↑(toDual a) = toDual (a : WithTop α) :=
   rfl
 #align with_bot.to_dual_top_equiv_coe WithBot.toDualTopEquiv_coe
+-/
 
+#print WithBot.toDualTopEquiv_symm_coe /-
 @[simp]
 theorem toDualTopEquiv_symm_coe [LE α] (a : α) :
     WithBot.toDualTopEquiv.symm (toDual (a : WithTop α)) = ↑(toDual a) :=
   rfl
 #align with_bot.to_dual_top_equiv_symm_coe WithBot.toDualTopEquiv_symm_coe
+-/
 
+#print WithBot.toDualTopEquiv_bot /-
 @[simp]
 theorem toDualTopEquiv_bot [LE α] : WithBot.toDualTopEquiv (⊥ : WithBot αᵒᵈ) = ⊥ :=
   rfl
 #align with_bot.to_dual_top_equiv_bot WithBot.toDualTopEquiv_bot
+-/
 
+#print WithBot.toDualTopEquiv_symm_bot /-
 @[simp]
 theorem toDualTopEquiv_symm_bot [LE α] : WithBot.toDualTopEquiv.symm (⊥ : (WithTop α)ᵒᵈ) = ⊥ :=
   rfl
 #align with_bot.to_dual_top_equiv_symm_bot WithBot.toDualTopEquiv_symm_bot
+-/
 
+#print WithBot.coe_toDualTopEquiv_eq /-
 theorem coe_toDualTopEquiv_eq [LE α] :
     (WithBot.toDualTopEquiv : WithBot αᵒᵈ → (WithTop α)ᵒᵈ) = toDual ∘ WithBot.ofDual :=
   funext fun _ => rfl
 #align with_bot.coe_to_dual_top_equiv_eq WithBot.coe_toDualTopEquiv_eq
+-/
 
 end WithBot
 
 namespace WithTop
 
+#print WithTop.toDualBotEquiv /-
 /-- Taking the dual then adding `⊤` is the same as adding `⊥` then taking the dual.
 This is the order iso form of `with_top.of_dual`, as proven by `coe_to_dual_bot_equiv_eq`. -/
 protected def toDualBotEquiv [LE α] : WithTop αᵒᵈ ≃o (WithBot α)ᵒᵈ :=
   OrderIso.refl _
 #align with_top.to_dual_bot_equiv WithTop.toDualBotEquiv
+-/
 
+#print WithTop.toDualBotEquiv_coe /-
 @[simp]
 theorem toDualBotEquiv_coe [LE α] (a : α) :
     WithTop.toDualBotEquiv ↑(toDual a) = toDual (a : WithBot α) :=
   rfl
 #align with_top.to_dual_bot_equiv_coe WithTop.toDualBotEquiv_coe
+-/
 
+#print WithTop.toDualBotEquiv_symm_coe /-
 @[simp]
 theorem toDualBotEquiv_symm_coe [LE α] (a : α) :
     WithTop.toDualBotEquiv.symm (toDual (a : WithBot α)) = ↑(toDual a) :=
   rfl
 #align with_top.to_dual_bot_equiv_symm_coe WithTop.toDualBotEquiv_symm_coe
+-/
 
+#print WithTop.toDualBotEquiv_top /-
 @[simp]
 theorem toDualBotEquiv_top [LE α] : WithTop.toDualBotEquiv (⊤ : WithTop αᵒᵈ) = ⊤ :=
   rfl
 #align with_top.to_dual_bot_equiv_top WithTop.toDualBotEquiv_top
+-/
 
+#print WithTop.toDualBotEquiv_symm_top /-
 @[simp]
 theorem toDualBotEquiv_symm_top [LE α] : WithTop.toDualBotEquiv.symm (⊤ : (WithBot α)ᵒᵈ) = ⊤ :=
   rfl
 #align with_top.to_dual_bot_equiv_symm_top WithTop.toDualBotEquiv_symm_top
+-/
 
+#print WithTop.coe_toDualBotEquiv /-
 theorem coe_toDualBotEquiv [LE α] :
     (WithTop.toDualBotEquiv : WithTop αᵒᵈ → (WithBot α)ᵒᵈ) = toDual ∘ WithTop.ofDual :=
   funext fun _ => rfl
 #align with_top.coe_to_dual_bot_equiv_eq WithTop.coe_toDualBotEquiv
+-/
 
 end WithTop
 
@@ -1331,16 +1562,20 @@ theorem withTopCongr_refl : (OrderIso.refl α).withTopCongr = OrderIso.refl _ :=
 #align order_iso.with_top_congr_refl OrderIso.withTopCongr_refl
 -/
 
+#print OrderIso.withTopCongr_symm /-
 @[simp]
 theorem withTopCongr_symm (e : α ≃o β) : e.withTopCongr.symm = e.symm.withTopCongr :=
   RelIso.toEquiv_injective e.toEquiv.optionCongr_symm
 #align order_iso.with_top_congr_symm OrderIso.withTopCongr_symm
+-/
 
+#print OrderIso.withTopCongr_trans /-
 @[simp]
 theorem withTopCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
     e₁.withTopCongr.trans e₂.withTopCongr = (e₁.trans e₂).withTopCongr :=
   RelIso.toEquiv_injective <| e₁.toEquiv.optionCongr_trans e₂.toEquiv
 #align order_iso.with_top_congr_trans OrderIso.withTopCongr_trans
+-/
 
 #print OrderIso.withBotCongr /-
 /-- A version of `equiv.option_congr` for `with_bot`. -/
@@ -1357,16 +1592,20 @@ theorem withBotCongr_refl : (OrderIso.refl α).withBotCongr = OrderIso.refl _ :=
 #align order_iso.with_bot_congr_refl OrderIso.withBotCongr_refl
 -/
 
+#print OrderIso.withBotCongr_symm /-
 @[simp]
 theorem withBotCongr_symm (e : α ≃o β) : e.withBotCongr.symm = e.symm.withBotCongr :=
   RelIso.toEquiv_injective e.toEquiv.optionCongr_symm
 #align order_iso.with_bot_congr_symm OrderIso.withBotCongr_symm
+-/
 
+#print OrderIso.withBotCongr_trans /-
 @[simp]
 theorem withBotCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
     e₁.withBotCongr.trans e₂.withBotCongr = (e₁.trans e₂).withBotCongr :=
   RelIso.toEquiv_injective <| e₁.toEquiv.optionCongr_trans e₂.toEquiv
 #align order_iso.with_bot_congr_trans OrderIso.withBotCongr_trans
+-/
 
 end OrderIso
 
@@ -1374,26 +1613,32 @@ section BoundedOrder
 
 variable [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] (f : α ≃o β)
 
-include f
-
+#print OrderIso.isCompl /-
 theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
   ⟨h.1.map_orderIso _, h.2.map_orderIso _⟩
 #align order_iso.is_compl OrderIso.isCompl
+-/
 
+#print OrderIso.isCompl_iff /-
 theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
   ⟨f.IsCompl, fun h => f.symm_apply_apply x ▸ f.symm_apply_apply y ▸ f.symm.IsCompl h⟩
 #align order_iso.is_compl_iff OrderIso.isCompl_iff
+-/
 
+#print OrderIso.complementedLattice /-
 theorem OrderIso.complementedLattice [ComplementedLattice α] : ComplementedLattice β :=
   ⟨fun x => by
     obtain ⟨y, hy⟩ := exists_is_compl (f.symm x)
     rw [← f.symm_apply_apply y] at hy 
     refine' ⟨f y, f.symm.is_compl_iff.2 hy⟩⟩
 #align order_iso.complemented_lattice OrderIso.complementedLattice
+-/
 
+#print OrderIso.complementedLattice_iff /-
 theorem OrderIso.complementedLattice_iff : ComplementedLattice α ↔ ComplementedLattice β :=
   ⟨by intro; exact f.complemented_lattice, by intro; exact f.symm.complemented_lattice⟩
 #align order_iso.complemented_lattice_iff OrderIso.complementedLattice_iff
+-/
 
 end BoundedOrder
 
Diff
@@ -175,12 +175,12 @@ variable [LE α] [LE β] [OrderIsoClass F α β]
 
 @[simp]
 theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a := by
-  convert(map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
+  convert (map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_le_iff map_inv_le_iff
 
 @[simp]
 theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b := by
-  convert(map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
+  convert (map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align le_map_inv_iff le_map_inv_iff
 
 end LE
@@ -195,12 +195,12 @@ theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
 
 @[simp]
 theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a := by
-  convert(map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
+  convert (map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_lt_iff map_inv_lt_iff
 
 @[simp]
 theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b := by
-  convert(map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
+  convert (map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align lt_map_inv_iff lt_map_inv_iff
 
 end OrderIsoClass
@@ -1076,7 +1076,7 @@ def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β
     invFun := g
     left_inv := fun a => (gf a).symm
     right_inv := by intro; rw [← cmp_eq_eq_iff, ← h, cmp_self_eq_eq]
-    map_rel_iff' := by intros; apply le_iff_le_of_cmp_eq_cmp; convert(h _ _).symm; apply gf }
+    map_rel_iff' := by intros; apply le_iff_le_of_cmp_eq_cmp; convert (h _ _).symm; apply gf }
 #align order_iso.of_cmp_eq_cmp OrderIso.ofCmpEqCmp
 -/
 
Diff
@@ -128,7 +128,7 @@ abbrev OrderHomClass (F : Type _) (α β : outParam (Type _)) [LE α] [LE β] :=
 
 You should extend this class when you extend `order_iso`. -/
 class OrderIsoClass (F : Type _) (α β : outParam (Type _)) [LE α] [LE β] extends
-  EquivLike F α β where
+    EquivLike F α β where
   map_le_map_iff (f : F) {a b : α} : f a ≤ f b ↔ a ≤ b
 #align order_iso_class OrderIsoClass
 -/
@@ -603,7 +603,7 @@ end OrderHom
 /-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
 def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) : α ↪o β :=
-  { f with map_rel_iff' := by intros ; simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
+  { f with map_rel_iff' := by intros; simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
 #align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbedding
 -/
 
@@ -1071,12 +1071,12 @@ theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     it suffices to prove `cmp a (g b) = cmp (f a) b`. -/
 def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β → α)
     (h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b) : α ≃o β :=
-  have gf : ∀ a : α, a = g (f a) := by intro ; rw [← cmp_eq_eq_iff, h, cmp_self_eq_eq]
+  have gf : ∀ a : α, a = g (f a) := by intro; rw [← cmp_eq_eq_iff, h, cmp_self_eq_eq]
   { toFun := f
     invFun := g
     left_inv := fun a => (gf a).symm
-    right_inv := by intro ; rw [← cmp_eq_eq_iff, ← h, cmp_self_eq_eq]
-    map_rel_iff' := by intros ; apply le_iff_le_of_cmp_eq_cmp; convert(h _ _).symm; apply gf }
+    right_inv := by intro; rw [← cmp_eq_eq_iff, ← h, cmp_self_eq_eq]
+    map_rel_iff' := by intros; apply le_iff_le_of_cmp_eq_cmp; convert(h _ _).symm; apply gf }
 #align order_iso.of_cmp_eq_cmp OrderIso.ofCmpEqCmp
 -/
 
@@ -1093,7 +1093,7 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
   map_rel_iff' a b :=
     ⟨fun h => by replace h := map_rel g h;
       rwa [Equiv.coe_fn_mk, show g (f a) = (g : β →o α).comp (f : α →o β) a from rfl,
-        show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h,
+        show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h ,
       fun h => (f : α →o β).Monotone h⟩
 #align order_iso.of_hom_inv OrderIso.ofHomInv
 
@@ -1387,12 +1387,12 @@ theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
 theorem OrderIso.complementedLattice [ComplementedLattice α] : ComplementedLattice β :=
   ⟨fun x => by
     obtain ⟨y, hy⟩ := exists_is_compl (f.symm x)
-    rw [← f.symm_apply_apply y] at hy
+    rw [← f.symm_apply_apply y] at hy 
     refine' ⟨f y, f.symm.is_compl_iff.2 hy⟩⟩
 #align order_iso.complemented_lattice OrderIso.complementedLattice
 
 theorem OrderIso.complementedLattice_iff : ComplementedLattice α ↔ ComplementedLattice β :=
-  ⟨by intro ; exact f.complemented_lattice, by intro ; exact f.symm.complemented_lattice⟩
+  ⟨by intro; exact f.complemented_lattice, by intro; exact f.symm.complemented_lattice⟩
 #align order_iso.complemented_lattice_iff OrderIso.complementedLattice_iff
 
 end BoundedOrder
Diff
@@ -229,12 +229,10 @@ instance : OrderHomClass (α →o β) α β where
   coe_injective' f g h := by cases f; cases g; congr
   map_rel f := f.Monotone
 
-/- warning: order_hom.to_fun_eq_coe clashes with [anonymous] -> [anonymous]
-Case conversion may be inaccurate. Consider using '#align order_hom.to_fun_eq_coe [anonymous]ₓ'. -/
 @[simp]
-theorem [anonymous] {f : α →o β} : f.toFun = f :=
+theorem toFun_eq_coe {f : α →o β} : f.toFun = f :=
   rfl
-#align order_hom.to_fun_eq_coe [anonymous]
+#align order_hom.to_fun_eq_coe OrderHom.toFun_eq_coe
 
 @[simp]
 theorem coe_fun_mk {f : α → β} (hf : Monotone f) : (mk f hf : α → β) = f :=
@@ -247,10 +245,8 @@ theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
   FunLike.coe_injective h
 #align order_hom.ext OrderHom.ext
 
-/- warning: order_hom.coe_eq clashes with [anonymous] -> [anonymous]
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_eq [anonymous]ₓ'. -/
-theorem [anonymous] (f : α →o β) : coe f = f := by ext <;> rfl
-#align order_hom.coe_eq [anonymous]
+theorem coe_eq (f : α →o β) : coe f = f := by ext <;> rfl
+#align order_hom.coe_eq OrderHom.coe_eq
 
 /-- One can lift an unbundled monotone function to a bundled one. -/
 instance : CanLift (α → β) (α →o β) coeFn Monotone where prf f h := ⟨⟨f, h⟩, rfl⟩
Diff
@@ -502,6 +502,7 @@ def pi (f : ∀ i, α →o π i) : α →o ∀ i, π i :=
 #align order_hom.pi OrderHom.pi
 -/
 
+#print OrderHom.piIso /-
 /-- Order isomorphism between bundled monotone maps `α →o Π i, π i` and families of bundled monotone
 maps `Π i, α →o π i`. -/
 @[simps]
@@ -513,6 +514,7 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i
   right_inv f := by ext (x i); rfl
   map_rel_iff' f g := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
+-/
 
 #print OrderHom.Subtype.val /-
 /-- `subtype.val` as a bundled monotone function.  -/
@@ -574,12 +576,14 @@ theorem symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ)
   rfl
 #align order_hom.symm_dual_comp OrderHom.symm_dual_comp
 
+#print OrderHom.dualIso /-
 /-- `order_hom.dual` as an order isomorphism. -/
 def dualIso (α β : Type _) [Preorder α] [Preorder β] : (α →o β) ≃o (αᵒᵈ →o βᵒᵈ)ᵒᵈ
     where
   toEquiv := OrderHom.dual.trans OrderDual.toDual
   map_rel_iff' f g := Iff.rfl
 #align order_hom.dual_iso OrderHom.dualIso
+-/
 
 #print OrderHom.withBotMap /-
 /-- Lift an order homomorphism `f : α →o β` to an order homomorphism `with_bot α →o with_bot β`. -/
@@ -599,11 +603,13 @@ protected def withTopMap (f : α →o β) : WithTop α →o WithTop β :=
 
 end OrderHom
 
+#print RelEmbedding.orderEmbeddingOfLTEmbedding /-
 /-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
 def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) : α ↪o β :=
   { f with map_rel_iff' := by intros ; simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
 #align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbedding
+-/
 
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
@@ -616,10 +622,12 @@ namespace OrderEmbedding
 
 variable [Preorder α] [Preorder β] (f : α ↪o β)
 
+#print OrderEmbedding.ltEmbedding /-
 /-- `<` is preserved by order embeddings of preorders. -/
 def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop) :=
   { f with map_rel_iff' := by intros <;> simp [lt_iff_le_not_le, f.map_rel_iff] }
 #align order_embedding.lt_embedding OrderEmbedding.ltEmbedding
+-/
 
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
@@ -652,20 +660,27 @@ protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
 #align order_embedding.acc OrderEmbedding.acc
 
+#print OrderEmbedding.wellFounded /-
 protected theorem wellFounded :
     WellFounded ((· < ·) : β → β → Prop) → WellFounded ((· < ·) : α → α → Prop) :=
   f.ltEmbedding.WellFounded
 #align order_embedding.well_founded OrderEmbedding.wellFounded
+-/
 
+#print OrderEmbedding.isWellOrder /-
 protected theorem isWellOrder [IsWellOrder β (· < ·)] : IsWellOrder α (· < ·) :=
   f.ltEmbedding.IsWellOrder
 #align order_embedding.is_well_order OrderEmbedding.isWellOrder
+-/
 
+#print OrderEmbedding.dual /-
 /-- An order embedding is also an order embedding between dual orders. -/
 protected def dual : αᵒᵈ ↪o βᵒᵈ :=
   ⟨f.toEmbedding, fun a b => f.map_rel_iff⟩
 #align order_embedding.dual OrderEmbedding.dual
+-/
 
+#print OrderEmbedding.withBotMap /-
 /-- A version of `with_bot.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
@@ -673,13 +688,17 @@ protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
     toFun := WithBot.map f
     map_rel_iff' := WithBot.map_le_iff f fun a b => f.map_rel_iff }
 #align order_embedding.with_bot_map OrderEmbedding.withBotMap
+-/
 
+#print OrderEmbedding.withTopMap /-
 /-- A version of `with_top.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withTopMap (f : α ↪o β) : WithTop α ↪o WithTop β :=
   { f.dual.withBot_map.dual with toFun := WithTop.map f }
 #align order_embedding.with_top_map OrderEmbedding.withTopMap
+-/
 
+#print OrderEmbedding.ofMapLEIff /-
 /-- To define an order embedding from a partial order to a preorder it suffices to give a function
 together with a proof that it satisfies `f a ≤ f b ↔ a ≤ b`.
 -/
@@ -687,6 +706,7 @@ def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀
     α ↪o β :=
   RelEmbedding.ofMapRelIff f hf
 #align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIff
+-/
 
 @[simp]
 theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
@@ -694,10 +714,12 @@ theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (
   rfl
 #align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIff
 
+#print OrderEmbedding.ofStrictMono /-
 /-- A strictly monotone map from a linear order is an order embedding. -/
 def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : StrictMono f) : α ↪o β :=
   ofMapLEIff f fun _ _ => h.le_iff_le
 #align order_embedding.of_strict_mono OrderEmbedding.ofStrictMono
+-/
 
 @[simp]
 theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β} (h : StrictMono f) :
@@ -705,12 +727,15 @@ theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β}
   rfl
 #align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMono
 
+#print OrderEmbedding.subtype /-
 /-- Embedding of a subtype into the ambient type as an `order_embedding`. -/
 @[simps (config := { fullyApplied := false })]
 def subtype (p : α → Prop) : Subtype p ↪o α :=
   ⟨Function.Embedding.subtype p, fun x y => Iff.rfl⟩
 #align order_embedding.subtype OrderEmbedding.subtype
+-/
 
+#print OrderEmbedding.toOrderHom /-
 /-- Convert an `order_embedding` to a `order_hom`. -/
 @[simps (config := { fullyApplied := false })]
 def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y
@@ -718,6 +743,7 @@ def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o
   toFun := f
   monotone' := f.Monotone
 #align order_embedding.to_order_hom OrderEmbedding.toOrderHom
+-/
 
 end OrderEmbedding
 
@@ -729,6 +755,7 @@ namespace RelHom
 
 variable (f : ((· < ·) : α → α → Prop) →r ((· < ·) : β → β → Prop))
 
+#print RelHom.toOrderHom /-
 /-- A bundled expression of the fact that a map between partial orders that is strictly monotone
 is weakly monotone. -/
 @[simps (config := { fullyApplied := false })]
@@ -736,6 +763,7 @@ def toOrderHom : α →o β where
   toFun := f
   monotone' := StrictMono.monotone fun x y => f.map_rel
 #align rel_hom.to_order_hom RelHom.toOrderHom
+-/
 
 end RelHom
 
@@ -993,10 +1021,12 @@ theorem lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
   e.toOrderEmbedding.lt_iff_lt
 #align order_iso.lt_iff_lt OrderIso.lt_iff_lt
 
+#print OrderIso.toRelIsoLT /-
 /-- Converts an `order_iso` into a `rel_iso (<) (<)`. -/
 def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop) :=
   ⟨e.toEquiv, fun x y => lt_iff_lt e⟩
 #align order_iso.to_rel_iso_lt OrderIso.toRelIsoLT
+-/
 
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
@@ -1008,11 +1038,13 @@ theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT
   rfl
 #align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symm
 
+#print OrderIso.ofRelIsoLT /-
 /-- Converts a `rel_iso (<) (<)` into an `order_iso`. -/
 def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : α ≃o β :=
   ⟨e.toEquiv, fun x y => by simp [le_iff_eq_or_lt, e.map_rel_iff]⟩
 #align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLT
+-/
 
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
@@ -1069,6 +1101,7 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
       fun h => (f : α →o β).Monotone h⟩
 #align order_iso.of_hom_inv OrderIso.ofHomInv
 
+#print OrderIso.funUnique /-
 /-- Order isomorphism between `α → β` and `β`, where `α` has a unique element. -/
 @[simps toEquiv apply]
 def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
@@ -1076,6 +1109,7 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
   toEquiv := Equiv.funUnique α β
   map_rel_iff' f g := by simp [Pi.le_def, Unique.forall_iff]
 #align order_iso.fun_unique OrderIso.funUnique
+-/
 
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
@@ -1117,6 +1151,7 @@ variable {α β} [LinearOrder α] [Preorder β]
 
 variable (f : α → β) (h_mono : StrictMono f) (h_surj : Function.Surjective f)
 
+#print StrictMono.orderIsoOfRightInverse /-
 /-- A strictly monotone function with a right inverse is an order isomorphism. -/
 @[simps (config := { fullyApplied := False })]
 def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α ≃o β :=
@@ -1126,6 +1161,7 @@ def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α
     left_inv := fun x => h_mono.Injective <| hg _
     right_inv := hg }
 #align strict_mono.order_iso_of_right_inverse StrictMono.orderIsoOfRightInverse
+-/
 
 end StrictMono
 
@@ -1284,16 +1320,20 @@ namespace OrderIso
 
 variable [PartialOrder α] [PartialOrder β] [PartialOrder γ]
 
+#print OrderIso.withTopCongr /-
 /-- A version of `equiv.option_congr` for `with_top`. -/
 @[simps apply]
 def withTopCongr (e : α ≃o β) : WithTop α ≃o WithTop β :=
   { e.toOrderEmbedding.withTop_map with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_top_congr OrderIso.withTopCongr
+-/
 
+#print OrderIso.withTopCongr_refl /-
 @[simp]
 theorem withTopCongr_refl : (OrderIso.refl α).withTopCongr = OrderIso.refl _ :=
   RelIso.toEquiv_injective Equiv.optionCongr_refl
 #align order_iso.with_top_congr_refl OrderIso.withTopCongr_refl
+-/
 
 @[simp]
 theorem withTopCongr_symm (e : α ≃o β) : e.withTopCongr.symm = e.symm.withTopCongr :=
@@ -1306,16 +1346,20 @@ theorem withTopCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
   RelIso.toEquiv_injective <| e₁.toEquiv.optionCongr_trans e₂.toEquiv
 #align order_iso.with_top_congr_trans OrderIso.withTopCongr_trans
 
+#print OrderIso.withBotCongr /-
 /-- A version of `equiv.option_congr` for `with_bot`. -/
 @[simps apply]
 def withBotCongr (e : α ≃o β) : WithBot α ≃o WithBot β :=
   { e.toOrderEmbedding.withBot_map with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_bot_congr OrderIso.withBotCongr
+-/
 
+#print OrderIso.withBotCongr_refl /-
 @[simp]
 theorem withBotCongr_refl : (OrderIso.refl α).withBotCongr = OrderIso.refl _ :=
   RelIso.toEquiv_injective Equiv.optionCongr_refl
 #align order_iso.with_bot_congr_refl OrderIso.withBotCongr_refl
+-/
 
 @[simp]
 theorem withBotCongr_symm (e : α ≃o β) : e.withBotCongr.symm = e.symm.withBotCongr :=
Diff
@@ -154,21 +154,9 @@ namespace OrderHomClass
 
 variable [Preorder α] [Preorder β] [OrderHomClass F α β]
 
-/- warning: order_hom_class.monotone -> OrderHomClass.monotone is a dubious translation:
-lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) _inst_3)) f)
-but is expected to have type
-  forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) _inst_3) f)
-Case conversion may be inaccurate. Consider using '#align order_hom_class.monotone OrderHomClass.monotoneₓ'. -/
 protected theorem monotone (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
 #align order_hom_class.monotone OrderHomClass.monotone
 
-/- warning: order_hom_class.mono -> OrderHomClass.mono is a dubious translation:
-lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) _inst_3)) f)
-but is expected to have type
-  forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) _inst_3) f)
-Case conversion may be inaccurate. Consider using '#align order_hom_class.mono OrderHomClass.monoₓ'. -/
 protected theorem mono (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
 #align order_hom_class.mono OrderHomClass.mono
 
@@ -185,23 +173,11 @@ section LE
 
 variable [LE α] [LE β] [OrderIsoClass F α β]
 
-/- warning: map_inv_le_iff -> map_inv_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u2} α _inst_1 (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3) f b) a) (LE.le.{u3} β _inst_2 b (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α _inst_1) (LE.le.{u3} β _inst_2) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a))
-but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b) a) (LE.le.{u1} β _inst_2 b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a))
-Case conversion may be inaccurate. Consider using '#align map_inv_le_iff map_inv_le_iffₓ'. -/
 @[simp]
 theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a := by
   convert(map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_le_iff map_inv_le_iff
 
-/- warning: le_map_inv_iff -> le_map_inv_iff is a dubious translation:
-lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u2} α _inst_1 a (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3) f b)) (LE.le.{u3} β _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α _inst_1) (LE.le.{u3} β _inst_2) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a) b)
-but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b)) (LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a) b)
-Case conversion may be inaccurate. Consider using '#align le_map_inv_iff le_map_inv_iffₓ'. -/
 @[simp]
 theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b := by
   convert(map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
@@ -213,33 +189,15 @@ variable [Preorder α] [Preorder β] [OrderIsoClass F α β]
 
 include β
 
-/- warning: map_lt_map_iff -> map_lt_map_iff is a dubious translation:
-lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f b)) (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) a b)
-but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u1}} {β : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f a) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align map_lt_map_iff map_lt_map_iffₓ'. -/
 theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
   lt_iff_lt_of_le_iff_le' (map_le_map_iff f) (map_le_map_iff f)
 #align map_lt_map_iff map_lt_map_iff
 
-/- warning: map_inv_lt_iff -> map_inv_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3) f b) a) (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) b (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a))
-but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b) a) (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a))
-Case conversion may be inaccurate. Consider using '#align map_inv_lt_iff map_inv_lt_iffₓ'. -/
 @[simp]
 theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a := by
   convert(map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_lt_iff map_inv_lt_iff
 
-/- warning: lt_map_inv_iff -> lt_map_inv_iff is a dubious translation:
-lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) a (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3) f b)) (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a) b)
-but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b)) (LT.lt.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a) b)
-Case conversion may be inaccurate. Consider using '#align lt_map_inv_iff lt_map_inv_iffₓ'. -/
 @[simp]
 theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b := by
   convert(map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
@@ -258,22 +216,10 @@ instance : CoeFun (α →o β) fun _ => α → β :=
 
 initialize_simps_projections OrderHom (toFun → coe)
 
-/- warning: order_hom.monotone -> OrderHom.monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2), Monotone.{u2, u1} α β _inst_1 _inst_2 (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f)
-Case conversion may be inaccurate. Consider using '#align order_hom.monotone OrderHom.monotoneₓ'. -/
 protected theorem monotone (f : α →o β) : Monotone f :=
   f.monotone'
 #align order_hom.monotone OrderHom.monotone
 
-/- warning: order_hom.mono -> OrderHom.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2), Monotone.{u2, u1} α β _inst_1 _inst_2 (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f)
-Case conversion may be inaccurate. Consider using '#align order_hom.mono OrderHom.monoₓ'. -/
 protected theorem mono (f : α →o β) : Monotone f :=
   f.Monotone
 #align order_hom.mono OrderHom.mono
@@ -284,34 +230,17 @@ instance : OrderHomClass (α →o β) α β where
   map_rel f := f.Monotone
 
 /- warning: order_hom.to_fun_eq_coe clashes with [anonymous] -> [anonymous]
-warning: order_hom.to_fun_eq_coe -> [anonymous] is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (OrderHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}}, (Nat -> α -> β) -> Nat -> (List.{u1} α) -> (List.{u2} β)
 Case conversion may be inaccurate. Consider using '#align order_hom.to_fun_eq_coe [anonymous]ₓ'. -/
 @[simp]
 theorem [anonymous] {f : α →o β} : f.toFun = f :=
   rfl
 #align order_hom.to_fun_eq_coe [anonymous]
 
-/- warning: order_hom.coe_fun_mk -> OrderHom.coe_fun_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : α -> β} (hf : Monotone.{u1, u2} α β _inst_1 _inst_2 f), Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 f hf)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 f hf)) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : α -> β} (hf : Monotone.{u2, u1} α β _inst_1 _inst_2 f), Eq.{max (succ u2) (succ u1)} (α -> β) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 (OrderHom.mk.{u2, u1} α β _inst_1 _inst_2 f hf)) f
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_fun_mk OrderHom.coe_fun_mkₓ'. -/
 @[simp]
 theorem coe_fun_mk {f : α → β} (hf : Monotone f) : (mk f hf : α → β) = f :=
   rfl
 #align order_hom.coe_fun_mk OrderHom.coe_fun_mk
 
-/- warning: order_hom.ext -> OrderHom.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2) (g : OrderHom.{u1, u2} α β _inst_1 _inst_2), (Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g)) -> (Eq.{max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2) (g : OrderHom.{u2, u1} α β _inst_1 _inst_2), (Eq.{max (succ u2) (succ u1)} (α -> β) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 g)) -> (Eq.{max (succ u2) (succ u1)} (OrderHom.{u2, u1} α β _inst_1 _inst_2) f g)
-Case conversion may be inaccurate. Consider using '#align order_hom.ext OrderHom.extₓ'. -/
 -- See library note [partially-applied ext lemmas]
 @[ext]
 theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
@@ -319,11 +248,6 @@ theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
 #align order_hom.ext OrderHom.ext
 
 /- warning: order_hom.coe_eq clashes with [anonymous] -> [anonymous]
-warning: order_hom.coe_eq -> [anonymous] is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHomClass.OrderHom.hasCoeT.{max u1 u2, u1, u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (OrderHom.orderHomClass.{u1, u2} α β _inst_1 _inst_2)))) f) f
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}}, (Nat -> α -> β) -> Nat -> (List.{u1} α) -> (List.{u2} β)
 Case conversion may be inaccurate. Consider using '#align order_hom.coe_eq [anonymous]ₓ'. -/
 theorem [anonymous] (f : α →o β) : coe f = f := by ext <;> rfl
 #align order_hom.coe_eq [anonymous]
@@ -339,23 +263,11 @@ protected def copy (f : α →o β) (f' : α → β) (h : f' = f) : α →o β :
 #align order_hom.copy OrderHom.copy
 -/
 
-/- warning: order_hom.coe_copy -> OrderHom.coe_copy is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (OrderHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f)), Eq.{max (succ u2) (succ u1)} (α -> β) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 (OrderHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_copy OrderHom.coe_copyₓ'. -/
 @[simp]
 theorem coe_copy (f : α →o β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
   rfl
 #align order_hom.coe_copy OrderHom.coe_copy
 
-/- warning: order_hom.copy_eq -> OrderHom.copy_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f)), Eq.{max (succ u2) (succ u1)} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
-Case conversion may be inaccurate. Consider using '#align order_hom.copy_eq OrderHom.copy_eqₓ'. -/
 theorem copy_eq (f : α →o β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
   FunLike.ext' h
 #align order_hom.copy_eq OrderHom.copy_eq
@@ -378,55 +290,25 @@ instance : Preorder (α →o β) :=
 instance {β : Type _} [PartialOrder β] : PartialOrder (α →o β) :=
   @PartialOrder.lift (α →o β) (α → β) _ coeFn ext
 
-/- warning: order_hom.le_def -> OrderHom.le_def is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g) (forall (x : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : OrderHom.{u2, u1} α β _inst_1 _inst_2} {g : OrderHom.{u2, u1} α β _inst_1 _inst_2}, Iff (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) f g) (forall (x : α), LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f x) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 g x))
-Case conversion may be inaccurate. Consider using '#align order_hom.le_def OrderHom.le_defₓ'. -/
 theorem le_def {f g : α →o β} : f ≤ g ↔ ∀ x, f x ≤ g x :=
   Iff.rfl
 #align order_hom.le_def OrderHom.le_def
 
-/- warning: order_hom.coe_le_coe -> OrderHom.coe_le_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) f) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g)) (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : OrderHom.{u2, u1} α β _inst_1 _inst_2} {g : OrderHom.{u2, u1} α β _inst_1 _inst_2}, Iff (LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_2)) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 g)) (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) f g)
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_le_coe OrderHom.coe_le_coeₓ'. -/
 @[simp, norm_cast]
 theorem coe_le_coe {f g : α →o β} : (f : α → β) ≤ g ↔ f ≤ g :=
   Iff.rfl
 #align order_hom.coe_le_coe OrderHom.coe_le_coe
 
-/- warning: order_hom.mk_le_mk -> OrderHom.mk_le_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : α -> β} {g : α -> β} {hf : Monotone.{u1, u2} α β _inst_1 _inst_2 f} {hg : Monotone.{u1, u2} α β _inst_1 _inst_2 g}, Iff (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 f hf) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 g hg)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_2)) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : α -> β} {g : α -> β} {hf : Monotone.{u2, u1} α β _inst_1 _inst_2 f} {hg : Monotone.{u2, u1} α β _inst_1 _inst_2 g}, Iff (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) (OrderHom.mk.{u2, u1} α β _inst_1 _inst_2 f hf) (OrderHom.mk.{u2, u1} α β _inst_1 _inst_2 g hg)) (LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_2)) f g)
-Case conversion may be inaccurate. Consider using '#align order_hom.mk_le_mk OrderHom.mk_le_mkₓ'. -/
 @[simp]
 theorem mk_le_mk {f g : α → β} {hf hg} : mk f hf ≤ mk g hg ↔ f ≤ g :=
   Iff.rfl
 #align order_hom.mk_le_mk OrderHom.mk_le_mk
 
-/- warning: order_hom.apply_mono -> OrderHom.apply_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2} {x : α} {y : α}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x y) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : OrderHom.{u2, u1} α β _inst_1 _inst_2} {g : OrderHom.{u2, u1} α β _inst_1 _inst_2} {x : α} {y : α}, (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) f g) -> (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x y) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f x) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 g y))
-Case conversion may be inaccurate. Consider using '#align order_hom.apply_mono OrderHom.apply_monoₓ'. -/
 @[mono]
 theorem apply_mono {f g : α →o β} {x y : α} (h₁ : f ≤ g) (h₂ : x ≤ y) : f x ≤ g y :=
   (h₁ x).trans <| g.mono h₂
 #align order_hom.apply_mono OrderHom.apply_mono
 
-/- warning: order_hom.curry -> OrderHom.curry is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max u3 u2 u1, max (max u3 u2) u1} (OrderHom.{max u2 u1, u3} (Prod.{u1, u2} α β) γ (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u3 u2} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u2 u1, u3} (Prod.{u1, u2} α β) γ (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{u1, max u3 u2} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u2, u3} β γ _inst_2 _inst_3)))
-Case conversion may be inaccurate. Consider using '#align order_hom.curry OrderHom.curryₓ'. -/
 /-- Curry/uncurry as an order isomorphism between `α × β →o γ` and `α →o β →o γ`. -/
 def curry : (α × β →o γ) ≃o (α →o β →o γ)
     where
@@ -440,17 +322,11 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
   map_rel_iff' f g := by simp [le_def]
 #align order_hom.curry OrderHom.curry
 
-/- warning: order_hom.curry_apply -> OrderHom.curry_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_hom.curry_apply OrderHom.curry_applyₓ'. -/
 @[simp]
 theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (x, y) :=
   rfl
 #align order_hom.curry_apply OrderHom.curry_apply
 
-/- warning: order_hom.curry_symm_apply -> OrderHom.curry_symm_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_hom.curry_symm_apply OrderHom.curry_symm_applyₓ'. -/
 @[simp]
 theorem curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f x = f x.1 x.2 :=
   rfl
@@ -464,12 +340,6 @@ def comp (g : β →o γ) (f : α →o β) : α →o γ :=
 #align order_hom.comp OrderHom.comp
 -/
 
-/- warning: order_hom.comp_mono -> OrderHom.comp_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] {{g₁ : OrderHom.{u2, u3} β γ _inst_2 _inst_3}} {{g₂ : OrderHom.{u2, u3} β γ _inst_2 _inst_3}}, (LE.le.{max u2 u3} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (Preorder.toHasLe.{max u2 u3} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) g₁ g₂) -> (forall {{f₁ : OrderHom.{u1, u2} α β _inst_1 _inst_2}} {{f₂ : OrderHom.{u1, u2} α β _inst_1 _inst_2}}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (LE.le.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f₁) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] {{g₁ : OrderHom.{u3, u2} β γ _inst_2 _inst_3}} {{g₂ : OrderHom.{u3, u2} β γ _inst_2 _inst_3}}, (LE.le.{max u3 u2} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (Preorder.toLE.{max u3 u2} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.instPreorderOrderHom.{u3, u2} β γ _inst_2 _inst_3)) g₁ g₂) -> (forall {{f₁ : OrderHom.{u1, u3} α β _inst_1 _inst_2}} {{f₂ : OrderHom.{u1, u3} α β _inst_1 _inst_2}}, (LE.le.{max u1 u3} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u1, u3} α β _inst_1 _inst_2)) f₁ f₂) -> (LE.le.{max u1 u2} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f₁) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f₂)))
-Case conversion may be inaccurate. Consider using '#align order_hom.comp_mono OrderHom.comp_monoₓ'. -/
 @[mono]
 theorem comp_mono ⦃g₁ g₂ : β →o γ⦄ (hg : g₁ ≤ g₂) ⦃f₁ f₂ : α →o β⦄ (hf : f₁ ≤ f₂) :
     g₁.comp f₁ ≤ g₂.comp f₂ := fun x => (hg _).trans (g₂.mono <| hf _)
@@ -483,22 +353,10 @@ def compₘ : (β →o γ) →o (α →o β) →o α →o γ :=
 #align order_hom.compₘ OrderHom.compₘ
 -/
 
-/- warning: order_hom.comp_id -> OrderHom.comp_id is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (OrderHom.id.{u1} α _inst_1)) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (OrderHom.id.{u2} α _inst_1)) f
-Case conversion may be inaccurate. Consider using '#align order_hom.comp_id OrderHom.comp_idₓ'. -/
 @[simp]
 theorem comp_id (f : α →o β) : comp f id = f := by ext; rfl
 #align order_hom.comp_id OrderHom.comp_id
 
-/- warning: order_hom.id_comp -> OrderHom.id_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (OrderHom.id.{u2} β _inst_2) f) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (OrderHom.id.{u1} β _inst_2) f) f
-Case conversion may be inaccurate. Consider using '#align order_hom.id_comp OrderHom.id_compₓ'. -/
 @[simp]
 theorem id_comp (f : α →o β) : comp id f = f := by ext; rfl
 #align order_hom.id_comp OrderHom.id_comp
@@ -513,35 +371,17 @@ def const (α : Type _) [Preorder α] {β : Type _} [Preorder β] : β →o α 
 #align order_hom.const OrderHom.const
 -/
 
-/- warning: order_hom.const_comp -> OrderHom.const_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2) (c : γ), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max (succ u3) (succ (max u2 u3)), max (succ u3) (succ (max u2 u3))} (OrderHom.{u3, max u2 u3} γ (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_3 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u3, max u2 u3} γ (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_3 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => γ -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u3, max u2 u3} γ (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_3 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.const.{u2, u3} β _inst_2 γ _inst_3) c) f) (coeFn.{max (succ u3) (succ (max u1 u3)), max (succ u3) (succ (max u1 u3))} (OrderHom.{u3, max u1 u3} γ (OrderHom.{u1, u3} α γ _inst_1 _inst_3) _inst_3 (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : OrderHom.{u3, max u1 u3} γ (OrderHom.{u1, u3} α γ _inst_1 _inst_3) _inst_3 (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) => γ -> (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.hasCoeToFun.{u3, max u1 u3} γ (OrderHom.{u1, u3} α γ _inst_1 _inst_3) _inst_3 (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.const.{u1, u3} α _inst_1 γ _inst_3) c)
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{u3, u2} α β _inst_1 _inst_2) (c : γ), Eq.{max (succ u3) (succ u1)} (OrderHom.{u3, u1} α γ _inst_1 _inst_3) (OrderHom.comp.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 (OrderHom.toFun.{u1, max u2 u1} γ (OrderHom.{u2, u1} β γ _inst_2 _inst_3) _inst_3 (OrderHom.instPreorderOrderHom.{u2, u1} β γ _inst_2 _inst_3) (OrderHom.const.{u2, u1} β _inst_2 γ _inst_3) c) f) (OrderHom.toFun.{u1, max u3 u1} γ (OrderHom.{u3, u1} α γ _inst_1 _inst_3) _inst_3 (OrderHom.instPreorderOrderHom.{u3, u1} α γ _inst_1 _inst_3) (OrderHom.const.{u3, u1} α _inst_1 γ _inst_3) c)
-Case conversion may be inaccurate. Consider using '#align order_hom.const_comp OrderHom.const_compₓ'. -/
 @[simp]
 theorem const_comp (f : α →o β) (c : γ) : (const β c).comp f = const α c :=
   rfl
 #align order_hom.const_comp OrderHom.const_comp
 
-/- warning: order_hom.comp_const -> OrderHom.comp_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (γ : Type.{u3}) [_inst_5 : Preorder.{u3} γ] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2) (c : α), Eq.{max (succ u3) (succ u2)} (OrderHom.{u3, u2} γ β _inst_5 _inst_2) (OrderHom.comp.{u3, u1, u2} γ α β _inst_5 _inst_1 _inst_2 f (coeFn.{max (succ u1) (succ (max u3 u1)), max (succ u1) (succ (max u3 u1))} (OrderHom.{u1, max u3 u1} α (OrderHom.{u3, u1} γ α _inst_5 _inst_1) _inst_1 (OrderHom.preorder.{u3, u1} γ α _inst_5 _inst_1)) (fun (_x : OrderHom.{u1, max u3 u1} α (OrderHom.{u3, u1} γ α _inst_5 _inst_1) _inst_1 (OrderHom.preorder.{u3, u1} γ α _inst_5 _inst_1)) => α -> (OrderHom.{u3, u1} γ α _inst_5 _inst_1)) (OrderHom.hasCoeToFun.{u1, max u3 u1} α (OrderHom.{u3, u1} γ α _inst_5 _inst_1) _inst_1 (OrderHom.preorder.{u3, u1} γ α _inst_5 _inst_1)) (OrderHom.const.{u3, u1} γ _inst_5 α _inst_1) c)) (coeFn.{max (succ u2) (succ (max u3 u2)), max (succ u2) (succ (max u3 u2))} (OrderHom.{u2, max u3 u2} β (OrderHom.{u3, u2} γ β _inst_5 _inst_2) _inst_2 (OrderHom.preorder.{u3, u2} γ β _inst_5 _inst_2)) (fun (_x : OrderHom.{u2, max u3 u2} β (OrderHom.{u3, u2} γ β _inst_5 _inst_2) _inst_2 (OrderHom.preorder.{u3, u2} γ β _inst_5 _inst_2)) => β -> (OrderHom.{u3, u2} γ β _inst_5 _inst_2)) (OrderHom.hasCoeToFun.{u2, max u3 u2} β (OrderHom.{u3, u2} γ β _inst_5 _inst_2) _inst_2 (OrderHom.preorder.{u3, u2} γ β _inst_5 _inst_2)) (OrderHom.const.{u3, u2} γ _inst_5 β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f c))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (γ : Type.{u3}) [_inst_5 : Preorder.{u3} γ] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2) (c : α), Eq.{max (succ u1) (succ u3)} (OrderHom.{u3, u1} γ β _inst_5 _inst_2) (OrderHom.comp.{u3, u2, u1} γ α β _inst_5 _inst_1 _inst_2 f (OrderHom.toFun.{u2, max u3 u2} α (OrderHom.{u3, u2} γ α _inst_5 _inst_1) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u2} γ α _inst_5 _inst_1) (OrderHom.const.{u3, u2} γ _inst_5 α _inst_1) c)) (OrderHom.toFun.{u1, max u3 u1} β (OrderHom.{u3, u1} γ β _inst_5 _inst_2) _inst_2 (OrderHom.instPreorderOrderHom.{u3, u1} γ β _inst_5 _inst_2) (OrderHom.const.{u3, u1} γ _inst_5 β _inst_2) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f c))
-Case conversion may be inaccurate. Consider using '#align order_hom.comp_const OrderHom.comp_constₓ'. -/
 @[simp]
 theorem comp_const (γ : Type _) [Preorder γ] (f : α →o β) (c : α) :
     f.comp (const γ c) = const γ (f c) :=
   rfl
 #align order_hom.comp_const OrderHom.comp_const
 
-/- warning: order_hom.prod -> OrderHom.prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], (OrderHom.{u1, u2} α β _inst_1 _inst_2) -> (OrderHom.{u1, u3} α γ _inst_1 _inst_3) -> (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], (OrderHom.{u1, u2} α β _inst_1 _inst_2) -> (OrderHom.{u1, u3} α γ _inst_1 _inst_3) -> (OrderHom.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3))
-Case conversion may be inaccurate. Consider using '#align order_hom.prod OrderHom.prodₓ'. -/
 /-- Given two bundled monotone maps `f`, `g`, `f.prod g` is the map `x ↦ (f x, g x)` bundled as a
 `order_hom`. -/
 @[simps]
@@ -549,34 +389,16 @@ protected def prod (f : α →o β) (g : α →o γ) : α →o β × γ :=
   ⟨fun x => (f x, g x), fun x y h => ⟨f.mono h, g.mono h⟩⟩
 #align order_hom.prod OrderHom.prod
 
-/- warning: order_hom.prod_mono -> OrderHom.prod_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] {f₁ : OrderHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : OrderHom.{u1, u2} α β _inst_1 _inst_2}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (forall {g₁ : OrderHom.{u1, u3} α γ _inst_1 _inst_3} {g₂ : OrderHom.{u1, u3} α γ _inst_1 _inst_3}, (LE.le.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) g₁ g₂) -> (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₁ g₁) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₂ g₂)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u1} γ] {f₁ : OrderHom.{u3, u2} α β _inst_1 _inst_2} {f₂ : OrderHom.{u3, u2} α β _inst_1 _inst_2}, (LE.le.{max u3 u2} (OrderHom.{u3, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u3 u2} (OrderHom.{u3, u2} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u3, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (forall {g₁ : OrderHom.{u3, u1} α γ _inst_1 _inst_3} {g₂ : OrderHom.{u3, u1} α γ _inst_1 _inst_3}, (LE.le.{max u3 u1} (OrderHom.{u3, u1} α γ _inst_1 _inst_3) (Preorder.toLE.{max u3 u1} (OrderHom.{u3, u1} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u3, u1} α γ _inst_1 _inst_3)) g₁ g₂) -> (LE.le.{max (max u3 u2) u1} (OrderHom.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u2) u1} (OrderHom.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u2 u1} α (Prod.{u2, u1} β γ) _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3))) (OrderHom.prod.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f₁ g₁) (OrderHom.prod.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f₂ g₂)))
-Case conversion may be inaccurate. Consider using '#align order_hom.prod_mono OrderHom.prod_monoₓ'. -/
 @[mono]
 theorem prod_mono {f₁ f₂ : α →o β} (hf : f₁ ≤ f₂) {g₁ g₂ : α →o γ} (hg : g₁ ≤ g₂) :
     f₁.Prod g₁ ≤ f₂.Prod g₂ := fun x => Prod.le_def.2 ⟨hf _, hg _⟩
 #align order_hom.prod_mono OrderHom.prod_mono
 
-/- warning: order_hom.comp_prod_comp_same -> OrderHom.comp_prod_comp_same is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f₁ : OrderHom.{u2, u3} β γ _inst_2 _inst_3) (f₂ : OrderHom.{u2, u3} β γ _inst_2 _inst_3) (g : OrderHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} α (Prod.{u3, u3} γ γ) _inst_1 (Prod.preorder.{u3, u3} γ γ _inst_3 _inst_3)) (OrderHom.prod.{u1, u3, u3} α γ γ _inst_1 _inst_3 _inst_3 (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₁ g) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₂ g)) (OrderHom.comp.{u1, u2, u3} α β (Prod.{u3, u3} γ γ) _inst_1 _inst_2 (Prod.preorder.{u3, u3} γ γ _inst_3 _inst_3) (OrderHom.prod.{u2, u3, u3} β γ γ _inst_2 _inst_3 _inst_3 f₁ f₂) g)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (f₁ : OrderHom.{u3, u2} β γ _inst_2 _inst_3) (f₂ : OrderHom.{u3, u2} β γ _inst_2 _inst_3) (g : OrderHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (OrderHom.{u1, u2} α (Prod.{u2, u2} γ γ) _inst_1 (Prod.instPreorderProd.{u2, u2} γ γ _inst_3 _inst_3)) (OrderHom.prod.{u1, u2, u2} α γ γ _inst_1 _inst_3 _inst_3 (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f₁ g) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f₂ g)) (OrderHom.comp.{u1, u3, u2} α β (Prod.{u2, u2} γ γ) _inst_1 _inst_2 (Prod.instPreorderProd.{u2, u2} γ γ _inst_3 _inst_3) (OrderHom.prod.{u3, u2, u2} β γ γ _inst_2 _inst_3 _inst_3 f₁ f₂) g)
-Case conversion may be inaccurate. Consider using '#align order_hom.comp_prod_comp_same OrderHom.comp_prod_comp_sameₓ'. -/
 theorem comp_prod_comp_same (f₁ f₂ : β →o γ) (g : α →o β) :
     (f₁.comp g).Prod (f₂.comp g) = (f₁.Prod f₂).comp g :=
   rfl
 #align order_hom.comp_prod_comp_same OrderHom.comp_prod_comp_same
 
-/- warning: order_hom.prodₘ -> OrderHom.prodₘ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderHom.{max u1 u2, max (max u1 u3) u1 u2 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{max u1 u3, max u1 u2 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{max u1 u3, max u1 u2 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderHom.{max u2 u1, max (max (max u3 u2) u1) u3 u1} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{max u3 u1, max (max u3 u2) u1} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3))) (OrderHom.instPreorderOrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{max u1 u3, max (max u1 u2) u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3)))
-Case conversion may be inaccurate. Consider using '#align order_hom.prodₘ OrderHom.prodₘₓ'. -/
 /-- Given two bundled monotone maps `f`, `g`, `f.prod g` is the map `x ↦ (f x, g x)` bundled as a
 `order_hom`. This is a fully bundled version. -/
 @[simps]
@@ -584,12 +406,6 @@ def prodₘ : (α →o β) →o (α →o γ) →o α →o β × γ :=
   curry ⟨fun f : (α →o β) × (α →o γ) => f.1.Prod f.2, fun f₁ f₂ h => prod_mono h.1 h.2⟩
 #align order_hom.prodₘ OrderHom.prodₘ
 
-/- warning: order_hom.diag -> OrderHom.diag is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α], OrderHom.{u1, u1} α (Prod.{u1, u1} α α) _inst_1 (Prod.preorder.{u1, u1} α α _inst_1 _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α], OrderHom.{u1, u1} α (Prod.{u1, u1} α α) _inst_1 (Prod.instPreorderProd.{u1, u1} α α _inst_1 _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_hom.diag OrderHom.diagₓ'. -/
 /-- Diagonal embedding of `α` into `α × α` as a `order_hom`. -/
 @[simps]
 def diag : α →o α × α :=
@@ -604,68 +420,32 @@ def onDiag (f : α →o α →o β) : α →o β :=
 #align order_hom.on_diag OrderHom.onDiag
 -/
 
-/- warning: order_hom.fst -> OrderHom.fst is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], OrderHom.{max u1 u2, u1} (Prod.{u1, u2} α β) α (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_1
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], OrderHom.{max u2 u1, u1} (Prod.{u1, u2} α β) α (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_1
-Case conversion may be inaccurate. Consider using '#align order_hom.fst OrderHom.fstₓ'. -/
 /-- `prod.fst` as a `order_hom`. -/
 @[simps]
 def fst : α × β →o α :=
   ⟨Prod.fst, fun x y h => h.1⟩
 #align order_hom.fst OrderHom.fst
 
-/- warning: order_hom.snd -> OrderHom.snd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], OrderHom.{max u1 u2, u2} (Prod.{u1, u2} α β) β (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_2
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], OrderHom.{max u2 u1, u2} (Prod.{u1, u2} α β) β (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_2
-Case conversion may be inaccurate. Consider using '#align order_hom.snd OrderHom.sndₓ'. -/
 /-- `prod.snd` as a `order_hom`. -/
 @[simps]
 def snd : α × β →o β :=
   ⟨Prod.snd, fun x y h => h.2⟩
 #align order_hom.snd OrderHom.snd
 
-/- warning: order_hom.fst_prod_snd -> OrderHom.fst_prod_snd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], Eq.{succ (max u1 u2)} (OrderHom.{max u1 u2, max u1 u2} (Prod.{u1, u2} α β) (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2)) (OrderHom.prod.{max u1 u2, u1, u2} (Prod.{u1, u2} α β) α β (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_1 _inst_2 (OrderHom.fst.{u1, u2} α β _inst_1 _inst_2) (OrderHom.snd.{u1, u2} α β _inst_1 _inst_2)) (OrderHom.id.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (OrderHom.{max u2 u1, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2)) (OrderHom.prod.{max u2 u1, u2, u1} (Prod.{u2, u1} α β) α β (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) _inst_1 _inst_2 (OrderHom.fst.{u2, u1} α β _inst_1 _inst_2) (OrderHom.snd.{u2, u1} α β _inst_1 _inst_2)) (OrderHom.id.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align order_hom.fst_prod_snd OrderHom.fst_prod_sndₓ'. -/
 @[simp]
 theorem fst_prod_snd : (fst : α × β →o α).Prod snd = id := by ext ⟨x, y⟩ : 2; rfl
 #align order_hom.fst_prod_snd OrderHom.fst_prod_snd
 
-/- warning: order_hom.fst_comp_prod -> OrderHom.fst_comp_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2) (g : OrderHom.{u1, u3} α γ _inst_1 _inst_3), Eq.{max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.comp.{u1, max u2 u3, u2} α (Prod.{u2, u3} β γ) β _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3) _inst_2 (OrderHom.fst.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) f
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{u3, u2} α β _inst_1 _inst_2) (g : OrderHom.{u3, u1} α γ _inst_1 _inst_3), Eq.{max (succ u3) (succ u2)} (OrderHom.{u3, u2} α β _inst_1 _inst_2) (OrderHom.comp.{u3, max u1 u2, u2} α (Prod.{u2, u1} β γ) β _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3) _inst_2 (OrderHom.fst.{u2, u1} β γ _inst_2 _inst_3) (OrderHom.prod.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f g)) f
-Case conversion may be inaccurate. Consider using '#align order_hom.fst_comp_prod OrderHom.fst_comp_prodₓ'. -/
 @[simp]
 theorem fst_comp_prod (f : α →o β) (g : α →o γ) : fst.comp (f.Prod g) = f :=
   ext _ _ rfl
 #align order_hom.fst_comp_prod OrderHom.fst_comp_prod
 
-/- warning: order_hom.snd_comp_prod -> OrderHom.snd_comp_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, u2} α β _inst_1 _inst_2) (g : OrderHom.{u1, u3} α γ _inst_1 _inst_3), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, max u2 u3, u3} α (Prod.{u2, u3} β γ) γ _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3) _inst_3 (OrderHom.snd.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) g
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{u3, u2} α β _inst_1 _inst_2) (g : OrderHom.{u3, u1} α γ _inst_1 _inst_3), Eq.{max (succ u3) (succ u1)} (OrderHom.{u3, u1} α γ _inst_1 _inst_3) (OrderHom.comp.{u3, max u1 u2, u1} α (Prod.{u2, u1} β γ) γ _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3) _inst_3 (OrderHom.snd.{u2, u1} β γ _inst_2 _inst_3) (OrderHom.prod.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f g)) g
-Case conversion may be inaccurate. Consider using '#align order_hom.snd_comp_prod OrderHom.snd_comp_prodₓ'. -/
 @[simp]
 theorem snd_comp_prod (f : α →o β) (g : α →o γ) : snd.comp (f.Prod g) = g :=
   ext _ _ rfl
 #align order_hom.snd_comp_prod OrderHom.snd_comp_prod
 
-/- warning: order_hom.prod_iso -> OrderHom.prodIso is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max u1 u2 u3, max (max u1 u2) u1 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Prod.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))) (Prod.hasLe.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) (Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max (max u3 u2) u1, max (max u3 u1) u2 u1} (OrderHom.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3)) (Prod.{max u2 u1, max u3 u1} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3))) (Prod.instLEProd.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u1, u2} α β _inst_1 _inst_2)) (Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u1, u3} α γ _inst_1 _inst_3)))
-Case conversion may be inaccurate. Consider using '#align order_hom.prod_iso OrderHom.prodIsoₓ'. -/
 /-- Order isomorphism between the space of monotone maps to `β × γ` and the product of the spaces
 of monotone maps to `β` and `γ`. -/
 @[simps]
@@ -678,12 +458,6 @@ def prodIso : (α →o β × γ) ≃o (α →o β) × (α →o γ)
   map_rel_iff' f g := forall_and.symm
 #align order_hom.prod_iso OrderHom.prodIso
 
-/- warning: order_hom.prod_map -> OrderHom.prodMap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] [_inst_4 : Preorder.{u4} δ], (OrderHom.{u1, u2} α β _inst_1 _inst_2) -> (OrderHom.{u3, u4} γ δ _inst_3 _inst_4) -> (OrderHom.{max u1 u3, max u2 u4} (Prod.{u1, u3} α γ) (Prod.{u2, u4} β δ) (Prod.preorder.{u1, u3} α γ _inst_1 _inst_3) (Prod.preorder.{u2, u4} β δ _inst_2 _inst_4))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] [_inst_4 : Preorder.{u4} δ], (OrderHom.{u1, u2} α β _inst_1 _inst_2) -> (OrderHom.{u3, u4} γ δ _inst_3 _inst_4) -> (OrderHom.{max u3 u1, max u4 u2} (Prod.{u1, u3} α γ) (Prod.{u2, u4} β δ) (Prod.instPreorderProd.{u1, u3} α γ _inst_1 _inst_3) (Prod.instPreorderProd.{u2, u4} β δ _inst_2 _inst_4))
-Case conversion may be inaccurate. Consider using '#align order_hom.prod_map OrderHom.prodMapₓ'. -/
 /-- `prod.map` of two `order_hom`s as a `order_hom`. -/
 @[simps]
 def prodMap (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
@@ -728,12 +502,6 @@ def pi (f : ∀ i, α →o π i) : α →o ∀ i, π i :=
 #align order_hom.pi OrderHom.pi
 -/
 
-/- warning: order_hom.pi_iso -> OrderHom.piIso is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {ι : Type.{u2}} {π : ι -> Type.{u3}} [_inst_5 : forall (i : ι), Preorder.{u3} (π i)], OrderIso.{max u1 u2 u3, max u2 u1 u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (forall (i : ι), OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (OrderHom.preorder.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i)))) (Pi.hasLe.{u2, max u1 u3} ι (fun (i : ι) => OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (fun (i : ι) => Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (OrderHom.preorder.{u1, u3} α (π i) _inst_1 (_inst_5 i))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {ι : Type.{u2}} {π : ι -> Type.{u3}} [_inst_5 : forall (i : ι), Preorder.{u3} (π i)], OrderIso.{max (max u2 u3) u1, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (forall (i : ι), OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i)))) (Pi.hasLe.{u2, max u1 u3} ι (fun (i : ι) => OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (fun (i : ι) => Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (OrderHom.instPreorderOrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i))))
-Case conversion may be inaccurate. Consider using '#align order_hom.pi_iso OrderHom.piIsoₓ'. -/
 /-- Order isomorphism between bundled monotone maps `α →o Π i, π i` and families of bundled monotone
 maps `Π i, α →o π i`. -/
 @[simps]
@@ -788,12 +556,6 @@ theorem dual_id : (OrderHom.id : α →o α).dual = OrderHom.id :=
 #align order_hom.dual_id OrderHom.dual_id
 -/
 
-/- warning: order_hom.dual_comp -> OrderHom.dual_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (g : OrderHom.{u2, u3} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) => (OrderHom.{u1, u3} α γ _inst_1 _inst_3) -> (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (OrderHom.dual.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) => (OrderHom.{u2, u3} β γ _inst_2 _inst_3) -> (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (OrderHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) => (OrderHom.{u1, u2} α β _inst_1 _inst_2) -> (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (OrderHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u3} α β _inst_1 _inst_2) => OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
-Case conversion may be inaccurate. Consider using '#align order_hom.dual_comp OrderHom.dual_compₓ'. -/
 @[simp]
 theorem dual_comp (g : β →o γ) (f : α →o β) : (g.comp f).dual = g.dual.comp f.dual :=
   rfl
@@ -806,24 +568,12 @@ theorem symm_dual_id : OrderHom.dual.symm OrderHom.id = (OrderHom.id : α →o 
 #align order_hom.symm_dual_id OrderHom.symm_dual_id
 -/
 
-/- warning: order_hom.symm_dual_comp -> OrderHom.symm_dual_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (g : OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (f : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) => (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) -> (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3) g f)) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) => (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) => (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) -> (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (f : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (fun (_x : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => OrderHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
-Case conversion may be inaccurate. Consider using '#align order_hom.symm_dual_comp OrderHom.symm_dual_compₓ'. -/
 @[simp]
 theorem symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ) :
     OrderHom.dual.symm (g.comp f) = (OrderHom.dual.symm g).comp (OrderHom.dual.symm f) :=
   rfl
 #align order_hom.symm_dual_comp OrderHom.symm_dual_comp
 
-/- warning: order_hom.dual_iso -> OrderHom.dualIso is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_6 : Preorder.{u1} α] [_inst_7 : Preorder.{u2} β], OrderIso.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderDual.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderHom.preorder.{u1, u2} α β _inst_6 _inst_7)) (OrderDual.hasLe.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (OrderHom.preorder.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))))
-but is expected to have type
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_6 : Preorder.{u1} α] [_inst_7 : Preorder.{u2} β], OrderIso.{max u2 u1, max u2 u1} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderDual.{max u2 u1} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderHom.instPreorderOrderHom.{u1, u2} α β _inst_6 _inst_7)) (OrderDual.instLEOrderDual.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (OrderHom.instPreorderOrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))))
-Case conversion may be inaccurate. Consider using '#align order_hom.dual_iso OrderHom.dualIsoₓ'. -/
 /-- `order_hom.dual` as an order isomorphism. -/
 def dualIso (α β : Type _) [Preorder α] [Preorder β] : (α →o β) ≃o (αᵒᵈ →o βᵒᵈ)ᵒᵈ
     where
@@ -849,24 +599,12 @@ protected def withTopMap (f : α →o β) : WithTop α →o WithTop β :=
 
 end OrderHom
 
-/- warning: rel_embedding.order_embedding_of_lt_embedding -> RelEmbedding.orderEmbeddingOfLTEmbedding is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6318 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6320 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6318 x._@.Mathlib.Order.Hom.Basic._hyg.6320) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6340 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6342 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6340 x._@.Mathlib.Order.Hom.Basic._hyg.6342)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbeddingₓ'. -/
 /-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
 def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) : α ↪o β :=
   { f with map_rel_iff' := by intros ; simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
 #align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbedding
 
-/- warning: rel_embedding.order_embedding_of_lt_embedding_apply -> RelEmbedding.orderEmbeddingOfLTEmbedding_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425))) f x)
-Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_applyₓ'. -/
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
     {f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)} {x : α} :
@@ -878,128 +616,56 @@ namespace OrderEmbedding
 
 variable [Preorder α] [Preorder β] (f : α ↪o β)
 
-/- warning: order_embedding.lt_embedding -> OrderEmbedding.ltEmbedding is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524))
-Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding OrderEmbedding.ltEmbeddingₓ'. -/
 /-- `<` is preserved by order embeddings of preorders. -/
 def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop) :=
   { f with map_rel_iff' := by intros <;> simp [lt_iff_le_not_le, f.map_rel_iff] }
 #align order_embedding.lt_embedding OrderEmbedding.ltEmbedding
 
-/- warning: order_embedding.lt_embedding_apply -> OrderEmbedding.ltEmbedding_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f x)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f x)
-Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_applyₓ'. -/
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
   rfl
 #align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_apply
 
-/- warning: order_embedding.le_iff_le -> OrderEmbedding.le_iff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align order_embedding.le_iff_le OrderEmbedding.le_iff_leₓ'. -/
 @[simp]
 theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
   f.map_rel_iff
 #align order_embedding.le_iff_le OrderEmbedding.le_iff_le
 
-/- warning: order_embedding.lt_iff_lt -> OrderEmbedding.lt_iff_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_ltₓ'. -/
 @[simp]
 theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
   f.ltEmbedding.map_rel_iff
 #align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_lt
 
-/- warning: order_embedding.eq_iff_eq -> OrderEmbedding.eq_iff_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eqₓ'. -/
 @[simp]
 theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
   f.Injective.eq_iff
 #align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eq
 
-/- warning: order_embedding.monotone -> OrderEmbedding.monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f)
-Case conversion may be inaccurate. Consider using '#align order_embedding.monotone OrderEmbedding.monotoneₓ'. -/
 protected theorem monotone : Monotone f :=
   OrderHomClass.monotone f
 #align order_embedding.monotone OrderEmbedding.monotone
 
-/- warning: order_embedding.strict_mono -> OrderEmbedding.strictMono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f)
-Case conversion may be inaccurate. Consider using '#align order_embedding.strict_mono OrderEmbedding.strictMonoₓ'. -/
 protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 #align order_embedding.strict_mono OrderEmbedding.strictMono
 
-/- warning: order_embedding.acc -> OrderEmbedding.acc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) a)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6765 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6767 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6765 x._@.Mathlib.Order.Hom.Basic._hyg.6767) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6786 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6788 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6786 x._@.Mathlib.Order.Hom.Basic._hyg.6788) a)
-Case conversion may be inaccurate. Consider using '#align order_embedding.acc OrderEmbedding.accₓ'. -/
 protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
 #align order_embedding.acc OrderEmbedding.acc
 
-/- warning: order_embedding.well_founded -> OrderEmbedding.wellFounded is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (WellFounded.{succ u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6831 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6833 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6831 x._@.Mathlib.Order.Hom.Basic._hyg.6833)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6854 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6856 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6854 x._@.Mathlib.Order.Hom.Basic._hyg.6856))
-Case conversion may be inaccurate. Consider using '#align order_embedding.well_founded OrderEmbedding.wellFoundedₓ'. -/
 protected theorem wellFounded :
     WellFounded ((· < ·) : β → β → Prop) → WellFounded ((· < ·) : α → α → Prop) :=
   f.ltEmbedding.WellFounded
 #align order_embedding.well_founded OrderEmbedding.wellFounded
 
-/- warning: order_embedding.is_well_order -> OrderEmbedding.isWellOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (forall [_inst_3 : IsWellOrder.{u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))], IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (forall [_inst_3 : IsWellOrder.{u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6891 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6893 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6891 x._@.Mathlib.Order.Hom.Basic._hyg.6893)], IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6908 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6910 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6908 x._@.Mathlib.Order.Hom.Basic._hyg.6910))
-Case conversion may be inaccurate. Consider using '#align order_embedding.is_well_order OrderEmbedding.isWellOrderₓ'. -/
 protected theorem isWellOrder [IsWellOrder β (· < ·)] : IsWellOrder α (· < ·) :=
   f.ltEmbedding.IsWellOrder
 #align order_embedding.is_well_order OrderEmbedding.isWellOrder
 
-/- warning: order_embedding.dual -> OrderEmbedding.dual is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasLe.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u2} β (Preorder.toHasLe.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.instLEOrderDual.{u1} α (Preorder.toLE.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u2} β (Preorder.toLE.{u2} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align order_embedding.dual OrderEmbedding.dualₓ'. -/
 /-- An order embedding is also an order embedding between dual orders. -/
 protected def dual : αᵒᵈ ↪o βᵒᵈ :=
   ⟨f.toEmbedding, fun a b => f.map_rel_iff⟩
 #align order_embedding.dual OrderEmbedding.dual
 
-/- warning: order_embedding.with_bot_map -> OrderEmbedding.withBotMap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α _inst_1)) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align order_embedding.with_bot_map OrderEmbedding.withBotMapₓ'. -/
 /-- A version of `with_bot.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
@@ -1008,24 +674,12 @@ protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
     map_rel_iff' := WithBot.map_le_iff f fun a b => f.map_rel_iff }
 #align order_embedding.with_bot_map OrderEmbedding.withBotMap
 
-/- warning: order_embedding.with_top_map -> OrderEmbedding.withTopMap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α _inst_1)) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align order_embedding.with_top_map OrderEmbedding.withTopMapₓ'. -/
 /-- A version of `with_top.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withTopMap (f : α ↪o β) : WithTop α ↪o WithTop β :=
   { f.dual.withBot_map.dual with toFun := WithTop.map f }
 #align order_embedding.with_top_map OrderEmbedding.withTopMap
 
-/- warning: order_embedding.of_map_le_iff -> OrderEmbedding.ofMapLEIff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toHasLe.{u2} β _inst_4))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toLE.{u2} β _inst_4))
-Case conversion may be inaccurate. Consider using '#align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIffₓ'. -/
 /-- To define an order embedding from a partial order to a preorder it suffices to give a function
 together with a proof that it satisfies `f a ≤ f b ↔ a ≤ b`.
 -/
@@ -1034,59 +688,29 @@ def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀
   RelEmbedding.ofMapRelIff f hf
 #align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIff
 
-/- warning: order_embedding.coe_of_map_le_iff -> OrderEmbedding.coe_ofMapLEIff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toHasLe.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) (OrderEmbedding.ofMapLEIff.{u1, u2} α β _inst_3 _inst_4 f h)) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (OrderEmbedding.ofMapLEIff.{u2, u1} α β _inst_3 _inst_4 f h)) f
-Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIffₓ'. -/
 @[simp]
 theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
     ⇑(ofMapLEIff f h) = f :=
   rfl
 #align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIff
 
-/- warning: order_embedding.of_strict_mono -> OrderEmbedding.ofStrictMono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) _inst_4 f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3))))) (Preorder.toHasLe.{u2} β _inst_4))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3))))) _inst_4 f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3)))))) (Preorder.toLE.{u2} β _inst_4))
-Case conversion may be inaccurate. Consider using '#align order_embedding.of_strict_mono OrderEmbedding.ofStrictMonoₓ'. -/
 /-- A strictly monotone map from a linear order is an order embedding. -/
 def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : StrictMono f) : α ↪o β :=
   ofMapLEIff f fun _ _ => h.le_iff_le
 #align order_embedding.of_strict_mono OrderEmbedding.ofStrictMono
 
-/- warning: order_embedding.coe_of_strict_mono -> OrderEmbedding.coe_ofStrictMono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) _inst_4 f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3))))) (Preorder.toHasLe.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) (OrderEmbedding.ofStrictMono.{u1, u2} α β _inst_3 _inst_4 f h)) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : LinearOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : StrictMono.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3))))) _inst_4 f), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (OrderEmbedding.ofStrictMono.{u2, u1} α β _inst_3 _inst_4 f h)) f
-Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMonoₓ'. -/
 @[simp]
 theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β} (h : StrictMono f) :
     ⇑(ofStrictMono f h) = f :=
   rfl
 #align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMono
 
-/- warning: order_embedding.subtype -> OrderEmbedding.subtype is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop), OrderEmbedding.{u1, u1} (Subtype.{succ u1} α p) α (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α _inst_1) p) (Preorder.toHasLe.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop), OrderEmbedding.{u1, u1} (Subtype.{succ u1} α p) α (Subtype.le.{u1} α (Preorder.toLE.{u1} α _inst_1) p) (Preorder.toLE.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_embedding.subtype OrderEmbedding.subtypeₓ'. -/
 /-- Embedding of a subtype into the ambient type as an `order_embedding`. -/
 @[simps (config := { fullyApplied := false })]
 def subtype (p : α → Prop) : Subtype p ↪o α :=
   ⟨Function.Embedding.subtype p, fun x y => Iff.rfl⟩
 #align order_embedding.subtype OrderEmbedding.subtype
 
-/- warning: order_embedding.to_order_hom -> OrderEmbedding.toOrderHom is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_3 : Preorder.{u1} X] [_inst_4 : Preorder.{u2} Y], (OrderEmbedding.{u1, u2} X Y (Preorder.toHasLe.{u1} X _inst_3) (Preorder.toHasLe.{u2} Y _inst_4)) -> (OrderHom.{u1, u2} X Y _inst_3 _inst_4)
-but is expected to have type
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_3 : Preorder.{u1} X] [_inst_4 : Preorder.{u2} Y], (OrderEmbedding.{u1, u2} X Y (Preorder.toLE.{u1} X _inst_3) (Preorder.toLE.{u2} Y _inst_4)) -> (OrderHom.{u1, u2} X Y _inst_3 _inst_4)
-Case conversion may be inaccurate. Consider using '#align order_embedding.to_order_hom OrderEmbedding.toOrderHomₓ'. -/
 /-- Convert an `order_embedding` to a `order_hom`. -/
 @[simps (config := { fullyApplied := false })]
 def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y
@@ -1105,12 +729,6 @@ namespace RelHom
 
 variable (f : ((· < ·) : α → α → Prop) →r ((· < ·) : β → β → Prop))
 
-/- warning: rel_hom.to_order_hom -> RelHom.toOrderHom is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β], (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) -> (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β], (RelHom.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7503 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7505 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7503 x._@.Mathlib.Order.Hom.Basic._hyg.7505) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7525 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7527 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7525 x._@.Mathlib.Order.Hom.Basic._hyg.7527)) -> (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2)
-Case conversion may be inaccurate. Consider using '#align rel_hom.to_order_hom RelHom.toOrderHomₓ'. -/
 /-- A bundled expression of the fact that a map between partial orders that is strictly monotone
 is weakly monotone. -/
 @[simps (config := { fullyApplied := false })]
@@ -1121,12 +739,6 @@ def toOrderHom : α →o β where
 
 end RelHom
 
-/- warning: rel_embedding.to_order_hom_injective -> RelEmbedding.toOrderHom_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (fun (_x : OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (RelHom.toOrderHom.{u1, u2} α β _inst_1 _inst_2 ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (coeBase.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelEmbedding.RelHom.hasCoe.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))))) f)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7603 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7601 x._@.Mathlib.Order.Hom.Basic._hyg.7603) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7625 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7623 x._@.Mathlib.Order.Hom.Basic._hyg.7625)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7603 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7601 x._@.Mathlib.Order.Hom.Basic._hyg.7603) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7625 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7623 x._@.Mathlib.Order.Hom.Basic._hyg.7625) f)))
-Case conversion may be inaccurate. Consider using '#align rel_embedding.to_order_hom_injective RelEmbedding.toOrderHom_injectiveₓ'. -/
 theorem RelEmbedding.toOrderHom_injective
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) :
     Function.Injective (f : ((· < ·) : α → α → Prop) →r ((· < ·) : β → β → Prop)).toOrderHom :=
@@ -1149,23 +761,11 @@ instance : OrderIsoClass (α ≃o β) α β where
   coe_injective' f g h₁ h₂ := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
   map_le_map_iff f _ _ := f.map_rel_iff'
 
-/- warning: order_iso.to_fun_eq_coe -> OrderIso.toFun_eq_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] {f : OrderIso.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (Equiv.toFun.{succ u1, succ u2} α β (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2) f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (Equiv.toFun.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f)
-Case conversion may be inaccurate. Consider using '#align order_iso.to_fun_eq_coe OrderIso.toFun_eq_coeₓ'. -/
 @[simp]
 theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
   rfl
 #align order_iso.to_fun_eq_coe OrderIso.toFun_eq_coe
 
-/- warning: order_iso.ext -> OrderIso.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] {f : OrderIso.{u1, u2} α β _inst_1 _inst_2} {g : OrderIso.{u1, u2} α β _inst_1 _inst_2}, (Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) g)) -> (Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2} {g : OrderIso.{u2, u1} α β _inst_1 _inst_2}, (Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g)) -> (Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) f g)
-Case conversion may be inaccurate. Consider using '#align order_iso.ext OrderIso.extₓ'. -/
 -- See note [partially-applied ext lemmas]
 @[ext]
 theorem ext {f g : α ≃o β} (h : (f : α → β) = g) : f = g :=
@@ -1179,53 +779,23 @@ def toOrderEmbedding (e : α ≃o β) : α ↪o β :=
 #align order_iso.to_order_embedding OrderIso.toOrderEmbedding
 -/
 
-/- warning: order_iso.coe_to_order_embedding -> OrderIso.coe_toOrderEmbedding is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) (OrderIso.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (OrderIso.toOrderEmbedding.{u2, u1} α β _inst_1 _inst_2 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_order_embedding OrderIso.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (e : α ≃o β) : ⇑e.toOrderEmbedding = e :=
   rfl
 #align order_iso.coe_to_order_embedding OrderIso.coe_toOrderEmbedding
 
-/- warning: order_iso.bijective -> OrderIso.bijective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Bijective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Bijective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.bijective OrderIso.bijectiveₓ'. -/
 protected theorem bijective (e : α ≃o β) : Function.Bijective e :=
   e.toEquiv.Bijective
 #align order_iso.bijective OrderIso.bijective
 
-/- warning: order_iso.injective -> OrderIso.injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.injective OrderIso.injectiveₓ'. -/
 protected theorem injective (e : α ≃o β) : Function.Injective e :=
   e.toEquiv.Injective
 #align order_iso.injective OrderIso.injective
 
-/- warning: order_iso.surjective -> OrderIso.surjective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Surjective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.surjective OrderIso.surjectiveₓ'. -/
 protected theorem surjective (e : α ≃o β) : Function.Surjective e :=
   e.toEquiv.Surjective
 #align order_iso.surjective OrderIso.surjective
 
-/- warning: order_iso.apply_eq_iff_eq -> OrderIso.apply_eq_iff_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e y)) (Eq.{succ u1} α x y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e y)) (Eq.{succ u2} α x y)
-Case conversion may be inaccurate. Consider using '#align order_iso.apply_eq_iff_eq OrderIso.apply_eq_iff_eqₓ'. -/
 @[simp]
 theorem apply_eq_iff_eq (e : α ≃o β) {x y : α} : e x = e y ↔ x = y :=
   e.toEquiv.apply_eq_iff_eq
@@ -1238,23 +808,11 @@ def refl (α : Type _) [LE α] : α ≃o α :=
 #align order_iso.refl OrderIso.refl
 -/
 
-/- warning: order_iso.coe_refl -> OrderIso.coe_refl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α α _inst_1 _inst_1) (fun (_x : RelIso.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) => α -> α) (RelIso.hasCoeToFun.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) (OrderIso.refl.{u1} α _inst_1)) (id.{succ u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.refl.{u1} α _inst_1)) (id.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_refl OrderIso.coe_reflₓ'. -/
 @[simp]
 theorem coe_refl : ⇑(refl α) = id :=
   rfl
 #align order_iso.coe_refl OrderIso.coe_refl
 
-/- warning: order_iso.refl_apply -> OrderIso.refl_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α α _inst_1 _inst_1) (fun (_x : RelIso.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) => α -> α) (RelIso.hasCoeToFun.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) (OrderIso.refl.{u1} α _inst_1) x) x
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.refl.{u1} α _inst_1) x) x
-Case conversion may be inaccurate. Consider using '#align order_iso.refl_apply OrderIso.refl_applyₓ'. -/
 @[simp]
 theorem refl_apply (x : α) : refl α x = x :=
   rfl
@@ -1274,23 +832,11 @@ def symm (e : α ≃o β) : β ≃o α :=
 #align order_iso.symm OrderIso.symm
 -/
 
-/- warning: order_iso.apply_symm_apply -> OrderIso.apply_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : β), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) x)) x
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : β), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) x)) x
-Case conversion may be inaccurate. Consider using '#align order_iso.apply_symm_apply OrderIso.apply_symm_applyₓ'. -/
 @[simp]
 theorem apply_symm_apply (e : α ≃o β) (x : β) : e (e.symm x) = x :=
   e.toEquiv.apply_symm_apply x
 #align order_iso.apply_symm_apply OrderIso.apply_symm_apply
 
-/- warning: order_iso.symm_apply_apply -> OrderIso.symm_apply_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x)) x
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x)) x
-Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_apply OrderIso.symm_apply_applyₓ'. -/
 @[simp]
 theorem symm_apply_apply (e : α ≃o β) (x : α) : e.symm (e x) = x :=
   e.toEquiv.symm_apply_apply x
@@ -1303,52 +849,22 @@ theorem symm_refl (α : Type _) [LE α] : (refl α).symm = refl α :=
 #align order_iso.symm_refl OrderIso.symm_refl
 -/
 
-/- warning: order_iso.apply_eq_iff_eq_symm_apply -> OrderIso.apply_eq_iff_eq_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) y) (Eq.{succ u1} α x (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) y) (Eq.{succ u2} α x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y))
-Case conversion may be inaccurate. Consider using '#align order_iso.apply_eq_iff_eq_symm_apply OrderIso.apply_eq_iff_eq_symm_applyₓ'. -/
 theorem apply_eq_iff_eq_symm_apply (e : α ≃o β) (x : α) (y : β) : e x = y ↔ x = e.symm y :=
   e.toEquiv.apply_eq_iff_eq_symm_apply
 #align order_iso.apply_eq_iff_eq_symm_apply OrderIso.apply_eq_iff_eq_symm_apply
 
-/- warning: order_iso.symm_apply_eq -> OrderIso.symm_apply_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u1} α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y) x) (Eq.{succ u2} β y (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (Eq.{succ u1} β y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x))
-Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_eq OrderIso.symm_apply_eqₓ'. -/
 theorem symm_apply_eq (e : α ≃o β) {x : α} {y : β} : e.symm y = x ↔ y = e x :=
   e.toEquiv.symm_apply_eq
 #align order_iso.symm_apply_eq OrderIso.symm_apply_eq
 
-/- warning: order_iso.symm_symm -> OrderIso.symm_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (OrderIso.symm.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e)) e
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) (OrderIso.symm.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e)) e
-Case conversion may be inaccurate. Consider using '#align order_iso.symm_symm OrderIso.symm_symmₓ'. -/
 @[simp]
 theorem symm_symm (e : α ≃o β) : e.symm.symm = e := by ext; rfl
 #align order_iso.symm_symm OrderIso.symm_symm
 
-/- warning: order_iso.symm_injective -> OrderIso.symm_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β], Function.Injective.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (OrderIso.{u2, u1} β α _inst_2 _inst_1) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β], Function.Injective.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) (OrderIso.{u1, u2} β α _inst_2 _inst_1) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align order_iso.symm_injective OrderIso.symm_injectiveₓ'. -/
 theorem symm_injective : Function.Injective (symm : α ≃o β → β ≃o α) := fun e e' h => by
   rw [← e.symm_symm, h, e'.symm_symm]
 #align order_iso.symm_injective OrderIso.symm_injective
 
-/- warning: order_iso.to_equiv_symm -> OrderIso.toEquiv_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2)} (Equiv.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2) e)) (RelIso.toEquiv.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) e)) (RelIso.toEquiv.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))
-Case conversion may be inaccurate. Consider using '#align order_iso.to_equiv_symm OrderIso.toEquiv_symmₓ'. -/
 @[simp]
 theorem toEquiv_symm (e : α ≃o β) : e.toEquiv.symm = e.symm.toEquiv :=
   rfl
@@ -1362,66 +878,30 @@ def trans (e : α ≃o β) (e' : β ≃o γ) : α ≃o γ :=
 #align order_iso.trans OrderIso.trans
 -/
 
-/- warning: order_iso.coe_trans -> OrderIso.coe_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u3} β γ _inst_2 _inst_3), Eq.{max (succ u1) (succ u3)} (α -> γ) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderIso.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : RelIso.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) => α -> γ) (RelIso.hasCoeToFun.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e e')) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) e') (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (α -> γ) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e')) (Function.comp.{succ u3, succ u2, succ u1} α β γ (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e') (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e))
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_trans OrderIso.coe_transₓ'. -/
 @[simp]
 theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘ e :=
   rfl
 #align order_iso.coe_trans OrderIso.coe_trans
 
-/- warning: order_iso.trans_apply -> OrderIso.trans_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u3} β γ _inst_2 _inst_3) (x : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderIso.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : RelIso.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) => α -> γ) (RelIso.hasCoeToFun.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e e') x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) e' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (x : α), Eq.{succ u1} γ (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e') x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e' (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x))
-Case conversion may be inaccurate. Consider using '#align order_iso.trans_apply OrderIso.trans_applyₓ'. -/
 @[simp]
 theorem trans_apply (e : α ≃o β) (e' : β ≃o γ) (x : α) : e.trans e' x = e' (e x) :=
   rfl
 #align order_iso.trans_apply OrderIso.trans_apply
 
-/- warning: order_iso.refl_trans -> OrderIso.refl_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (OrderIso.trans.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 (OrderIso.refl.{u1} α _inst_1) e) e
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) (OrderIso.trans.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 (OrderIso.refl.{u2} α _inst_1) e) e
-Case conversion may be inaccurate. Consider using '#align order_iso.refl_trans OrderIso.refl_transₓ'. -/
 @[simp]
 theorem refl_trans (e : α ≃o β) : (refl α).trans e = e := by ext x; rfl
 #align order_iso.refl_trans OrderIso.refl_trans
 
-/- warning: order_iso.trans_refl -> OrderIso.trans_refl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (OrderIso.trans.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 e (OrderIso.refl.{u2} β _inst_2)) e
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) (OrderIso.trans.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 e (OrderIso.refl.{u1} β _inst_2)) e
-Case conversion may be inaccurate. Consider using '#align order_iso.trans_refl OrderIso.trans_reflₓ'. -/
 @[simp]
 theorem trans_refl (e : α ≃o β) : e.trans (refl β) = e := by ext x; rfl
 #align order_iso.trans_refl OrderIso.trans_refl
 
-/- warning: order_iso.symm_trans_apply -> OrderIso.symm_trans_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e₁ : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u3} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u1} α (coeFn.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderIso.{u3, u1} γ α _inst_3 _inst_1) (fun (_x : RelIso.{u3, u1} γ α (LE.le.{u3} γ _inst_3) (LE.le.{u1} α _inst_1)) => γ -> α) (RelIso.hasCoeToFun.{u3, u1} γ α (LE.le.{u3} γ _inst_3) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) c) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e₁) (coeFn.{max (succ u3) (succ u2), max (succ u3) (succ u2)} (OrderIso.{u3, u2} γ β _inst_3 _inst_2) (fun (_x : RelIso.{u3, u2} γ β (LE.le.{u3} γ _inst_3) (LE.le.{u2} β _inst_2)) => γ -> β) (RelIso.hasCoeToFun.{u3, u2} γ β (LE.le.{u3} γ _inst_3) (LE.le.{u2} β _inst_2)) (OrderIso.symm.{u2, u3} β γ _inst_2 _inst_3 e₂) c))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e₁ : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u3} α (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ (fun (_x : γ) => α) (RelHomClass.toFunLike.{max u1 u3, u1, u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) c) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u3, u2} α β _inst_1 _inst_2 e₁) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ (fun (_x : γ) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} β γ _inst_2 _inst_3 e₂) c))
-Case conversion may be inaccurate. Consider using '#align order_iso.symm_trans_apply OrderIso.symm_trans_applyₓ'. -/
 @[simp]
 theorem symm_trans_apply (e₁ : α ≃o β) (e₂ : β ≃o γ) (c : γ) :
     (e₁.trans e₂).symm c = e₁.symm (e₂.symm c) :=
   rfl
 #align order_iso.symm_trans_apply OrderIso.symm_trans_apply
 
-/- warning: order_iso.symm_trans -> OrderIso.symm_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e₁ : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u3} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (OrderIso.{u3, u1} γ α _inst_3 _inst_1) (OrderIso.symm.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) (OrderIso.trans.{u3, u2, u1} γ β α _inst_3 _inst_2 _inst_1 (OrderIso.symm.{u2, u3} β γ _inst_2 _inst_3 e₂) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e₁))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e₁ : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (OrderIso.{u1, u3} γ α _inst_3 _inst_1) (OrderIso.symm.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) (OrderIso.trans.{u1, u2, u3} γ β α _inst_3 _inst_2 _inst_1 (OrderIso.symm.{u2, u1} β γ _inst_2 _inst_3 e₂) (OrderIso.symm.{u3, u2} α β _inst_1 _inst_2 e₁))
-Case conversion may be inaccurate. Consider using '#align order_iso.symm_trans OrderIso.symm_transₓ'. -/
 theorem symm_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) : (e₁.trans e₂).symm = e₂.symm.trans e₁.symm :=
   rfl
 #align order_iso.symm_trans OrderIso.symm_trans
@@ -1434,23 +914,11 @@ def prodComm : α × β ≃o β × α where
 #align order_iso.prod_comm OrderIso.prodComm
 -/
 
-/- warning: order_iso.coe_prod_comm -> OrderIso.coe_prodComm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β], Eq.{max (succ (max u1 u2)) (succ (max u2 u1))} ((Prod.{u1, u2} α β) -> (Prod.{u2, u1} β α)) (coeFn.{max (succ (max u1 u2)) (succ (max u2 u1)), max (succ (max u1 u2)) (succ (max u2 u1))} (OrderIso.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1)) (fun (_x : RelIso.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2)) (LE.le.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1))) => (Prod.{u1, u2} α β) -> (Prod.{u2, u1} β α)) (RelIso.hasCoeToFun.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2)) (LE.le.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1))) (OrderIso.prodComm.{u1, u2} α β _inst_1 _inst_2)) (Prod.swap.{u1, u2} α β)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β], Eq.{max (succ u2) (succ u1)} ((Prod.{u2, u1} α β) -> (Prod.{u1, u2} β α)) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (Prod.{u2, u1} α β) (fun (_x : Prod.{u2, u1} α β) => Prod.{u1, u2} β α) (RelHomClass.toFunLike.{max u2 u1, max u2 u1, max u2 u1} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.prodComm.{u2, u1} α β _inst_1 _inst_2)) (Prod.swap.{u2, u1} α β)
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_prod_comm OrderIso.coe_prodCommₓ'. -/
 @[simp]
 theorem coe_prodComm : ⇑(prodComm : α × β ≃o β × α) = Prod.swap :=
   rfl
 #align order_iso.coe_prod_comm OrderIso.coe_prodComm
 
-/- warning: order_iso.prod_comm_symm -> OrderIso.prodComm_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β], Eq.{max (succ (max u2 u1)) (succ (max u1 u2))} (OrderIso.{max u2 u1, max u1 u2} (Prod.{u2, u1} β α) (Prod.{u1, u2} α β) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2)) (OrderIso.symm.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1) (OrderIso.prodComm.{u1, u2} α β _inst_1 _inst_2)) (OrderIso.prodComm.{u2, u1} β α _inst_2 _inst_1)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β], Eq.{max (succ u2) (succ u1)} (OrderIso.{max u2 u1, max u2 u1} (Prod.{u1, u2} β α) (Prod.{u2, u1} α β) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2)) (OrderIso.symm.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) (OrderIso.prodComm.{u2, u1} α β _inst_1 _inst_2)) (OrderIso.prodComm.{u1, u2} β α _inst_2 _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_iso.prod_comm_symm OrderIso.prodComm_symmₓ'. -/
 @[simp]
 theorem prodComm_symm : (prodComm : α × β ≃o β × α).symm = prodComm :=
   rfl
@@ -1465,23 +933,11 @@ def dualDual : α ≃o αᵒᵈᵒᵈ :=
 #align order_iso.dual_dual OrderIso.dualDual
 -/
 
-/- warning: order_iso.coe_dual_dual -> OrderIso.coe_dualDual is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual OrderIso.coe_dualDualₓ'. -/
 @[simp]
 theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
   rfl
 #align order_iso.coe_dual_dual OrderIso.coe_dualDual
 
-/- warning: order_iso.coe_dual_dual_symm -> OrderIso.coe_dualDual_symm is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
-Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual_symm OrderIso.coe_dualDual_symmₓ'. -/
 @[simp]
 theorem coe_dualDual_symm : ⇑(dualDual α).symm = ofDual ∘ ofDual :=
   rfl
@@ -1489,23 +945,11 @@ theorem coe_dualDual_symm : ⇑(dualDual α).symm = ofDual ∘ ofDual :=
 
 variable {α}
 
-/- warning: order_iso.dual_dual_apply -> OrderIso.dualDual_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.dualDual.{u1} α _inst_1) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a))) ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (fun (_x : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) => OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a))) (OrderDual.toDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
-Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_apply OrderIso.dualDual_applyₓ'. -/
 @[simp]
 theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
   rfl
 #align order_iso.dual_dual_apply OrderIso.dualDual_apply
 
-/- warning: order_iso.dual_dual_symm_apply -> OrderIso.dualDual_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
-Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_symm_apply OrderIso.dualDual_symm_applyₓ'. -/
 @[simp]
 theorem dualDual_symm_apply (a : αᵒᵈᵒᵈ) : (dualDual α).symm a = ofDual (ofDual a) :=
   rfl
@@ -1519,33 +963,15 @@ section Le
 
 variable [LE α] [LE β] [LE γ]
 
-/- warning: order_iso.le_iff_le -> OrderIso.le_iff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e y)) (LE.le.{u1} α _inst_1 x y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e y)) (LE.le.{u2} α _inst_1 x y)
-Case conversion may be inaccurate. Consider using '#align order_iso.le_iff_le OrderIso.le_iff_leₓ'. -/
 @[simp]
 theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
   e.map_rel_iff
 #align order_iso.le_iff_le OrderIso.le_iff_le
 
-/- warning: order_iso.le_symm_apply -> OrderIso.le_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u1} α _inst_1 x (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y)) (LE.le.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y)) (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) y)
-Case conversion may be inaccurate. Consider using '#align order_iso.le_symm_apply OrderIso.le_symm_applyₓ'. -/
 theorem le_symm_apply (e : α ≃o β) {x : α} {y : β} : x ≤ e.symm y ↔ e x ≤ y :=
   e.rel_symm_apply
 #align order_iso.le_symm_apply OrderIso.le_symm_apply
 
-/- warning: order_iso.symm_apply_le -> OrderIso.symm_apply_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u1} α _inst_1 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y) x) (LE.le.{u2} β _inst_2 y (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (LE.le.{u1} β _inst_2 y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x))
-Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_le OrderIso.symm_apply_leₓ'. -/
 theorem symm_apply_le (e : α ≃o β) {x : α} {y : β} : e.symm y ≤ x ↔ y ≤ e x :=
   e.symm_apply_rel
 #align order_iso.symm_apply_le OrderIso.symm_apply_le
@@ -1554,100 +980,46 @@ end Le
 
 variable [Preorder α] [Preorder β] [Preorder γ]
 
-/- warning: order_iso.monotone -> OrderIso.monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.monotone OrderIso.monotoneₓ'. -/
 protected theorem monotone (e : α ≃o β) : Monotone e :=
   e.toOrderEmbedding.Monotone
 #align order_iso.monotone OrderIso.monotone
 
-/- warning: order_iso.strict_mono -> OrderIso.strictMono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.strict_mono OrderIso.strictMonoₓ'. -/
 protected theorem strictMono (e : α ≃o β) : StrictMono e :=
   e.toOrderEmbedding.StrictMono
 #align order_iso.strict_mono OrderIso.strictMono
 
-/- warning: order_iso.lt_iff_lt -> OrderIso.lt_iff_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e y)) (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x y)
-Case conversion may be inaccurate. Consider using '#align order_iso.lt_iff_lt OrderIso.lt_iff_ltₓ'. -/
 @[simp]
 theorem lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
   e.toOrderEmbedding.lt_iff_lt
 #align order_iso.lt_iff_lt OrderIso.lt_iff_lt
 
-/- warning: order_iso.to_rel_iso_lt -> OrderIso.toRelIsoLT is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422))
-Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt OrderIso.toRelIsoLTₓ'. -/
 /-- Converts an `order_iso` into a `rel_iso (<) (<)`. -/
 def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop) :=
   ⟨e.toEquiv, fun x y => lt_iff_lt e⟩
 #align order_iso.to_rel_iso_lt OrderIso.toRelIsoLT
 
-/- warning: order_iso.to_rel_iso_lt_apply -> OrderIso.toRelIsoLT_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e x)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422))) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x)
-Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_applyₓ'. -/
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
   rfl
 #align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_apply
 
-/- warning: order_iso.to_rel_iso_lt_symm -> OrderIso.toRelIsoLT_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} β α (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1))) (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) e))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
-Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symmₓ'. -/
 @[simp]
 theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT :=
   rfl
 #align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symm
 
-/- warning: order_iso.of_rel_iso_lt -> OrderIso.ofRelIsoLT is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β], (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) -> (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β], (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9557 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9559 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9557 x._@.Mathlib.Order.Hom.Basic._hyg.9559)) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))
-Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLTₓ'. -/
 /-- Converts a `rel_iso (<) (<)` into an `order_iso`. -/
 def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : α ≃o β :=
   ⟨e.toEquiv, fun x y => by simp [le_iff_eq_or_lt, e.map_rel_iff]⟩
 #align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLT
 
-/- warning: order_iso.of_rel_iso_lt_apply -> OrderIso.ofRelIsoLT_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644))) e x)
-Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_applyₓ'. -/
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) (x : α) : ofRelIsoLT e x = e x :=
   rfl
 #align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_apply
 
-/- warning: order_iso.of_rel_iso_lt_symm -> OrderIso.ofRelIsoLT_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9703 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9705 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9703 x._@.Mathlib.Order.Hom.Basic._hyg.9705) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9725 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9727 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9725 x._@.Mathlib.Order.Hom.Basic._hyg.9727)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9703 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9705 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9703 x._@.Mathlib.Order.Hom.Basic._hyg.9705) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9725 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9727 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9725 x._@.Mathlib.Order.Hom.Basic._hyg.9727) e))
-Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symmₓ'. -/
 @[simp]
 theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) :
@@ -1655,23 +1027,11 @@ theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
   rfl
 #align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symm
 
-/- warning: order_iso.of_rel_iso_lt_to_rel_iso_lt -> OrderIso.ofRelIsoLT_toRelIsoLT is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))), Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) e)) e
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5))) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) e)) e
-Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_to_rel_iso_lt OrderIso.ofRelIsoLT_toRelIsoLTₓ'. -/
 @[simp]
 theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
     ofRelIsoLT (toRelIsoLT e) = e := by ext; simp
 #align order_iso.of_rel_iso_lt_to_rel_iso_lt OrderIso.ofRelIsoLT_toRelIsoLT
 
-/- warning: order_iso.to_rel_iso_lt_of_rel_iso_lt -> OrderIso.toRelIsoLT_ofRelIsoLT is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9829 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9831 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9829 x._@.Mathlib.Order.Hom.Basic._hyg.9831) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9851 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9853 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9851 x._@.Mathlib.Order.Hom.Basic._hyg.9853)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
-Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : toRelIsoLT (ofRelIsoLT e) = e := by
@@ -1692,12 +1052,6 @@ def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β
 #align order_iso.of_cmp_eq_cmp OrderIso.ofCmpEqCmp
 -/
 
-/- warning: order_iso.of_hom_inv -> OrderIso.ofHomInv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {F : Type.{u3}} {G : Type.{u4}} [_inst_4 : OrderHomClass.{u3, u1, u2} F α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] [_inst_5 : OrderHomClass.{u4, u2, u1} G β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)] (f : F) (g : G), (Eq.{succ u2} (OrderHom.{u2, u2} β β _inst_2 _inst_2) (OrderHom.comp.{u2, u1, u2} β α β _inst_2 _inst_1 _inst_2 ((fun (a : Type.{u3}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ u3, max (succ u1) (succ u2)} a b] => self.0) F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHomClass.OrderHom.hasCoeT.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4))) f) ((fun (a : Type.{u4}) (b : Sort.{max (succ u2) (succ u1)}) [self : HasLiftT.{succ u4, max (succ u2) (succ u1)} a b] => self.0) G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (HasLiftT.mk.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (CoeTCₓ.coe.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (OrderHomClass.OrderHom.hasCoeT.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5))) g)) (OrderHom.id.{u2} β _inst_2)) -> (Eq.{succ u1} (OrderHom.{u1, u1} α α _inst_1 _inst_1) (OrderHom.comp.{u1, u2, u1} α β α _inst_1 _inst_2 _inst_1 ((fun (a : Type.{u4}) (b : Sort.{max (succ u2) (succ u1)}) [self : HasLiftT.{succ u4, max (succ u2) (succ u1)} a b] => self.0) G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (HasLiftT.mk.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (CoeTCₓ.coe.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (OrderHomClass.OrderHom.hasCoeT.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5))) g) ((fun (a : Type.{u3}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ u3, max (succ u1) (succ u2)} a b] => self.0) F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHomClass.OrderHom.hasCoeT.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4))) f)) (OrderHom.id.{u1} α _inst_1)) -> (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {F : Type.{u3}} {G : Type.{u4}} [_inst_4 : OrderHomClass.{u3, u1, u2} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] [_inst_5 : OrderHomClass.{u4, u2, u1} G β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)] (f : F) (g : G), (Eq.{succ u2} (OrderHom.{u2, u2} β β _inst_2 _inst_2) (OrderHom.comp.{u2, u1, u2} β α β _inst_2 _inst_1 _inst_2 (OrderHomClass.toOrderHom.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4 f) (OrderHomClass.toOrderHom.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5 g)) (OrderHom.id.{u2} β _inst_2)) -> (Eq.{succ u1} (OrderHom.{u1, u1} α α _inst_1 _inst_1) (OrderHom.comp.{u1, u2, u1} α β α _inst_1 _inst_2 _inst_1 (OrderHomClass.toOrderHom.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5 g) (OrderHomClass.toOrderHom.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4 f)) (OrderHom.id.{u1} α _inst_1)) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2))
-Case conversion may be inaccurate. Consider using '#align order_iso.of_hom_inv OrderIso.ofHomInvₓ'. -/
 /-- To show that `f : α →o β` and `g : β →o α` make up an order isomorphism it is enough to show
     that `g` is the inverse of `f`-/
 def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f : F) (g : G)
@@ -1715,12 +1069,6 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
       fun h => (f : α →o β).Monotone h⟩
 #align order_iso.of_hom_inv OrderIso.ofHomInv
 
-/- warning: order_iso.fun_unique -> OrderIso.funUnique is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], OrderIso.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5)
-but is expected to have type
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], OrderIso.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5)
-Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique OrderIso.funUniqueₓ'. -/
 /-- Order isomorphism between `α → β` and `β`, where `α` has a unique element. -/
 @[simps toEquiv apply]
 def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
@@ -1729,12 +1077,6 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
   map_rel_iff' f g := by simp [Pi.le_def, Unique.forall_iff]
 #align order_iso.fun_unique OrderIso.funUnique
 
-/- warning: order_iso.fun_unique_symm_apply -> OrderIso.funUnique_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toHasLe.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (β -> α -> β) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α -> β) (RelHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))) (Function.const.{succ u1, succ u2} β α)
-Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_applyₓ'. -/
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
     ((funUnique α β).symm : β → α → β) = Function.const α :=
@@ -1755,24 +1097,12 @@ def toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) : α
 #align equiv.to_order_iso Equiv.toOrderIso
 -/
 
-/- warning: equiv.coe_to_order_iso -> Equiv.coe_toOrderIso is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
-Case conversion may be inaccurate. Consider using '#align equiv.coe_to_order_iso Equiv.coe_toOrderIsoₓ'. -/
 @[simp]
 theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
     ⇑(e.toOrderIso h₁ h₂) = e :=
   rfl
 #align equiv.coe_to_order_iso Equiv.coe_toOrderIso
 
-/- warning: equiv.to_order_iso_to_equiv -> Equiv.toOrderIso_toEquiv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} α β) (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) e
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} α β) (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) e
-Case conversion may be inaccurate. Consider using '#align equiv.to_order_iso_to_equiv Equiv.toOrderIso_toEquivₓ'. -/
 @[simp]
 theorem toOrderIso_toEquiv (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
     (e.toOrderIso h₁ h₂).toEquiv = e :=
@@ -1787,12 +1117,6 @@ variable {α β} [LinearOrder α] [Preorder β]
 
 variable (f : α → β) (h_mono : StrictMono f) (h_surj : Function.Surjective f)
 
-/- warning: strict_mono.order_iso_of_right_inverse -> StrictMono.orderIsoOfRightInverse is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) _inst_2 f) -> (forall (g : β -> α), (Function.RightInverse.{succ u1, succ u2} α β g f) -> (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) _inst_2 f) -> (forall (g : β -> α), (Function.RightInverse.{succ u1, succ u2} α β g f) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (Preorder.toLE.{u2} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align strict_mono.order_iso_of_right_inverse StrictMono.orderIsoOfRightInverseₓ'. -/
 /-- A strictly monotone function with a right inverse is an order isomorphism. -/
 @[simps (config := { fullyApplied := False })]
 def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α ≃o β :=
@@ -1814,70 +1138,34 @@ protected def OrderIso.dual [LE α] [LE β] (f : α ≃o β) : αᵒᵈ ≃o β
 
 section LatticeIsos
 
-/- warning: order_iso.map_bot' -> OrderIso.map_bot' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x x') -> (forall (y' : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y y') -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x x') -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y y') -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) y)
-Case conversion may be inaccurate. Consider using '#align order_iso.map_bot' OrderIso.map_bot'ₓ'. -/
 theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x ≤ x')
     (hy : ∀ y', y ≤ y') : f x = y := by refine' le_antisymm _ (hy _);
   rw [← f.apply_symm_apply y, f.map_rel_iff]; apply hx
 #align order_iso.map_bot' OrderIso.map_bot'
 
-/- warning: order_iso.map_bot -> OrderIso.map_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α _inst_1] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_3))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α _inst_1] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (Bot.bot.{u1} β (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_bot OrderIso.map_botₓ'. -/
 theorem OrderIso.map_bot [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (f : α ≃o β) : f ⊥ = ⊥ :=
   f.map_bot' (fun _ => bot_le) fun _ => bot_le
 #align order_iso.map_bot OrderIso.map_bot
 
-/- warning: order_iso.map_top' -> OrderIso.map_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y' y) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y' y) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) y)
-Case conversion may be inaccurate. Consider using '#align order_iso.map_top' OrderIso.map_top'ₓ'. -/
 theorem OrderIso.map_top' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x' ≤ x)
     (hy : ∀ y', y' ≤ y) : f x = y :=
   f.dual.map_bot' hx hy
 #align order_iso.map_top' OrderIso.map_top'
 
-/- warning: order_iso.map_top -> OrderIso.map_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α _inst_1] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_3))) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α _inst_1] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (Top.top.{u1} β (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_top OrderIso.map_topₓ'. -/
 theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (f : α ≃o β) : f ⊤ = ⊤ :=
   f.dual.map_bot
 #align order_iso.map_top OrderIso.map_top
 
-/- warning: order_embedding.map_inf_le -> OrderEmbedding.map_inf_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_embedding.map_inf_le OrderEmbedding.map_inf_leₓ'. -/
 theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : α ↪o β) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
   f.Monotone.map_inf_le x y
 #align order_embedding.map_inf_le OrderEmbedding.map_inf_le
 
-/- warning: order_embedding.le_map_sup -> OrderEmbedding.le_map_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) _inst_2))) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y))
-Case conversion may be inaccurate. Consider using '#align order_embedding.le_map_sup OrderEmbedding.le_map_supₓ'. -/
 theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ↪o β) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
   f.Monotone.le_map_sup x y
 #align order_embedding.le_map_sup OrderEmbedding.le_map_sup
 
-/- warning: order_iso.map_inf -> OrderIso.map_inf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_inf OrderIso.map_infₓ'. -/
 theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
   by
@@ -1886,35 +1174,23 @@ theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β
   simpa using f.symm.to_order_embedding.map_inf_le (f x) (f y)
 #align order_iso.map_inf OrderIso.map_inf
 
-/- warning: order_iso.map_sup -> OrderIso.map_sup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_sup OrderIso.map_supₓ'. -/
 theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
   f.dual.map_inf x y
 #align order_iso.map_sup OrderIso.map_sup
 
-/- warning: disjoint.map_order_iso -> Disjoint.map_orderIso is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align disjoint.map_order_iso Disjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(disjoint on f) a b` -/
 theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
     {a b : α} (f : α ≃o β) (ha : Disjoint a b) : Disjoint (f a) (f b) := by
   rw [disjoint_iff_inf_le, ← f.map_inf, ← f.map_bot]; exact f.monotone ha.le_bot
 #align disjoint.map_order_iso Disjoint.map_orderIso
 
-/- warning: codisjoint.map_order_iso -> Codisjoint.map_orderIso is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align codisjoint.map_order_iso Codisjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(codisjoint on f) a b` -/
 theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
     {a b : α} (f : α ≃o β) (ha : Codisjoint a b) : Codisjoint (f a) (f b) := by
   rw [codisjoint_iff_le_sup, ← f.map_sup, ← f.map_top]; exact f.monotone ha.top_le
 #align codisjoint.map_order_iso Codisjoint.map_orderIso
 
-/- warning: disjoint_map_order_iso_iff -> disjoint_map_orderIso_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align disjoint_map_order_iso_iff disjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
     {a b : α} (f : α ≃o β) : Disjoint (f a) (f b) ↔ Disjoint a b :=
@@ -1922,9 +1198,6 @@ theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [Semilattice
     h.map_orderIso f⟩
 #align disjoint_map_order_iso_iff disjoint_map_orderIso_iff
 
-/- warning: codisjoint_map_order_iso_iff -> codisjoint_map_orderIso_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align codisjoint_map_order_iso_iff codisjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem codisjoint_map_orderIso_iff [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
     {a b : α} (f : α ≃o β) : Codisjoint (f a) (f b) ↔ Codisjoint a b :=
@@ -1934,12 +1207,6 @@ theorem codisjoint_map_orderIso_iff [SemilatticeSup α] [OrderTop α] [Semilatti
 
 namespace WithBot
 
-/- warning: with_bot.to_dual_top_equiv -> WithBot.toDualTopEquiv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv WithBot.toDualTopEquivₓ'. -/
 /-- Taking the dual then adding `⊥` is the same as adding `⊤` then taking the dual.
 This is the order iso form of `with_bot.of_dual`, as proven by `coe_to_dual_top_equiv_eq`.
 -/
@@ -1947,58 +1214,28 @@ protected def toDualTopEquiv [LE α] : WithBot αᵒᵈ ≃o (WithTop α)ᵒᵈ
   OrderIso.refl _
 #align with_bot.to_dual_top_equiv WithBot.toDualTopEquiv
 
-/- warning: with_bot.to_dual_top_equiv_coe -> WithBot.toDualTopEquiv_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))
-Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_coe WithBot.toDualTopEquiv_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_coe [LE α] (a : α) :
     WithBot.toDualTopEquiv ↑(toDual a) = toDual (a : WithTop α) :=
   rfl
 #align with_bot.to_dual_top_equiv_coe WithBot.toDualTopEquiv_coe
 
-/- warning: with_bot.to_dual_top_equiv_symm_coe -> WithBot.toDualTopEquiv_symm_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithTop.{u1} α)) -> (WithBot.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
-Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_symm_coe WithBot.toDualTopEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_symm_coe [LE α] (a : α) :
     WithBot.toDualTopEquiv.symm (toDual (a : WithTop α)) = ↑(toDual a) :=
   rfl
 #align with_bot.to_dual_top_equiv_symm_coe WithBot.toDualTopEquiv_symm_coe
 
-/- warning: with_bot.to_dual_top_equiv_bot -> WithBot.toDualTopEquiv_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasBot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasBot.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_bot WithBot.toDualTopEquiv_botₓ'. -/
 @[simp]
 theorem toDualTopEquiv_bot [LE α] : WithBot.toDualTopEquiv (⊥ : WithBot αᵒᵈ) = ⊥ :=
   rfl
 #align with_bot.to_dual_top_equiv_bot WithBot.toDualTopEquiv_bot
 
-/- warning: with_bot.to_dual_top_equiv_symm_bot -> WithBot.toDualTopEquiv_symm_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithTop.{u1} α)) -> (WithBot.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasBot.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasBot.{u1} (OrderDual.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_symm_bot WithBot.toDualTopEquiv_symm_botₓ'. -/
 @[simp]
 theorem toDualTopEquiv_symm_bot [LE α] : WithBot.toDualTopEquiv.symm (⊥ : (WithTop α)ᵒᵈ) = ⊥ :=
   rfl
 #align with_bot.to_dual_top_equiv_symm_bot WithBot.toDualTopEquiv_symm_bot
 
-/- warning: with_bot.coe_to_dual_top_equiv_eq -> WithBot.coe_toDualTopEquiv_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) => (WithBot.{u1} (OrderDual.{u1} α)) -> (WithTop.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} (OrderDual.{u1} α)) => WithTop.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_to_dual_top_equiv_eq WithBot.coe_toDualTopEquiv_eqₓ'. -/
 theorem coe_toDualTopEquiv_eq [LE α] :
     (WithBot.toDualTopEquiv : WithBot αᵒᵈ → (WithTop α)ᵒᵈ) = toDual ∘ WithBot.ofDual :=
   funext fun _ => rfl
@@ -2008,70 +1245,34 @@ end WithBot
 
 namespace WithTop
 
-/- warning: with_top.to_dual_bot_equiv -> WithTop.toDualBotEquiv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv WithTop.toDualBotEquivₓ'. -/
 /-- Taking the dual then adding `⊤` is the same as adding `⊥` then taking the dual.
 This is the order iso form of `with_top.of_dual`, as proven by `coe_to_dual_bot_equiv_eq`. -/
 protected def toDualBotEquiv [LE α] : WithTop αᵒᵈ ≃o (WithBot α)ᵒᵈ :=
   OrderIso.refl _
 #align with_top.to_dual_bot_equiv WithTop.toDualBotEquiv
 
-/- warning: with_top.to_dual_bot_equiv_coe -> WithTop.toDualBotEquiv_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))
-Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_coe WithTop.toDualBotEquiv_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_coe [LE α] (a : α) :
     WithTop.toDualBotEquiv ↑(toDual a) = toDual (a : WithBot α) :=
   rfl
 #align with_top.to_dual_bot_equiv_coe WithTop.toDualBotEquiv_coe
 
-/- warning: with_top.to_dual_bot_equiv_symm_coe -> WithTop.toDualBotEquiv_symm_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithBot.{u1} α)) -> (WithTop.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
-Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_symm_coe WithTop.toDualBotEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_symm_coe [LE α] (a : α) :
     WithTop.toDualBotEquiv.symm (toDual (a : WithBot α)) = ↑(toDual a) :=
   rfl
 #align with_top.to_dual_bot_equiv_symm_coe WithTop.toDualBotEquiv_symm_coe
 
-/- warning: with_top.to_dual_bot_equiv_top -> WithTop.toDualBotEquiv_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasTop.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasTop.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_top WithTop.toDualBotEquiv_topₓ'. -/
 @[simp]
 theorem toDualBotEquiv_top [LE α] : WithTop.toDualBotEquiv (⊤ : WithTop αᵒᵈ) = ⊤ :=
   rfl
 #align with_top.to_dual_bot_equiv_top WithTop.toDualBotEquiv_top
 
-/- warning: with_top.to_dual_bot_equiv_symm_top -> WithTop.toDualBotEquiv_symm_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithBot.{u1} α)) -> (WithTop.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasTop.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasTop.{u1} (OrderDual.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_symm_top WithTop.toDualBotEquiv_symm_topₓ'. -/
 @[simp]
 theorem toDualBotEquiv_symm_top [LE α] : WithTop.toDualBotEquiv.symm (⊤ : (WithBot α)ᵒᵈ) = ⊤ :=
   rfl
 #align with_top.to_dual_bot_equiv_symm_top WithTop.toDualBotEquiv_symm_top
 
-/- warning: with_top.coe_to_dual_bot_equiv_eq -> WithTop.coe_toDualBotEquiv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) => (WithTop.{u1} (OrderDual.{u1} α)) -> (WithBot.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} (OrderDual.{u1} α)) => WithBot.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align with_top.coe_to_dual_bot_equiv_eq WithTop.coe_toDualBotEquivₓ'. -/
 theorem coe_toDualBotEquiv [LE α] :
     (WithTop.toDualBotEquiv : WithTop αᵒᵈ → (WithBot α)ᵒᵈ) = toDual ∘ WithTop.ofDual :=
   funext fun _ => rfl
@@ -2083,92 +1284,44 @@ namespace OrderIso
 
 variable [PartialOrder α] [PartialOrder β] [PartialOrder γ]
 
-/- warning: order_iso.with_top_congr -> OrderIso.withTopCongr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr OrderIso.withTopCongrₓ'. -/
 /-- A version of `equiv.option_congr` for `with_top`. -/
 @[simps apply]
 def withTopCongr (e : α ≃o β) : WithTop α ≃o WithTop β :=
   { e.toOrderEmbedding.withTop_map with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_top_congr OrderIso.withTopCongr
 
-/- warning: order_iso.with_top_congr_refl -> OrderIso.withTopCongr_refl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithTop.{u1} α) (WithTop.{u1} α) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withTopCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithTop.{u1} α) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithTop.{u1} α) (WithTop.{u1} α) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withTopCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithTop.{u1} α) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr_refl OrderIso.withTopCongr_reflₓ'. -/
 @[simp]
 theorem withTopCongr_refl : (OrderIso.refl α).withTopCongr = OrderIso.refl _ :=
   RelIso.toEquiv_injective Equiv.optionCongr_refl
 #align order_iso.with_top_congr_refl OrderIso.withTopCongr_refl
 
-/- warning: order_iso.with_top_congr_symm -> OrderIso.withTopCongr_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} (WithTop.{u2} β) (WithTop.{u1} α) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (OrderIso.withTopCongr.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.withTopCongr.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} (WithTop.{u1} β) (WithTop.{u2} α) (Preorder.toLE.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (Preorder.toLE.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)))) (OrderIso.symm.{u2, u1} (WithTop.{u2} α) (WithTop.{u1} β) (Preorder.toLE.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))) (Preorder.toLE.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (OrderIso.withTopCongr.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.withTopCongr.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr_symm OrderIso.withTopCongr_symmₓ'. -/
 @[simp]
 theorem withTopCongr_symm (e : α ≃o β) : e.withTopCongr.symm = e.symm.withTopCongr :=
   RelIso.toEquiv_injective e.toEquiv.optionCongr_symm
 #align order_iso.with_top_congr_symm OrderIso.withTopCongr_symm
 
-/- warning: order_iso.with_top_congr_trans -> OrderIso.withTopCongr_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u3} γ] (e₁ : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))), Eq.{max (succ u1) (succ u3)} (OrderIso.{u1, u3} (WithTop.{u1} α) (WithTop.{u3} γ) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u3} (WithTop.{u3} γ) (WithTop.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)))) (OrderIso.trans.{u1, u2, u3} (WithTop.{u1} α) (WithTop.{u2} β) (WithTop.{u3} γ) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u3} (WithTop.{u3} γ) (WithTop.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))) (OrderIso.withTopCongr.{u1, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withTopCongr.{u2, u3} β γ _inst_2 _inst_3 e₂)) (OrderIso.withTopCongr.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)) e₁ e₂))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : PartialOrder.{u3} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u1} γ] (e₁ : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u1} β γ (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))), Eq.{max (succ u3) (succ u1)} (OrderIso.{u3, u1} (WithTop.{u3} α) (WithTop.{u1} γ) (Preorder.toLE.{u3} (WithTop.{u3} α) (WithTop.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u1} (WithTop.{u1} γ) (WithTop.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)))) (OrderIso.trans.{u3, u2, u1} (WithTop.{u3} α) (WithTop.{u2} β) (WithTop.{u1} γ) (Preorder.toLE.{u3} (WithTop.{u3} α) (WithTop.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u1} (WithTop.{u1} γ) (WithTop.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))) (OrderIso.withTopCongr.{u3, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withTopCongr.{u2, u1} β γ _inst_2 _inst_3 e₂)) (OrderIso.withTopCongr.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)) e₁ e₂))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr_trans OrderIso.withTopCongr_transₓ'. -/
 @[simp]
 theorem withTopCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
     e₁.withTopCongr.trans e₂.withTopCongr = (e₁.trans e₂).withTopCongr :=
   RelIso.toEquiv_injective <| e₁.toEquiv.optionCongr_trans e₂.toEquiv
 #align order_iso.with_top_congr_trans OrderIso.withTopCongr_trans
 
-/- warning: order_iso.with_bot_congr -> OrderIso.withBotCongr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr OrderIso.withBotCongrₓ'. -/
 /-- A version of `equiv.option_congr` for `with_bot`. -/
 @[simps apply]
 def withBotCongr (e : α ≃o β) : WithBot α ≃o WithBot β :=
   { e.toOrderEmbedding.withBot_map with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_bot_congr OrderIso.withBotCongr
 
-/- warning: order_iso.with_bot_congr_refl -> OrderIso.withBotCongr_refl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithBot.{u1} α) (WithBot.{u1} α) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withBotCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithBot.{u1} α) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithBot.{u1} α) (WithBot.{u1} α) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withBotCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithBot.{u1} α) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr_refl OrderIso.withBotCongr_reflₓ'. -/
 @[simp]
 theorem withBotCongr_refl : (OrderIso.refl α).withBotCongr = OrderIso.refl _ :=
   RelIso.toEquiv_injective Equiv.optionCongr_refl
 #align order_iso.with_bot_congr_refl OrderIso.withBotCongr_refl
 
-/- warning: order_iso.with_bot_congr_symm -> OrderIso.withBotCongr_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} (WithBot.{u2} β) (WithBot.{u1} α) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (OrderIso.withBotCongr.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.withBotCongr.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} (WithBot.{u1} β) (WithBot.{u2} α) (Preorder.toLE.{u1} (WithBot.{u1} β) (WithBot.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (Preorder.toLE.{u2} (WithBot.{u2} α) (WithBot.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)))) (OrderIso.symm.{u2, u1} (WithBot.{u2} α) (WithBot.{u1} β) (Preorder.toLE.{u2} (WithBot.{u2} α) (WithBot.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))) (Preorder.toLE.{u1} (WithBot.{u1} β) (WithBot.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (OrderIso.withBotCongr.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.withBotCongr.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr_symm OrderIso.withBotCongr_symmₓ'. -/
 @[simp]
 theorem withBotCongr_symm (e : α ≃o β) : e.withBotCongr.symm = e.symm.withBotCongr :=
   RelIso.toEquiv_injective e.toEquiv.optionCongr_symm
 #align order_iso.with_bot_congr_symm OrderIso.withBotCongr_symm
 
-/- warning: order_iso.with_bot_congr_trans -> OrderIso.withBotCongr_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u3} γ] (e₁ : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))), Eq.{max (succ u1) (succ u3)} (OrderIso.{u1, u3} (WithBot.{u1} α) (WithBot.{u3} γ) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u3} (WithBot.{u3} γ) (WithBot.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)))) (OrderIso.trans.{u1, u2, u3} (WithBot.{u1} α) (WithBot.{u2} β) (WithBot.{u3} γ) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u3} (WithBot.{u3} γ) (WithBot.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))) (OrderIso.withBotCongr.{u1, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withBotCongr.{u2, u3} β γ _inst_2 _inst_3 e₂)) (OrderIso.withBotCongr.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)) e₁ e₂))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : PartialOrder.{u3} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u1} γ] (e₁ : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u1} β γ (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))), Eq.{max (succ u3) (succ u1)} (OrderIso.{u3, u1} (WithBot.{u3} α) (WithBot.{u1} γ) (Preorder.toLE.{u3} (WithBot.{u3} α) (WithBot.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u1} (WithBot.{u1} γ) (WithBot.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)))) (OrderIso.trans.{u3, u2, u1} (WithBot.{u3} α) (WithBot.{u2} β) (WithBot.{u1} γ) (Preorder.toLE.{u3} (WithBot.{u3} α) (WithBot.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u1} (WithBot.{u1} γ) (WithBot.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))) (OrderIso.withBotCongr.{u3, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withBotCongr.{u2, u1} β γ _inst_2 _inst_3 e₂)) (OrderIso.withBotCongr.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)) e₁ e₂))
-Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr_trans OrderIso.withBotCongr_transₓ'. -/
 @[simp]
 theorem withBotCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
     e₁.withBotCongr.trans e₂.withBotCongr = (e₁.trans e₂).withBotCongr :=
@@ -2183,26 +1336,14 @@ variable [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] (f : α 
 
 include f
 
-/- warning: order_iso.is_compl -> OrderIso.isCompl is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.is_compl OrderIso.isComplₓ'. -/
 theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
   ⟨h.1.map_orderIso _, h.2.map_orderIso _⟩
 #align order_iso.is_compl OrderIso.isCompl
 
-/- warning: order_iso.is_compl_iff -> OrderIso.isCompl_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.is_compl_iff OrderIso.isCompl_iffₓ'. -/
 theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
   ⟨f.IsCompl, fun h => f.symm_apply_apply x ▸ f.symm_apply_apply y ▸ f.symm.IsCompl h⟩
 #align order_iso.is_compl_iff OrderIso.isCompl_iff
 
-/- warning: order_iso.complemented_lattice -> OrderIso.complementedLattice is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) -> (forall [_inst_5 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u2} β _inst_2 _inst_4)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))], (OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) -> (forall [_inst_5 : ComplementedLattice.{u2} α _inst_1 _inst_3], ComplementedLattice.{u1} β _inst_2 _inst_4)
-Case conversion may be inaccurate. Consider using '#align order_iso.complemented_lattice OrderIso.complementedLatticeₓ'. -/
 theorem OrderIso.complementedLattice [ComplementedLattice α] : ComplementedLattice β :=
   ⟨fun x => by
     obtain ⟨y, hy⟩ := exists_is_compl (f.symm x)
@@ -2210,12 +1351,6 @@ theorem OrderIso.complementedLattice [ComplementedLattice α] : ComplementedLatt
     refine' ⟨f y, f.symm.is_compl_iff.2 hy⟩⟩
 #align order_iso.complemented_lattice OrderIso.complementedLattice
 
-/- warning: order_iso.complemented_lattice_iff -> OrderIso.complementedLattice_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) -> (Iff (ComplementedLattice.{u1} α _inst_1 _inst_3) (ComplementedLattice.{u2} β _inst_2 _inst_4))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))], (OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) -> (Iff (ComplementedLattice.{u2} α _inst_1 _inst_3) (ComplementedLattice.{u1} β _inst_2 _inst_4))
-Case conversion may be inaccurate. Consider using '#align order_iso.complemented_lattice_iff OrderIso.complementedLattice_iffₓ'. -/
 theorem OrderIso.complementedLattice_iff : ComplementedLattice α ↔ ComplementedLattice β :=
   ⟨by intro ; exact f.complemented_lattice, by intro ; exact f.symm.complemented_lattice⟩
 #align order_iso.complemented_lattice_iff OrderIso.complementedLattice_iff
Diff
@@ -192,10 +192,8 @@ but is expected to have type
   forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b) a) (LE.le.{u1} β _inst_2 b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a))
 Case conversion may be inaccurate. Consider using '#align map_inv_le_iff map_inv_le_iffₓ'. -/
 @[simp]
-theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a :=
-  by
-  convert(map_le_map_iff _).symm
-  exact (EquivLike.right_inv _ _).symm
+theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a := by
+  convert(map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_le_iff map_inv_le_iff
 
 /- warning: le_map_inv_iff -> le_map_inv_iff is a dubious translation:
@@ -205,10 +203,8 @@ but is expected to have type
   forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b)) (LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a) b)
 Case conversion may be inaccurate. Consider using '#align le_map_inv_iff le_map_inv_iffₓ'. -/
 @[simp]
-theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b :=
-  by
-  convert(map_le_map_iff _).symm
-  exact (EquivLike.right_inv _ _).symm
+theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b := by
+  convert(map_le_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align le_map_inv_iff le_map_inv_iff
 
 end LE
@@ -234,10 +230,8 @@ but is expected to have type
   forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b) a) (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a))
 Case conversion may be inaccurate. Consider using '#align map_inv_lt_iff map_inv_lt_iffₓ'. -/
 @[simp]
-theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a :=
-  by
-  convert(map_lt_map_iff _).symm
-  exact (EquivLike.right_inv _ _).symm
+theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a := by
+  convert(map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align map_inv_lt_iff map_inv_lt_iff
 
 /- warning: lt_map_inv_iff -> lt_map_inv_iff is a dubious translation:
@@ -247,10 +241,8 @@ but is expected to have type
   forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b)) (LT.lt.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a) b)
 Case conversion may be inaccurate. Consider using '#align lt_map_inv_iff lt_map_inv_iffₓ'. -/
 @[simp]
-theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b :=
-  by
-  convert(map_lt_map_iff _).symm
-  exact (EquivLike.right_inv _ _).symm
+theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b := by
+  convert(map_lt_map_iff _).symm; exact (EquivLike.right_inv _ _).symm
 #align lt_map_inv_iff lt_map_inv_iff
 
 end OrderIsoClass
@@ -288,10 +280,7 @@ protected theorem mono (f : α →o β) : Monotone f :=
 
 instance : OrderHomClass (α →o β) α β where
   coe := toFun
-  coe_injective' f g h := by
-    cases f
-    cases g
-    congr
+  coe_injective' f g h := by cases f; cases g; congr
   map_rel f := f.Monotone
 
 /- warning: order_hom.to_fun_eq_coe clashes with [anonymous] -> [anonymous]
@@ -446,12 +435,8 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
       f.mono ⟨h, le_rfl⟩⟩
   invFun f :=
     ⟨Function.uncurry fun x => f x, fun x y h => (f.mono h.1 x.2).trans <| (f y.1).mono h.2⟩
-  left_inv f := by
-    ext ⟨x, y⟩
-    rfl
-  right_inv f := by
-    ext (x y)
-    rfl
+  left_inv f := by ext ⟨x, y⟩; rfl
+  right_inv f := by ext (x y); rfl
   map_rel_iff' f g := by simp [le_def]
 #align order_hom.curry OrderHom.curry
 
@@ -505,9 +490,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (OrderHom.id.{u2} α _inst_1)) f
 Case conversion may be inaccurate. Consider using '#align order_hom.comp_id OrderHom.comp_idₓ'. -/
 @[simp]
-theorem comp_id (f : α →o β) : comp f id = f := by
-  ext
-  rfl
+theorem comp_id (f : α →o β) : comp f id = f := by ext; rfl
 #align order_hom.comp_id OrderHom.comp_id
 
 /- warning: order_hom.id_comp -> OrderHom.id_comp is a dubious translation:
@@ -517,9 +500,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (OrderHom.id.{u1} β _inst_2) f) f
 Case conversion may be inaccurate. Consider using '#align order_hom.id_comp OrderHom.id_compₓ'. -/
 @[simp]
-theorem id_comp (f : α →o β) : comp id f = f := by
-  ext
-  rfl
+theorem id_comp (f : α →o β) : comp id f = f := by ext; rfl
 #align order_hom.id_comp OrderHom.id_comp
 
 #print OrderHom.const /-
@@ -654,10 +635,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (OrderHom.{max u2 u1, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2)) (OrderHom.prod.{max u2 u1, u2, u1} (Prod.{u2, u1} α β) α β (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) _inst_1 _inst_2 (OrderHom.fst.{u2, u1} α β _inst_1 _inst_2) (OrderHom.snd.{u2, u1} α β _inst_1 _inst_2)) (OrderHom.id.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2))
 Case conversion may be inaccurate. Consider using '#align order_hom.fst_prod_snd OrderHom.fst_prod_sndₓ'. -/
 @[simp]
-theorem fst_prod_snd : (fst : α × β →o α).Prod snd = id :=
-  by
-  ext ⟨x, y⟩ : 2
-  rfl
+theorem fst_prod_snd : (fst : α × β →o α).Prod snd = id := by ext ⟨x, y⟩ : 2; rfl
 #align order_hom.fst_prod_snd OrderHom.fst_prod_snd
 
 /- warning: order_hom.fst_comp_prod -> OrderHom.fst_comp_prod is a dubious translation:
@@ -763,12 +741,8 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i
     where
   toFun f i := (Pi.evalOrderHom i).comp f
   invFun := pi
-  left_inv f := by
-    ext (x i)
-    rfl
-  right_inv f := by
-    ext (x i)
-    rfl
+  left_inv f := by ext (x i); rfl
+  right_inv f := by ext (x i); rfl
   map_rel_iff' f g := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
 
@@ -884,10 +858,7 @@ Case conversion may be inaccurate. Consider using '#align rel_embedding.order_em
 /-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
 def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) : α ↪o β :=
-  { f with
-    map_rel_iff' := by
-      intros
-      simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
+  { f with map_rel_iff' := by intros ; simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
 #align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbedding
 
 /- warning: rel_embedding.order_embedding_of_lt_embedding_apply -> RelEmbedding.orderEmbeddingOfLTEmbedding_apply is a dubious translation:
@@ -1175,10 +1146,7 @@ instance : OrderIsoClass (α ≃o β) α β where
   inv f := f.invFun
   left_inv f := f.left_inv
   right_inv f := f.right_inv
-  coe_injective' f g h₁ h₂ := by
-    obtain ⟨⟨_, _⟩, _⟩ := f
-    obtain ⟨⟨_, _⟩, _⟩ := g
-    congr
+  coe_injective' f g h₁ h₂ := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
   map_le_map_iff f _ _ := f.map_rel_iff'
 
 /- warning: order_iso.to_fun_eq_coe -> OrderIso.toFun_eq_coe is a dubious translation:
@@ -1362,10 +1330,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) (OrderIso.symm.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_symm OrderIso.symm_symmₓ'. -/
 @[simp]
-theorem symm_symm (e : α ≃o β) : e.symm.symm = e :=
-  by
-  ext
-  rfl
+theorem symm_symm (e : α ≃o β) : e.symm.symm = e := by ext; rfl
 #align order_iso.symm_symm OrderIso.symm_symm
 
 /- warning: order_iso.symm_injective -> OrderIso.symm_injective is a dubious translation:
@@ -1426,10 +1391,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) (OrderIso.trans.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 (OrderIso.refl.{u2} α _inst_1) e) e
 Case conversion may be inaccurate. Consider using '#align order_iso.refl_trans OrderIso.refl_transₓ'. -/
 @[simp]
-theorem refl_trans (e : α ≃o β) : (refl α).trans e = e :=
-  by
-  ext x
-  rfl
+theorem refl_trans (e : α ≃o β) : (refl α).trans e = e := by ext x; rfl
 #align order_iso.refl_trans OrderIso.refl_trans
 
 /- warning: order_iso.trans_refl -> OrderIso.trans_refl is a dubious translation:
@@ -1439,10 +1401,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) (OrderIso.trans.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 e (OrderIso.refl.{u1} β _inst_2)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.trans_refl OrderIso.trans_reflₓ'. -/
 @[simp]
-theorem trans_refl (e : α ≃o β) : e.trans (refl β) = e :=
-  by
-  ext x
-  rfl
+theorem trans_refl (e : α ≃o β) : e.trans (refl β) = e := by ext x; rfl
 #align order_iso.trans_refl OrderIso.trans_refl
 
 /- warning: order_iso.symm_trans_apply -> OrderIso.symm_trans_apply is a dubious translation:
@@ -1704,9 +1663,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_to_rel_iso_lt OrderIso.ofRelIsoLT_toRelIsoLTₓ'. -/
 @[simp]
 theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
-    ofRelIsoLT (toRelIsoLT e) = e := by
-  ext
-  simp
+    ofRelIsoLT (toRelIsoLT e) = e := by ext; simp
 #align order_iso.of_rel_iso_lt_to_rel_iso_lt OrderIso.ofRelIsoLT_toRelIsoLT
 
 /- warning: order_iso.to_rel_iso_lt_of_rel_iso_lt -> OrderIso.toRelIsoLT_ofRelIsoLT is a dubious translation:
@@ -1717,10 +1674,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
-    (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : toRelIsoLT (ofRelIsoLT e) = e :=
-  by
-  ext
-  simp
+    (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : toRelIsoLT (ofRelIsoLT e) = e := by
+  ext; simp
 #align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLT
 
 #print OrderIso.ofCmpEqCmp /-
@@ -1728,20 +1683,12 @@ theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     it suffices to prove `cmp a (g b) = cmp (f a) b`. -/
 def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β → α)
     (h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b) : α ≃o β :=
-  have gf : ∀ a : α, a = g (f a) := by
-    intro
-    rw [← cmp_eq_eq_iff, h, cmp_self_eq_eq]
+  have gf : ∀ a : α, a = g (f a) := by intro ; rw [← cmp_eq_eq_iff, h, cmp_self_eq_eq]
   { toFun := f
     invFun := g
     left_inv := fun a => (gf a).symm
-    right_inv := by
-      intro
-      rw [← cmp_eq_eq_iff, ← h, cmp_self_eq_eq]
-    map_rel_iff' := by
-      intros
-      apply le_iff_le_of_cmp_eq_cmp
-      convert(h _ _).symm
-      apply gf }
+    right_inv := by intro ; rw [← cmp_eq_eq_iff, ← h, cmp_self_eq_eq]
+    map_rel_iff' := by intros ; apply le_iff_le_of_cmp_eq_cmp; convert(h _ _).symm; apply gf }
 #align order_iso.of_cmp_eq_cmp OrderIso.ofCmpEqCmp
 -/
 
@@ -1762,8 +1709,7 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
   left_inv := FunLike.congr_fun h₂
   right_inv := FunLike.congr_fun h₁
   map_rel_iff' a b :=
-    ⟨fun h => by
-      replace h := map_rel g h
+    ⟨fun h => by replace h := map_rel g h;
       rwa [Equiv.coe_fn_mk, show g (f a) = (g : β →o α).comp (f : α →o β) a from rfl,
         show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h,
       fun h => (f : α →o β).Monotone h⟩
@@ -1875,11 +1821,8 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x x') -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y y') -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.map_bot' OrderIso.map_bot'ₓ'. -/
 theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x ≤ x')
-    (hy : ∀ y', y ≤ y') : f x = y :=
-  by
-  refine' le_antisymm _ (hy _)
-  rw [← f.apply_symm_apply y, f.map_rel_iff]
-  apply hx
+    (hy : ∀ y', y ≤ y') : f x = y := by refine' le_antisymm _ (hy _);
+  rw [← f.apply_symm_apply y, f.map_rel_iff]; apply hx
 #align order_iso.map_bot' OrderIso.map_bot'
 
 /- warning: order_iso.map_bot -> OrderIso.map_bot is a dubious translation:
@@ -1956,10 +1899,8 @@ theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β
 Case conversion may be inaccurate. Consider using '#align disjoint.map_order_iso Disjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(disjoint on f) a b` -/
 theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
-    {a b : α} (f : α ≃o β) (ha : Disjoint a b) : Disjoint (f a) (f b) :=
-  by
-  rw [disjoint_iff_inf_le, ← f.map_inf, ← f.map_bot]
-  exact f.monotone ha.le_bot
+    {a b : α} (f : α ≃o β) (ha : Disjoint a b) : Disjoint (f a) (f b) := by
+  rw [disjoint_iff_inf_le, ← f.map_inf, ← f.map_bot]; exact f.monotone ha.le_bot
 #align disjoint.map_order_iso Disjoint.map_orderIso
 
 /- warning: codisjoint.map_order_iso -> Codisjoint.map_orderIso is a dubious translation:
@@ -1967,10 +1908,8 @@ theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf
 Case conversion may be inaccurate. Consider using '#align codisjoint.map_order_iso Codisjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(codisjoint on f) a b` -/
 theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
-    {a b : α} (f : α ≃o β) (ha : Codisjoint a b) : Codisjoint (f a) (f b) :=
-  by
-  rw [codisjoint_iff_le_sup, ← f.map_sup, ← f.map_top]
-  exact f.monotone ha.top_le
+    {a b : α} (f : α ≃o β) (ha : Codisjoint a b) : Codisjoint (f a) (f b) := by
+  rw [codisjoint_iff_le_sup, ← f.map_sup, ← f.map_top]; exact f.monotone ha.top_le
 #align codisjoint.map_order_iso Codisjoint.map_orderIso
 
 /- warning: disjoint_map_order_iso_iff -> disjoint_map_orderIso_iff is a dubious translation:
@@ -2278,11 +2217,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))], (OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) -> (Iff (ComplementedLattice.{u2} α _inst_1 _inst_3) (ComplementedLattice.{u1} β _inst_2 _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.complemented_lattice_iff OrderIso.complementedLattice_iffₓ'. -/
 theorem OrderIso.complementedLattice_iff : ComplementedLattice α ↔ ComplementedLattice β :=
-  ⟨by
-    intro
-    exact f.complemented_lattice, by
-    intro
-    exact f.symm.complemented_lattice⟩
+  ⟨by intro ; exact f.complemented_lattice, by intro ; exact f.symm.complemented_lattice⟩
 #align order_iso.complemented_lattice_iff OrderIso.complementedLattice_iff
 
 end BoundedOrder
Diff
@@ -456,10 +456,7 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
 #align order_hom.curry OrderHom.curry
 
 /- warning: order_hom.curry_apply -> OrderHom.curry_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (coeFn.{max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3)), max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3))} (OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (fun (_x : RelIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) => (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) -> (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))) (RelIso.hasCoeToFun.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) f (Prod.mk.{u1, u2} α β x y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {γ : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u1} γ (OrderHom.toFun.{u3, u1} β γ _inst_2 _inst_3 (OrderHom.toFun.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3) (FunLike.coe.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (RelHomClass.toFunLike.{max (max u1 u3) u2, max (max u1 u3) u2, max (max u1 u3) u2} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderHom.curry.{u2, u3, u1} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (OrderHom.toFun.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3 f (Prod.mk.{u2, u3} α β x y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_apply OrderHom.curry_applyₓ'. -/
 @[simp]
 theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (x, y) :=
@@ -467,10 +464,7 @@ theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (
 #align order_hom.curry_apply OrderHom.curry_apply
 
 /- warning: order_hom.curry_symm_apply -> OrderHom.curry_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (x : Prod.{u1, u2} α β), Eq.{succ u3} γ (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (coeFn.{max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3)), max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3))} (RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (fun (_x : RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) => (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) -> (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (RelIso.hasCoeToFun.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (RelIso.symm.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3)) f) x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) f (Prod.fst.{u1, u2} α β x)) (Prod.snd.{u1, u2} α β x))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : Preorder.{u2} γ] (f : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x : Prod.{u3, u1} α β), Eq.{succ u2} γ (OrderHom.toFun.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3 (FunLike.coe.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (RelHomClass.toFunLike.{max (max u2 u1) u3, max (max u2 u1) u3, max (max u2 u1) u3} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (RelIso.instRelHomClassRelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287))) (RelIso.symm.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (OrderHom.curry.{u3, u1, u2} α β γ _inst_1 _inst_2 _inst_3)) f) x) (OrderHom.toFun.{u1, u2} β γ _inst_2 _inst_3 (OrderHom.toFun.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3) f (Prod.fst.{u3, u1} α β x)) (Prod.snd.{u3, u1} α β x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_symm_apply OrderHom.curry_symm_applyₓ'. -/
 @[simp]
 theorem curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f x = f x.1 x.2 :=
@@ -1920,10 +1914,7 @@ theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (
 #align order_iso.map_top OrderIso.map_top
 
 /- warning: order_embedding.map_inf_le -> OrderEmbedding.map_inf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_embedding.map_inf_le OrderEmbedding.map_inf_leₓ'. -/
 theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : α ↪o β) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
@@ -1942,10 +1933,7 @@ theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : 
 #align order_embedding.le_map_sup OrderEmbedding.le_map_sup
 
 /- warning: order_iso.map_inf -> OrderIso.map_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} β (SemilatticeInf.toInf.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_inf OrderIso.map_infₓ'. -/
 theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
@@ -1956,10 +1944,7 @@ theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β
 #align order_iso.map_inf OrderIso.map_inf
 
 /- warning: order_iso.map_sup -> OrderIso.map_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (Sup.sup.{u1} β (SemilatticeSup.toSup.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_sup OrderIso.map_supₓ'. -/
 theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
@@ -1967,10 +1952,7 @@ theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β
 #align order_iso.map_sup OrderIso.map_sup
 
 /- warning: disjoint.map_order_iso -> Disjoint.map_orderIso is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b))
+<too large>
 Case conversion may be inaccurate. Consider using '#align disjoint.map_order_iso Disjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(disjoint on f) a b` -/
 theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
@@ -1981,10 +1963,7 @@ theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf
 #align disjoint.map_order_iso Disjoint.map_orderIso
 
 /- warning: codisjoint.map_order_iso -> Codisjoint.map_orderIso is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b))
+<too large>
 Case conversion may be inaccurate. Consider using '#align codisjoint.map_order_iso Codisjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(codisjoint on f) a b` -/
 theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
@@ -1995,10 +1974,7 @@ theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSu
 #align codisjoint.map_order_iso Codisjoint.map_orderIso
 
 /- warning: disjoint_map_order_iso_iff -> disjoint_map_orderIso_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), Iff (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), Iff (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b)) (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
+<too large>
 Case conversion may be inaccurate. Consider using '#align disjoint_map_order_iso_iff disjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
@@ -2008,10 +1984,7 @@ theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [Semilattice
 #align disjoint_map_order_iso_iff disjoint_map_orderIso_iff
 
 /- warning: codisjoint_map_order_iso_iff -> codisjoint_map_orderIso_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), Iff (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), Iff (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b)) (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
+<too large>
 Case conversion may be inaccurate. Consider using '#align codisjoint_map_order_iso_iff codisjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem codisjoint_map_orderIso_iff [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
@@ -2272,20 +2245,14 @@ variable [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] (f : α 
 include f
 
 /- warning: order_iso.is_compl -> OrderIso.isCompl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) -> (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) -> (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl OrderIso.isComplₓ'. -/
 theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
   ⟨h.1.map_orderIso _, h.2.map_orderIso _⟩
 #align order_iso.is_compl OrderIso.isCompl
 
 /- warning: order_iso.is_compl_iff -> OrderIso.isCompl_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl_iff OrderIso.isCompl_iffₓ'. -/
 theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
   ⟨f.IsCompl, fun h => f.symm_apply_apply x ▸ f.symm_apply_apply y ▸ f.symm.IsCompl h⟩
Diff
@@ -158,7 +158,7 @@ variable [Preorder α] [Preorder β] [OrderHomClass F α β]
 lean 3 declaration is
   forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) _inst_3)) f)
 but is expected to have type
-  forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) _inst_3) f)
+  forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) _inst_3) f)
 Case conversion may be inaccurate. Consider using '#align order_hom_class.monotone OrderHomClass.monotoneₓ'. -/
 protected theorem monotone (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
 #align order_hom_class.monotone OrderHomClass.monotone
@@ -167,7 +167,7 @@ protected theorem monotone (f : F) : Monotone (f : α → β) := fun _ _ => map_
 lean 3 declaration is
   forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) _inst_3)) f)
 but is expected to have type
-  forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) _inst_3) f)
+  forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) _inst_3) f)
 Case conversion may be inaccurate. Consider using '#align order_hom_class.mono OrderHomClass.monoₓ'. -/
 protected theorem mono (f : F) : Monotone (f : α → β) := fun _ _ => map_rel f
 #align order_hom_class.mono OrderHomClass.mono
@@ -189,7 +189,7 @@ variable [LE α] [LE β] [OrderIsoClass F α β]
 lean 3 declaration is
   forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u2} α _inst_1 (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3) f b) a) (LE.le.{u3} β _inst_2 b (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α _inst_1) (LE.le.{u3} β _inst_2) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a))
 but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b) a) (LE.le.{u1} β _inst_2 b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a))
+  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b) a) (LE.le.{u1} β _inst_2 b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a))
 Case conversion may be inaccurate. Consider using '#align map_inv_le_iff map_inv_le_iffₓ'. -/
 @[simp]
 theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a :=
@@ -202,7 +202,7 @@ theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b
 lean 3 declaration is
   forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u2} α _inst_1 a (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3) f b)) (LE.le.{u3} β _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α _inst_1) (LE.le.{u3} β _inst_2) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a) b)
 but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b)) (LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a) b)
+  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β _inst_1 _inst_2] (f : F) {a : α} {b : β}, Iff (LE.le.{u3} α _inst_1 a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3) f b)) (LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β _inst_2 _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β _inst_1 _inst_2 _inst_3)) f a) b)
 Case conversion may be inaccurate. Consider using '#align le_map_inv_iff le_map_inv_iffₓ'. -/
 @[simp]
 theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b :=
@@ -221,7 +221,7 @@ include β
 lean 3 declaration is
   forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f b)) (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) a b)
 but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u1}} {β : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f a) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+  forall {F : Type.{u2}} {α : Type.{u1}} {β : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f a) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align map_lt_map_iff map_lt_map_iffₓ'. -/
 theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
   lt_iff_lt_of_le_iff_le' (map_le_map_iff f) (map_le_map_iff f)
@@ -231,7 +231,7 @@ theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
 lean 3 declaration is
   forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3) f b) a) (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) b (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a))
 but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b) a) (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a))
+  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b) a) (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a))
 Case conversion may be inaccurate. Consider using '#align map_inv_lt_iff map_inv_lt_iffₓ'. -/
 @[simp]
 theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a :=
@@ -244,7 +244,7 @@ theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b <
 lean 3 declaration is
   forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) a (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3) f b)) (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a) b)
 but is expected to have type
-  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b)) (LT.lt.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a) b)
+  forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b)) (LT.lt.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a) b)
 Case conversion may be inaccurate. Consider using '#align lt_map_inv_iff lt_map_inv_iffₓ'. -/
 @[simp]
 theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b :=
@@ -459,7 +459,7 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (coeFn.{max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3)), max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3))} (OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (fun (_x : RelIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) => (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) -> (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))) (RelIso.hasCoeToFun.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) f (Prod.mk.{u1, u2} α β x y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {γ : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u1} γ (OrderHom.toFun.{u3, u1} β γ _inst_2 _inst_3 (OrderHom.toFun.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3) (FunLike.coe.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (RelHomClass.toFunLike.{max (max u1 u3) u2, max (max u1 u3) u2, max (max u1 u3) u2} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderHom.curry.{u2, u3, u1} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (OrderHom.toFun.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3 f (Prod.mk.{u2, u3} α β x y))
+  forall {α : Type.{u2}} {β : Type.{u3}} {γ : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u1} γ (OrderHom.toFun.{u3, u1} β γ _inst_2 _inst_3 (OrderHom.toFun.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3) (FunLike.coe.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (RelHomClass.toFunLike.{max (max u1 u3) u2, max (max u1 u3) u2, max (max u1 u3) u2} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderHom.curry.{u2, u3, u1} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (OrderHom.toFun.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3 f (Prod.mk.{u2, u3} α β x y))
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_apply OrderHom.curry_applyₓ'. -/
 @[simp]
 theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (x, y) :=
@@ -470,7 +470,7 @@ theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (x : Prod.{u1, u2} α β), Eq.{succ u3} γ (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (coeFn.{max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3)), max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3))} (RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (fun (_x : RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) => (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) -> (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (RelIso.hasCoeToFun.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (RelIso.symm.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3)) f) x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) f (Prod.fst.{u1, u2} α β x)) (Prod.snd.{u1, u2} α β x))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : Preorder.{u2} γ] (f : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x : Prod.{u3, u1} α β), Eq.{succ u2} γ (OrderHom.toFun.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3 (FunLike.coe.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (RelHomClass.toFunLike.{max (max u2 u1) u3, max (max u2 u1) u3, max (max u2 u1) u3} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (RelIso.instRelHomClassRelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283))) (RelIso.symm.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderHom.curry.{u3, u1, u2} α β γ _inst_1 _inst_2 _inst_3)) f) x) (OrderHom.toFun.{u1, u2} β γ _inst_2 _inst_3 (OrderHom.toFun.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3) f (Prod.fst.{u3, u1} α β x)) (Prod.snd.{u3, u1} α β x))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : Preorder.{u2} γ] (f : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x : Prod.{u3, u1} α β), Eq.{succ u2} γ (OrderHom.toFun.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3 (FunLike.coe.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (RelHomClass.toFunLike.{max (max u2 u1) u3, max (max u2 u1) u3, max (max u2 u1) u3} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (RelIso.instRelHomClassRelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287))) (RelIso.symm.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (OrderHom.curry.{u3, u1, u2} α β γ _inst_1 _inst_2 _inst_3)) f) x) (OrderHom.toFun.{u1, u2} β γ _inst_2 _inst_3 (OrderHom.toFun.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3) f (Prod.fst.{u3, u1} α β x)) (Prod.snd.{u3, u1} α β x))
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_symm_apply OrderHom.curry_symm_applyₓ'. -/
 @[simp]
 theorem curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f x = f x.1 x.2 :=
@@ -824,7 +824,7 @@ theorem dual_id : (OrderHom.id : α →o α).dual = OrderHom.id :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (g : OrderHom.{u2, u3} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) => (OrderHom.{u1, u3} α γ _inst_1 _inst_3) -> (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (OrderHom.dual.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) => (OrderHom.{u2, u3} β γ _inst_2 _inst_3) -> (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (OrderHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) => (OrderHom.{u1, u2} α β _inst_1 _inst_2) -> (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (OrderHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u3} α β _inst_1 _inst_2) => OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u3} α β _inst_1 _inst_2) => OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
 Case conversion may be inaccurate. Consider using '#align order_hom.dual_comp OrderHom.dual_compₓ'. -/
 @[simp]
 theorem dual_comp (g : β →o γ) (f : α →o β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -842,7 +842,7 @@ theorem symm_dual_id : OrderHom.dual.symm OrderHom.id = (OrderHom.id : α →o 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (g : OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (f : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) => (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) -> (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3) g f)) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) => (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) => (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) -> (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (f : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (fun (_x : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => OrderHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (f : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (fun (_x : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => OrderHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
 Case conversion may be inaccurate. Consider using '#align order_hom.symm_dual_comp OrderHom.symm_dual_compₓ'. -/
 @[simp]
 theorem symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ) :
@@ -885,7 +885,7 @@ end OrderHom
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6312 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6314 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6312 x._@.Mathlib.Order.Hom.Basic._hyg.6314) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6334 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6336 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6334 x._@.Mathlib.Order.Hom.Basic._hyg.6336)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6318 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6320 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6318 x._@.Mathlib.Order.Hom.Basic._hyg.6320) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6340 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6342 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6340 x._@.Mathlib.Order.Hom.Basic._hyg.6342)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))
 Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbeddingₓ'. -/
 /-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
 def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
@@ -900,7 +900,7 @@ def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419))) f x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6403 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6401 x._@.Mathlib.Order.Hom.Basic._hyg.6403) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6425 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6423 x._@.Mathlib.Order.Hom.Basic._hyg.6425))) f x)
 Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_applyₓ'. -/
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
@@ -917,7 +917,7 @@ variable [Preorder α] [Preorder β] (f : α ↪o β)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524))
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding OrderEmbedding.ltEmbeddingₓ'. -/
 /-- `<` is preserved by order embeddings of preorders. -/
 def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop) :=
@@ -928,7 +928,7 @@ def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f x)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6502 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6500 x._@.Mathlib.Order.Hom.Basic._hyg.6502) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6524 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6522 x._@.Mathlib.Order.Hom.Basic._hyg.6524))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f x)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_applyₓ'. -/
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
@@ -939,7 +939,7 @@ theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.le_iff_le OrderEmbedding.le_iff_leₓ'. -/
 @[simp]
 theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
@@ -950,7 +950,7 @@ theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_ltₓ'. -/
 @[simp]
 theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
@@ -961,7 +961,7 @@ theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Eq.{succ u1} α a b)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Eq.{succ u1} α a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (Eq.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eqₓ'. -/
 @[simp]
 theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
@@ -972,7 +972,7 @@ theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f)
 Case conversion may be inaccurate. Consider using '#align order_embedding.monotone OrderEmbedding.monotoneₓ'. -/
 protected theorem monotone : Monotone f :=
   OrderHomClass.monotone f
@@ -982,7 +982,7 @@ protected theorem monotone : Monotone f :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f)
 Case conversion may be inaccurate. Consider using '#align order_embedding.strict_mono OrderEmbedding.strictMonoₓ'. -/
 protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 #align order_embedding.strict_mono OrderEmbedding.strictMono
@@ -991,7 +991,7 @@ protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) a)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6759 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6761 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6759 x._@.Mathlib.Order.Hom.Basic._hyg.6761) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6780 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6782 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6780 x._@.Mathlib.Order.Hom.Basic._hyg.6782) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6765 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6767 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6765 x._@.Mathlib.Order.Hom.Basic._hyg.6767) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6786 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6788 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6786 x._@.Mathlib.Order.Hom.Basic._hyg.6788) a)
 Case conversion may be inaccurate. Consider using '#align order_embedding.acc OrderEmbedding.accₓ'. -/
 protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
@@ -1001,7 +1001,7 @@ protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (WellFounded.{succ u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6825 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6827 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6825 x._@.Mathlib.Order.Hom.Basic._hyg.6827)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6848 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6850 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6848 x._@.Mathlib.Order.Hom.Basic._hyg.6850))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (WellFounded.{succ u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6831 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6833 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6831 x._@.Mathlib.Order.Hom.Basic._hyg.6833)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6854 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6856 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6854 x._@.Mathlib.Order.Hom.Basic._hyg.6856))
 Case conversion may be inaccurate. Consider using '#align order_embedding.well_founded OrderEmbedding.wellFoundedₓ'. -/
 protected theorem wellFounded :
     WellFounded ((· < ·) : β → β → Prop) → WellFounded ((· < ·) : α → α → Prop) :=
@@ -1012,7 +1012,7 @@ protected theorem wellFounded :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (forall [_inst_3 : IsWellOrder.{u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))], IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (forall [_inst_3 : IsWellOrder.{u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6885 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6887 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6885 x._@.Mathlib.Order.Hom.Basic._hyg.6887)], IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6904 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6902 x._@.Mathlib.Order.Hom.Basic._hyg.6904))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (forall [_inst_3 : IsWellOrder.{u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6891 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6893 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6891 x._@.Mathlib.Order.Hom.Basic._hyg.6893)], IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6908 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6910 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6908 x._@.Mathlib.Order.Hom.Basic._hyg.6910))
 Case conversion may be inaccurate. Consider using '#align order_embedding.is_well_order OrderEmbedding.isWellOrderₓ'. -/
 protected theorem isWellOrder [IsWellOrder β (· < ·)] : IsWellOrder α (· < ·) :=
   f.ltEmbedding.IsWellOrder
@@ -1073,7 +1073,7 @@ def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toHasLe.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) (OrderEmbedding.ofMapLEIff.{u1, u2} α β _inst_3 _inst_4 f h)) f
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderEmbedding.ofMapLEIff.{u2, u1} α β _inst_3 _inst_4 f h)) f
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (OrderEmbedding.ofMapLEIff.{u2, u1} α β _inst_3 _inst_4 f h)) f
 Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIffₓ'. -/
 @[simp]
 theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
@@ -1096,7 +1096,7 @@ def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : Str
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) _inst_4 f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3))))) (Preorder.toHasLe.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) (OrderEmbedding.ofStrictMono.{u1, u2} α β _inst_3 _inst_4 f h)) f
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : LinearOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : StrictMono.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3))))) _inst_4 f), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderEmbedding.ofStrictMono.{u2, u1} α β _inst_3 _inst_4 f h)) f
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : LinearOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : StrictMono.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3))))) _inst_4 f), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (OrderEmbedding.ofStrictMono.{u2, u1} α β _inst_3 _inst_4 f h)) f
 Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMonoₓ'. -/
 @[simp]
 theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β} (h : StrictMono f) :
@@ -1144,7 +1144,7 @@ variable (f : ((· < ·) : α → α → Prop) →r ((· < ·) : β → β → P
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β], (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) -> (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β], (RelHom.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7497 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7499 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7497 x._@.Mathlib.Order.Hom.Basic._hyg.7499) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7519 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7521 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7519 x._@.Mathlib.Order.Hom.Basic._hyg.7521)) -> (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β], (RelHom.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7503 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7505 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7503 x._@.Mathlib.Order.Hom.Basic._hyg.7505) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7525 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7527 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7525 x._@.Mathlib.Order.Hom.Basic._hyg.7527)) -> (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2)
 Case conversion may be inaccurate. Consider using '#align rel_hom.to_order_hom RelHom.toOrderHomₓ'. -/
 /-- A bundled expression of the fact that a map between partial orders that is strictly monotone
 is weakly monotone. -/
@@ -1160,7 +1160,7 @@ end RelHom
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (fun (_x : OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (RelHom.toOrderHom.{u1, u2} α β _inst_1 _inst_2 ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (coeBase.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelEmbedding.RelHom.hasCoe.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))))) f)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7595 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7597 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7595 x._@.Mathlib.Order.Hom.Basic._hyg.7597) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7617 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7619 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7617 x._@.Mathlib.Order.Hom.Basic._hyg.7619)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7595 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7597 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7595 x._@.Mathlib.Order.Hom.Basic._hyg.7597) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7617 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7619 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7617 x._@.Mathlib.Order.Hom.Basic._hyg.7619) f)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7603 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7601 x._@.Mathlib.Order.Hom.Basic._hyg.7603) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7625 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7623 x._@.Mathlib.Order.Hom.Basic._hyg.7625)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7603 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7601 x._@.Mathlib.Order.Hom.Basic._hyg.7603) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7625 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7623 x._@.Mathlib.Order.Hom.Basic._hyg.7625) f)))
 Case conversion may be inaccurate. Consider using '#align rel_embedding.to_order_hom_injective RelEmbedding.toOrderHom_injectiveₓ'. -/
 theorem RelEmbedding.toOrderHom_injective
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) :
@@ -1191,7 +1191,7 @@ instance : OrderIsoClass (α ≃o β) α β where
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] {f : OrderIso.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (Equiv.toFun.{succ u1, succ u2} α β (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2) f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) f)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (Equiv.toFun.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (Equiv.toFun.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_fun_eq_coe OrderIso.toFun_eq_coeₓ'. -/
 @[simp]
 theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
@@ -1202,7 +1202,7 @@ theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] {f : OrderIso.{u1, u2} α β _inst_1 _inst_2} {g : OrderIso.{u1, u2} α β _inst_1 _inst_2}, (Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) g)) -> (Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) f g)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2} {g : OrderIso.{u2, u1} α β _inst_1 _inst_2}, (Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) g)) -> (Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) f g)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2} {g : OrderIso.{u2, u1} α β _inst_1 _inst_2}, (Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g)) -> (Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) f g)
 Case conversion may be inaccurate. Consider using '#align order_iso.ext OrderIso.extₓ'. -/
 -- See note [partially-applied ext lemmas]
 @[ext]
@@ -1221,7 +1221,7 @@ def toOrderEmbedding (e : α ≃o β) : α ↪o β :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) (OrderIso.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderIso.toOrderEmbedding.{u2, u1} α β _inst_1 _inst_2 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (OrderIso.toOrderEmbedding.{u2, u1} α β _inst_1 _inst_2 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_order_embedding OrderIso.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (e : α ≃o β) : ⇑e.toOrderEmbedding = e :=
@@ -1232,7 +1232,7 @@ theorem coe_toOrderEmbedding (e : α ≃o β) : ⇑e.toOrderEmbedding = e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Bijective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Bijective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Bijective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.bijective OrderIso.bijectiveₓ'. -/
 protected theorem bijective (e : α ≃o β) : Function.Bijective e :=
   e.toEquiv.Bijective
@@ -1242,7 +1242,7 @@ protected theorem bijective (e : α ≃o β) : Function.Bijective e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.injective OrderIso.injectiveₓ'. -/
 protected theorem injective (e : α ≃o β) : Function.Injective e :=
   e.toEquiv.Injective
@@ -1252,7 +1252,7 @@ protected theorem injective (e : α ≃o β) : Function.Injective e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Surjective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Surjective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.surjective OrderIso.surjectiveₓ'. -/
 protected theorem surjective (e : α ≃o β) : Function.Surjective e :=
   e.toEquiv.Surjective
@@ -1262,7 +1262,7 @@ protected theorem surjective (e : α ≃o β) : Function.Surjective e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e y)) (Eq.{succ u1} α x y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e y)) (Eq.{succ u2} α x y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e y)) (Eq.{succ u2} α x y)
 Case conversion may be inaccurate. Consider using '#align order_iso.apply_eq_iff_eq OrderIso.apply_eq_iff_eqₓ'. -/
 @[simp]
 theorem apply_eq_iff_eq (e : α ≃o β) {x y : α} : e x = e y ↔ x = y :=
@@ -1280,7 +1280,7 @@ def refl (α : Type _) [LE α] : α ≃o α :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α α _inst_1 _inst_1) (fun (_x : RelIso.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) => α -> α) (RelIso.hasCoeToFun.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) (OrderIso.refl.{u1} α _inst_1)) (id.{succ u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.refl.{u1} α _inst_1)) (id.{succ u1} α)
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.refl.{u1} α _inst_1)) (id.{succ u1} α)
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_refl OrderIso.coe_reflₓ'. -/
 @[simp]
 theorem coe_refl : ⇑(refl α) = id :=
@@ -1291,7 +1291,7 @@ theorem coe_refl : ⇑(refl α) = id :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α α _inst_1 _inst_1) (fun (_x : RelIso.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) => α -> α) (RelIso.hasCoeToFun.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) (OrderIso.refl.{u1} α _inst_1) x) x
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.refl.{u1} α _inst_1) x) x
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.refl.{u1} α _inst_1) x) x
 Case conversion may be inaccurate. Consider using '#align order_iso.refl_apply OrderIso.refl_applyₓ'. -/
 @[simp]
 theorem refl_apply (x : α) : refl α x = x :=
@@ -1316,7 +1316,7 @@ def symm (e : α ≃o β) : β ≃o α :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : β), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) x)) x
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : β), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) x)) x
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : β), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) x)) x
 Case conversion may be inaccurate. Consider using '#align order_iso.apply_symm_apply OrderIso.apply_symm_applyₓ'. -/
 @[simp]
 theorem apply_symm_apply (e : α ≃o β) (x : β) : e (e.symm x) = x :=
@@ -1327,7 +1327,7 @@ theorem apply_symm_apply (e : α ≃o β) (x : β) : e (e.symm x) = x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x)) x
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x)) x
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x)) x
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_apply OrderIso.symm_apply_applyₓ'. -/
 @[simp]
 theorem symm_apply_apply (e : α ≃o β) (x : α) : e.symm (e x) = x :=
@@ -1345,7 +1345,7 @@ theorem symm_refl (α : Type _) [LE α] : (refl α).symm = refl α :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) y) (Eq.{succ u1} α x (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) y) (Eq.{succ u2} α x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) y) (Eq.{succ u2} α x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y))
 Case conversion may be inaccurate. Consider using '#align order_iso.apply_eq_iff_eq_symm_apply OrderIso.apply_eq_iff_eq_symm_applyₓ'. -/
 theorem apply_eq_iff_eq_symm_apply (e : α ≃o β) (x : α) (y : β) : e x = y ↔ x = e.symm y :=
   e.toEquiv.apply_eq_iff_eq_symm_apply
@@ -1355,7 +1355,7 @@ theorem apply_eq_iff_eq_symm_apply (e : α ≃o β) (x : α) (y : β) : e x = y
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u1} α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y) x) (Eq.{succ u2} β y (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (Eq.{succ u1} β y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (Eq.{succ u1} β y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x))
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_eq OrderIso.symm_apply_eqₓ'. -/
 theorem symm_apply_eq (e : α ≃o β) {x : α} {y : β} : e.symm y = x ↔ y = e x :=
   e.toEquiv.symm_apply_eq
@@ -1388,7 +1388,7 @@ theorem symm_injective : Function.Injective (symm : α ≃o β → β ≃o α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2)} (Equiv.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2) e)) (RelIso.toEquiv.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (RelIso.toEquiv.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) e)) (RelIso.toEquiv.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_equiv_symm OrderIso.toEquiv_symmₓ'. -/
 @[simp]
 theorem toEquiv_symm (e : α ≃o β) : e.toEquiv.symm = e.symm.toEquiv :=
@@ -1407,7 +1407,7 @@ def trans (e : α ≃o β) (e' : β ≃o γ) : α ≃o γ :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u3} β γ _inst_2 _inst_3), Eq.{max (succ u1) (succ u3)} (α -> γ) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderIso.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : RelIso.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) => α -> γ) (RelIso.hasCoeToFun.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e e')) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) e') (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (α -> γ) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e')) (Function.comp.{succ u3, succ u2, succ u1} α β γ (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e') (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (α -> γ) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e')) (Function.comp.{succ u3, succ u2, succ u1} α β γ (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e') (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_trans OrderIso.coe_transₓ'. -/
 @[simp]
 theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘ e :=
@@ -1418,7 +1418,7 @@ theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u3} β γ _inst_2 _inst_3) (x : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderIso.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : RelIso.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) => α -> γ) (RelIso.hasCoeToFun.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e e') x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) e' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (x : α), Eq.{succ u1} γ (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e') x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e' (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (x : α), Eq.{succ u1} γ (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e') x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e' (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x))
 Case conversion may be inaccurate. Consider using '#align order_iso.trans_apply OrderIso.trans_applyₓ'. -/
 @[simp]
 theorem trans_apply (e : α ≃o β) (e' : β ≃o γ) (x : α) : e.trans e' x = e' (e x) :=
@@ -1455,7 +1455,7 @@ theorem trans_refl (e : α ≃o β) : e.trans (refl β) = e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e₁ : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u3} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u1} α (coeFn.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderIso.{u3, u1} γ α _inst_3 _inst_1) (fun (_x : RelIso.{u3, u1} γ α (LE.le.{u3} γ _inst_3) (LE.le.{u1} α _inst_1)) => γ -> α) (RelIso.hasCoeToFun.{u3, u1} γ α (LE.le.{u3} γ _inst_3) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) c) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e₁) (coeFn.{max (succ u3) (succ u2), max (succ u3) (succ u2)} (OrderIso.{u3, u2} γ β _inst_3 _inst_2) (fun (_x : RelIso.{u3, u2} γ β (LE.le.{u3} γ _inst_3) (LE.le.{u2} β _inst_2)) => γ -> β) (RelIso.hasCoeToFun.{u3, u2} γ β (LE.le.{u3} γ _inst_3) (LE.le.{u2} β _inst_2)) (OrderIso.symm.{u2, u3} β γ _inst_2 _inst_3 e₂) c))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e₁ : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u3} α (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ (fun (_x : γ) => α) (RelHomClass.toFunLike.{max u1 u3, u1, u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) c) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u3, u2} α β _inst_1 _inst_2 e₁) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ (fun (_x : γ) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} β γ _inst_2 _inst_3 e₂) c))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e₁ : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u3} α (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ (fun (_x : γ) => α) (RelHomClass.toFunLike.{max u1 u3, u1, u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) c) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u3, u2} α β _inst_1 _inst_2 e₁) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ (fun (_x : γ) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} β γ _inst_2 _inst_3 e₂) c))
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_trans_apply OrderIso.symm_trans_applyₓ'. -/
 @[simp]
 theorem symm_trans_apply (e₁ : α ≃o β) (e₂ : β ≃o γ) (c : γ) :
@@ -1485,7 +1485,7 @@ def prodComm : α × β ≃o β × α where
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β], Eq.{max (succ (max u1 u2)) (succ (max u2 u1))} ((Prod.{u1, u2} α β) -> (Prod.{u2, u1} β α)) (coeFn.{max (succ (max u1 u2)) (succ (max u2 u1)), max (succ (max u1 u2)) (succ (max u2 u1))} (OrderIso.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1)) (fun (_x : RelIso.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2)) (LE.le.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1))) => (Prod.{u1, u2} α β) -> (Prod.{u2, u1} β α)) (RelIso.hasCoeToFun.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2)) (LE.le.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1))) (OrderIso.prodComm.{u1, u2} α β _inst_1 _inst_2)) (Prod.swap.{u1, u2} α β)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β], Eq.{max (succ u2) (succ u1)} ((Prod.{u2, u1} α β) -> (Prod.{u1, u2} β α)) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (Prod.{u2, u1} α β) (fun (_x : Prod.{u2, u1} α β) => Prod.{u1, u2} β α) (RelHomClass.toFunLike.{max u2 u1, max u2 u1, max u2 u1} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.prodComm.{u2, u1} α β _inst_1 _inst_2)) (Prod.swap.{u2, u1} α β)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β], Eq.{max (succ u2) (succ u1)} ((Prod.{u2, u1} α β) -> (Prod.{u1, u2} β α)) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (Prod.{u2, u1} α β) (fun (_x : Prod.{u2, u1} α β) => Prod.{u1, u2} β α) (RelHomClass.toFunLike.{max u2 u1, max u2 u1, max u2 u1} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.prodComm.{u2, u1} α β _inst_1 _inst_2)) (Prod.swap.{u2, u1} α β)
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_prod_comm OrderIso.coe_prodCommₓ'. -/
 @[simp]
 theorem coe_prodComm : ⇑(prodComm : α × β ≃o β × α) = Prod.swap :=
@@ -1516,7 +1516,7 @@ def dualDual : α ≃o αᵒᵈᵒᵈ :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
+  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual OrderIso.coe_dualDualₓ'. -/
 @[simp]
 theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
@@ -1527,7 +1527,7 @@ theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
+  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual_symm OrderIso.coe_dualDual_symmₓ'. -/
 @[simp]
 theorem coe_dualDual_symm : ⇑(dualDual α).symm = ofDual ∘ ofDual :=
@@ -1540,7 +1540,7 @@ variable {α}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.dualDual.{u1} α _inst_1) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (fun (_x : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) (OrderDual.toDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.dualDual.{u1} α _inst_1) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a))) ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (fun (_x : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) => OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a))) (OrderDual.toDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_apply OrderIso.dualDual_applyₓ'. -/
 @[simp]
 theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
@@ -1551,7 +1551,7 @@ theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
 Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_symm_apply OrderIso.dualDual_symm_applyₓ'. -/
 @[simp]
 theorem dualDual_symm_apply (a : αᵒᵈᵒᵈ) : (dualDual α).symm a = ofDual (ofDual a) :=
@@ -1570,7 +1570,7 @@ variable [LE α] [LE β] [LE γ]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e y)) (LE.le.{u1} α _inst_1 x y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e y)) (LE.le.{u2} α _inst_1 x y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e y)) (LE.le.{u2} α _inst_1 x y)
 Case conversion may be inaccurate. Consider using '#align order_iso.le_iff_le OrderIso.le_iff_leₓ'. -/
 @[simp]
 theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
@@ -1581,7 +1581,7 @@ theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u1} α _inst_1 x (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y)) (LE.le.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y)) (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y)) (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.le_symm_apply OrderIso.le_symm_applyₓ'. -/
 theorem le_symm_apply (e : α ≃o β) {x : α} {y : β} : x ≤ e.symm y ↔ e x ≤ y :=
   e.rel_symm_apply
@@ -1591,7 +1591,7 @@ theorem le_symm_apply (e : α ≃o β) {x : α} {y : β} : x ≤ e.symm y ↔ e
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u1} α _inst_1 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y) x) (LE.le.{u2} β _inst_2 y (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (LE.le.{u1} β _inst_2 y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (LE.le.{u1} β _inst_2 y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x))
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_le OrderIso.symm_apply_leₓ'. -/
 theorem symm_apply_le (e : α ≃o β) {x : α} {y : β} : e.symm y ≤ x ↔ y ≤ e x :=
   e.symm_apply_rel
@@ -1605,7 +1605,7 @@ variable [Preorder α] [Preorder β] [Preorder γ]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.monotone OrderIso.monotoneₓ'. -/
 protected theorem monotone (e : α ≃o β) : Monotone e :=
   e.toOrderEmbedding.Monotone
@@ -1615,7 +1615,7 @@ protected theorem monotone (e : α ≃o β) : Monotone e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.strict_mono OrderIso.strictMonoₓ'. -/
 protected theorem strictMono (e : α ≃o β) : StrictMono e :=
   e.toOrderEmbedding.StrictMono
@@ -1625,7 +1625,7 @@ protected theorem strictMono (e : α ≃o β) : StrictMono e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e y)) (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e y)) (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x y)
 Case conversion may be inaccurate. Consider using '#align order_iso.lt_iff_lt OrderIso.lt_iff_ltₓ'. -/
 @[simp]
 theorem lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
@@ -1636,7 +1636,7 @@ theorem lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt OrderIso.toRelIsoLTₓ'. -/
 /-- Converts an `order_iso` into a `rel_iso (<) (<)`. -/
 def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop) :=
@@ -1647,7 +1647,7 @@ def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416))) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422))) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e x)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_applyₓ'. -/
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
@@ -1658,7 +1658,7 @@ theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} β α (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1))) (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symmₓ'. -/
 @[simp]
 theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT :=
@@ -1669,7 +1669,7 @@ theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β], (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) -> (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β], (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9529 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9531 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9529 x._@.Mathlib.Order.Hom.Basic._hyg.9531) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9551 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9553 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9551 x._@.Mathlib.Order.Hom.Basic._hyg.9553)) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β], (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9557 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9559 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9557 x._@.Mathlib.Order.Hom.Basic._hyg.9559)) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLTₓ'. -/
 /-- Converts a `rel_iso (<) (<)` into an `order_iso`. -/
 def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
@@ -1681,7 +1681,7 @@ def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638))) e x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9622 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9620 x._@.Mathlib.Order.Hom.Basic._hyg.9622) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9642 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9644 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9642 x._@.Mathlib.Order.Hom.Basic._hyg.9644))) e x)
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_applyₓ'. -/
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
@@ -1693,7 +1693,7 @@ theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9697 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9699 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9697 x._@.Mathlib.Order.Hom.Basic._hyg.9699) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9719 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9721 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9719 x._@.Mathlib.Order.Hom.Basic._hyg.9721)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9697 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9699 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9697 x._@.Mathlib.Order.Hom.Basic._hyg.9699) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9719 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9721 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9719 x._@.Mathlib.Order.Hom.Basic._hyg.9721) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9703 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9705 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9703 x._@.Mathlib.Order.Hom.Basic._hyg.9705) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9725 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9727 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9725 x._@.Mathlib.Order.Hom.Basic._hyg.9727)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9703 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9705 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9703 x._@.Mathlib.Order.Hom.Basic._hyg.9705) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9725 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9727 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9725 x._@.Mathlib.Order.Hom.Basic._hyg.9727) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symmₓ'. -/
 @[simp]
 theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
@@ -1719,7 +1719,7 @@ theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9823 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9825 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9823 x._@.Mathlib.Order.Hom.Basic._hyg.9825) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9845 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9847 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9845 x._@.Mathlib.Order.Hom.Basic._hyg.9847)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9829 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9831 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9829 x._@.Mathlib.Order.Hom.Basic._hyg.9831) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9851 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9853 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9851 x._@.Mathlib.Order.Hom.Basic._hyg.9853)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9400 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9398 x._@.Mathlib.Order.Hom.Basic._hyg.9400) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9422 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9420 x._@.Mathlib.Order.Hom.Basic._hyg.9422)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
@@ -1793,7 +1793,7 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toHasLe.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (β -> α -> β) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α -> β) (RelHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))) (Function.const.{succ u1, succ u2} β α)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (β -> α -> β) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α -> β) (RelHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10444 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))) (Function.const.{succ u1, succ u2} β α)
 Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_applyₓ'. -/
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
@@ -1819,7 +1819,7 @@ def toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) : α
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
 Case conversion may be inaccurate. Consider using '#align equiv.coe_to_order_iso Equiv.coe_toOrderIsoₓ'. -/
 @[simp]
 theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
@@ -1831,7 +1831,7 @@ theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.sy
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} α β) (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) e
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} α β) (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) e
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} α β) (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) e
 Case conversion may be inaccurate. Consider using '#align equiv.to_order_iso_to_equiv Equiv.toOrderIso_toEquivₓ'. -/
 @[simp]
 theorem toOrderIso_toEquiv (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
@@ -1878,7 +1878,7 @@ section LatticeIsos
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x x') -> (forall (y' : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y y') -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x x') -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y y') -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x x') -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y y') -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.map_bot' OrderIso.map_bot'ₓ'. -/
 theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x ≤ x')
     (hy : ∀ y', y ≤ y') : f x = y :=
@@ -1892,7 +1892,7 @@ theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α _inst_1] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_3))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α _inst_1] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (Bot.bot.{u1} β (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α _inst_1] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (Bot.bot.{u1} β (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_bot OrderIso.map_botₓ'. -/
 theorem OrderIso.map_bot [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (f : α ≃o β) : f ⊥ = ⊥ :=
   f.map_bot' (fun _ => bot_le) fun _ => bot_le
@@ -1902,7 +1902,7 @@ theorem OrderIso.map_bot [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y' y) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y' y) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y' y) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.map_top' OrderIso.map_top'ₓ'. -/
 theorem OrderIso.map_top' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x' ≤ x)
     (hy : ∀ y', y' ≤ y) : f x = y :=
@@ -1913,7 +1913,7 @@ theorem OrderIso.map_top' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α _inst_1] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_3))) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α _inst_1] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (Top.top.{u1} β (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α _inst_1] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (Top.top.{u1} β (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_top OrderIso.map_topₓ'. -/
 theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (f : α ≃o β) : f ⊤ = ⊤ :=
   f.dual.map_bot
@@ -1923,7 +1923,7 @@ theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.map_inf_le OrderEmbedding.map_inf_leₓ'. -/
 theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : α ↪o β) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
@@ -1934,7 +1934,7 @@ theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2))) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) _inst_2))) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.le_map_sup OrderEmbedding.le_map_supₓ'. -/
 theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ↪o β) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
@@ -1945,7 +1945,7 @@ theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} β (SemilatticeInf.toInf.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} β (SemilatticeInf.toInf.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_inf OrderIso.map_infₓ'. -/
 theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
@@ -1959,7 +1959,7 @@ theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (Sup.sup.{u1} β (SemilatticeSup.toSup.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (Sup.sup.{u1} β (SemilatticeSup.toSup.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_sup OrderIso.map_supₓ'. -/
 theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
@@ -1970,7 +1970,7 @@ theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b))
 Case conversion may be inaccurate. Consider using '#align disjoint.map_order_iso Disjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(disjoint on f) a b` -/
 theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
@@ -1984,7 +1984,7 @@ theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.map_order_iso Codisjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(codisjoint on f) a b` -/
 theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
@@ -1998,7 +1998,7 @@ theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSu
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), Iff (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), Iff (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b)) (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), Iff (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b)) (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align disjoint_map_order_iso_iff disjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
@@ -2011,7 +2011,7 @@ theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [Semilattice
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), Iff (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), Iff (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b)) (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), Iff (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f b)) (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_map_order_iso_iff codisjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem codisjoint_map_orderIso_iff [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
@@ -2039,7 +2039,7 @@ protected def toDualTopEquiv [LE α] : WithBot αᵒᵈ ≃o (WithTop α)ᵒᵈ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_coe WithBot.toDualTopEquiv_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_coe [LE α] (a : α) :
@@ -2051,7 +2051,7 @@ theorem toDualTopEquiv_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithTop.{u1} α)) -> (WithBot.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_symm_coe WithBot.toDualTopEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_symm_coe [LE α] (a : α) :
@@ -2063,7 +2063,7 @@ theorem toDualTopEquiv_symm_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasBot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasBot.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_bot WithBot.toDualTopEquiv_botₓ'. -/
 @[simp]
 theorem toDualTopEquiv_bot [LE α] : WithBot.toDualTopEquiv (⊥ : WithBot αᵒᵈ) = ⊥ :=
@@ -2074,7 +2074,7 @@ theorem toDualTopEquiv_bot [LE α] : WithBot.toDualTopEquiv (⊥ : WithBot αᵒ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithTop.{u1} α)) -> (WithBot.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasBot.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasBot.{u1} (OrderDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_symm_bot WithBot.toDualTopEquiv_symm_botₓ'. -/
 @[simp]
 theorem toDualTopEquiv_symm_bot [LE α] : WithBot.toDualTopEquiv.symm (⊥ : (WithTop α)ᵒᵈ) = ⊥ :=
@@ -2085,7 +2085,7 @@ theorem toDualTopEquiv_symm_bot [LE α] : WithBot.toDualTopEquiv.symm (⊥ : (Wi
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) => (WithBot.{u1} (OrderDual.{u1} α)) -> (WithTop.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} (OrderDual.{u1} α)) => WithTop.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} (OrderDual.{u1} α)) => WithTop.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_bot.coe_to_dual_top_equiv_eq WithBot.coe_toDualTopEquiv_eqₓ'. -/
 theorem coe_toDualTopEquiv_eq [LE α] :
     (WithBot.toDualTopEquiv : WithBot αᵒᵈ → (WithTop α)ᵒᵈ) = toDual ∘ WithBot.ofDual :=
@@ -2112,7 +2112,7 @@ protected def toDualBotEquiv [LE α] : WithTop αᵒᵈ ≃o (WithBot α)ᵒᵈ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_coe WithTop.toDualBotEquiv_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_coe [LE α] (a : α) :
@@ -2124,7 +2124,7 @@ theorem toDualBotEquiv_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithBot.{u1} α)) -> (WithTop.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_symm_coe WithTop.toDualBotEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_symm_coe [LE α] (a : α) :
@@ -2136,7 +2136,7 @@ theorem toDualBotEquiv_symm_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasTop.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasTop.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_top WithTop.toDualBotEquiv_topₓ'. -/
 @[simp]
 theorem toDualBotEquiv_top [LE α] : WithTop.toDualBotEquiv (⊤ : WithTop αᵒᵈ) = ⊤ :=
@@ -2147,7 +2147,7 @@ theorem toDualBotEquiv_top [LE α] : WithTop.toDualBotEquiv (⊤ : WithTop αᵒ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithBot.{u1} α)) -> (WithTop.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasTop.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasTop.{u1} (OrderDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_symm_top WithTop.toDualBotEquiv_symm_topₓ'. -/
 @[simp]
 theorem toDualBotEquiv_symm_top [LE α] : WithTop.toDualBotEquiv.symm (⊤ : (WithBot α)ᵒᵈ) = ⊤ :=
@@ -2158,7 +2158,7 @@ theorem toDualBotEquiv_symm_top [LE α] : WithTop.toDualBotEquiv.symm (⊤ : (Wi
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) => (WithTop.{u1} (OrderDual.{u1} α)) -> (WithBot.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} (OrderDual.{u1} α)) => WithBot.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : WithTop.{u1} (OrderDual.{u1} α)) => WithBot.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_top.coe_to_dual_bot_equiv_eq WithTop.coe_toDualBotEquivₓ'. -/
 theorem coe_toDualBotEquiv [LE α] :
     (WithTop.toDualBotEquiv : WithTop αᵒᵈ → (WithBot α)ᵒᵈ) = toDual ∘ WithTop.ofDual :=
@@ -2275,7 +2275,7 @@ include f
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) -> (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) -> (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) -> (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl OrderIso.isComplₓ'. -/
 theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
   ⟨h.1.map_orderIso _, h.2.map_orderIso _⟩
@@ -2285,7 +2285,7 @@ theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl_iff OrderIso.isCompl_iffₓ'. -/
 theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
   ⟨f.IsCompl, fun h => f.symm_apply_apply x ▸ f.symm_apply_apply y ▸ f.symm.IsCompl h⟩
Diff
@@ -156,7 +156,7 @@ variable [Preorder α] [Preorder β] [OrderHomClass F α β]
 
 /- warning: order_hom_class.monotone -> OrderHomClass.monotone is a dubious translation:
 lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2)) _inst_3)) f)
+  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) _inst_3)) f)
 but is expected to have type
   forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) _inst_3) f)
 Case conversion may be inaccurate. Consider using '#align order_hom_class.monotone OrderHomClass.monotoneₓ'. -/
@@ -165,7 +165,7 @@ protected theorem monotone (f : F) : Monotone (f : α → β) := fun _ _ => map_
 
 /- warning: order_hom_class.mono -> OrderHomClass.mono is a dubious translation:
 lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2)) _inst_3)) f)
+  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F), Monotone.{u2, u3} α β _inst_1 _inst_2 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) _inst_3)) f)
 but is expected to have type
   forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (f : F), Monotone.{u3, u2} α β _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u1, u3, u2} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) _inst_3) f)
 Case conversion may be inaccurate. Consider using '#align order_hom_class.mono OrderHomClass.monoₓ'. -/
@@ -219,7 +219,7 @@ include β
 
 /- warning: map_lt_map_iff -> map_lt_map_iff is a dubious translation:
 lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} β (Preorder.toLT.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3))) f b)) (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
+  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f b)) (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) a b)
 but is expected to have type
   forall {F : Type.{u2}} {α : Type.{u1}} {β : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F) {a : α} {b : α}, Iff (LT.lt.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u3} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f a) (FunLike.coe.{succ u2, succ u1, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u1, u3} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u1, u3} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3)) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align map_lt_map_iff map_lt_map_iffₓ'. -/
@@ -229,7 +229,7 @@ theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
 
 /- warning: map_inv_lt_iff -> map_inv_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3) f b) a) (LT.lt.{u3} β (Preorder.toLT.{u3} β _inst_2) b (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3))) f a))
+  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3) f b) a) (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) b (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a))
 but is expected to have type
   forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b) a) (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) b (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a))
 Case conversion may be inaccurate. Consider using '#align map_inv_lt_iff map_inv_lt_iffₓ'. -/
@@ -242,7 +242,7 @@ theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b <
 
 /- warning: lt_map_inv_iff -> lt_map_inv_iff is a dubious translation:
 lean 3 declaration is
-  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) a (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3) f b)) (LT.lt.{u3} β (Preorder.toLT.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u3} β _inst_2) _inst_3))) f a) b)
+  forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u2} α (Preorder.toHasLt.{u2} α _inst_1) a (EquivLike.inv.{succ u1, succ u2, succ u3} F α β (OrderIsoClass.toEquivLike.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3) f b)) (LT.lt.{u3} β (Preorder.toHasLt.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α _inst_1)) (LE.le.{u3} β (Preorder.toHasLe.{u3} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α _inst_1) (Preorder.toHasLe.{u3} β _inst_2) _inst_3))) f a) b)
 but is expected to have type
   forall {F : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : OrderIsoClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (f : F) {a : α} {b : β}, Iff (LT.lt.{u3} α (Preorder.toLT.{u3} α _inst_1) a (EquivLike.inv.{succ u2, succ u3, succ u1} F α β (OrderIsoClass.toEquivLike.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3) f b)) (LT.lt.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{succ u2, succ u3, succ u1} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u2, u3, u1} F α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u2, u3, u1} F α β (Preorder.toLE.{u3} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) f a) b)
 Case conversion may be inaccurate. Consider using '#align lt_map_inv_iff lt_map_inv_iffₓ'. -/
@@ -391,7 +391,7 @@ instance {β : Type _} [PartialOrder β] : PartialOrder (α →o β) :=
 
 /- warning: order_hom.le_def -> OrderHom.le_def is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g) (forall (x : α), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g x))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g) (forall (x : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g x))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : OrderHom.{u2, u1} α β _inst_1 _inst_2} {g : OrderHom.{u2, u1} α β _inst_1 _inst_2}, Iff (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) f g) (forall (x : α), LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f x) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 g x))
 Case conversion may be inaccurate. Consider using '#align order_hom.le_def OrderHom.le_defₓ'. -/
@@ -401,7 +401,7 @@ theorem le_def {f g : α →o β} : f ≤ g ↔ ∀ x, f x ≤ g x :=
 
 /- warning: order_hom.coe_le_coe -> OrderHom.coe_le_coe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) f) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g)) (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2}, Iff (LE.le.{max u1 u2} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) f) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g)) (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : OrderHom.{u2, u1} α β _inst_1 _inst_2} {g : OrderHom.{u2, u1} α β _inst_1 _inst_2}, Iff (LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_2)) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 g)) (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) f g)
 Case conversion may be inaccurate. Consider using '#align order_hom.coe_le_coe OrderHom.coe_le_coeₓ'. -/
@@ -412,7 +412,7 @@ theorem coe_le_coe {f g : α →o β} : (f : α → β) ≤ g ↔ f ≤ g :=
 
 /- warning: order_hom.mk_le_mk -> OrderHom.mk_le_mk is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : α -> β} {g : α -> β} {hf : Monotone.{u1, u2} α β _inst_1 _inst_2 f} {hg : Monotone.{u1, u2} α β _inst_1 _inst_2 g}, Iff (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 f hf) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 g hg)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_2)) f g)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : α -> β} {g : α -> β} {hf : Monotone.{u1, u2} α β _inst_1 _inst_2 f} {hg : Monotone.{u1, u2} α β _inst_1 _inst_2 g}, Iff (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 f hf) (OrderHom.mk.{u1, u2} α β _inst_1 _inst_2 g hg)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_2)) f g)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : α -> β} {g : α -> β} {hf : Monotone.{u2, u1} α β _inst_1 _inst_2 f} {hg : Monotone.{u2, u1} α β _inst_1 _inst_2 g}, Iff (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) (OrderHom.mk.{u2, u1} α β _inst_1 _inst_2 f hf) (OrderHom.mk.{u2, u1} α β _inst_1 _inst_2 g hg)) (LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_2)) f g)
 Case conversion may be inaccurate. Consider using '#align order_hom.mk_le_mk OrderHom.mk_le_mkₓ'. -/
@@ -423,7 +423,7 @@ theorem mk_le_mk {f g : α → β} {hf hg} : mk f hf ≤ mk g hg ↔ f ≤ g :=
 
 /- warning: order_hom.apply_mono -> OrderHom.apply_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2} {x : α} {y : α}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x y) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {f : OrderHom.{u1, u2} α β _inst_1 _inst_2} {g : OrderHom.{u1, u2} α β _inst_1 _inst_2} {x : α} {y : α}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f g) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x y) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {f : OrderHom.{u2, u1} α β _inst_1 _inst_2} {g : OrderHom.{u2, u1} α β _inst_1 _inst_2} {x : α} {y : α}, (LE.le.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (Preorder.toLE.{max u2 u1} (OrderHom.{u2, u1} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u2, u1} α β _inst_1 _inst_2)) f g) -> (LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x y) -> (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 f x) (OrderHom.toFun.{u2, u1} α β _inst_1 _inst_2 g y))
 Case conversion may be inaccurate. Consider using '#align order_hom.apply_mono OrderHom.apply_monoₓ'. -/
@@ -434,7 +434,7 @@ theorem apply_mono {f g : α →o β} {x y : α} (h₁ : f ≤ g) (h₂ : x ≤
 
 /- warning: order_hom.curry -> OrderHom.curry is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max u3 u2 u1, max (max u3 u2) u1} (OrderHom.{max u2 u1, u3} (Prod.{u1, u2} α β) γ (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u3 u2} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u2 u1, u3} (Prod.{u1, u2} α β) γ (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.instPreorderProd.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{u1, max u3 u2} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u2, u3} β γ _inst_2 _inst_3)))
 Case conversion may be inaccurate. Consider using '#align order_hom.curry OrderHom.curryₓ'. -/
@@ -457,7 +457,7 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
 
 /- warning: order_hom.curry_apply -> OrderHom.curry_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (coeFn.{max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3)), max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3))} (OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (fun (_x : RelIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) => (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) -> (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))) (RelIso.hasCoeToFun.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) f (Prod.mk.{u1, u2} α β x y))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (coeFn.{max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3)), max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3))} (OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (fun (_x : RelIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) => (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) -> (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))) (RelIso.hasCoeToFun.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) f (Prod.mk.{u1, u2} α β x y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {γ : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u1} γ (OrderHom.toFun.{u3, u1} β γ _inst_2 _inst_3 (OrderHom.toFun.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3) (FunLike.coe.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (RelHomClass.toFunLike.{max (max u1 u3) u2, max (max u1 u3) u2, max (max u1 u3) u2} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderHom.curry.{u2, u3, u1} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (OrderHom.toFun.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3 f (Prod.mk.{u2, u3} α β x y))
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_apply OrderHom.curry_applyₓ'. -/
@@ -468,7 +468,7 @@ theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (
 
 /- warning: order_hom.curry_symm_apply -> OrderHom.curry_symm_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (x : Prod.{u1, u2} α β), Eq.{succ u3} γ (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (coeFn.{max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3)), max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3))} (RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (fun (_x : RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) => (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) -> (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (RelIso.hasCoeToFun.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (RelIso.symm.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3)) f) x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) f (Prod.fst.{u1, u2} α β x)) (Prod.snd.{u1, u2} α β x))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (x : Prod.{u1, u2} α β), Eq.{succ u3} γ (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (coeFn.{max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3)), max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3))} (RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (fun (_x : RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) => (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) -> (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (RelIso.hasCoeToFun.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (RelIso.symm.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toHasLe.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3)) f) x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) f (Prod.fst.{u1, u2} α β x)) (Prod.snd.{u1, u2} α β x))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : Preorder.{u2} γ] (f : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x : Prod.{u3, u1} α β), Eq.{succ u2} γ (OrderHom.toFun.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3 (FunLike.coe.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (RelHomClass.toFunLike.{max (max u2 u1) u3, max (max u2 u1) u3, max (max u2 u1) u3} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (RelIso.instRelHomClassRelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283))) (RelIso.symm.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderHom.curry.{u3, u1, u2} α β γ _inst_1 _inst_2 _inst_3)) f) x) (OrderHom.toFun.{u1, u2} β γ _inst_2 _inst_3 (OrderHom.toFun.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3) f (Prod.fst.{u3, u1} α β x)) (Prod.snd.{u3, u1} α β x))
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_symm_apply OrderHom.curry_symm_applyₓ'. -/
@@ -487,7 +487,7 @@ def comp (g : β →o γ) (f : α →o β) : α →o γ :=
 
 /- warning: order_hom.comp_mono -> OrderHom.comp_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] {{g₁ : OrderHom.{u2, u3} β γ _inst_2 _inst_3}} {{g₂ : OrderHom.{u2, u3} β γ _inst_2 _inst_3}}, (LE.le.{max u2 u3} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (Preorder.toLE.{max u2 u3} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) g₁ g₂) -> (forall {{f₁ : OrderHom.{u1, u2} α β _inst_1 _inst_2}} {{f₂ : OrderHom.{u1, u2} α β _inst_1 _inst_2}}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (LE.le.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f₁) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f₂)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] {{g₁ : OrderHom.{u2, u3} β γ _inst_2 _inst_3}} {{g₂ : OrderHom.{u2, u3} β γ _inst_2 _inst_3}}, (LE.le.{max u2 u3} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (Preorder.toHasLe.{max u2 u3} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) g₁ g₂) -> (forall {{f₁ : OrderHom.{u1, u2} α β _inst_1 _inst_2}} {{f₂ : OrderHom.{u1, u2} α β _inst_1 _inst_2}}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (LE.le.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f₁) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f₂)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] {{g₁ : OrderHom.{u3, u2} β γ _inst_2 _inst_3}} {{g₂ : OrderHom.{u3, u2} β γ _inst_2 _inst_3}}, (LE.le.{max u3 u2} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (Preorder.toLE.{max u3 u2} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.instPreorderOrderHom.{u3, u2} β γ _inst_2 _inst_3)) g₁ g₂) -> (forall {{f₁ : OrderHom.{u1, u3} α β _inst_1 _inst_2}} {{f₂ : OrderHom.{u1, u3} α β _inst_1 _inst_2}}, (LE.le.{max u1 u3} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u1, u3} α β _inst_1 _inst_2)) f₁ f₂) -> (LE.le.{max u1 u2} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f₁) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f₂)))
 Case conversion may be inaccurate. Consider using '#align order_hom.comp_mono OrderHom.comp_monoₓ'. -/
@@ -576,7 +576,7 @@ protected def prod (f : α →o β) (g : α →o γ) : α →o β × γ :=
 
 /- warning: order_hom.prod_mono -> OrderHom.prod_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] {f₁ : OrderHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : OrderHom.{u1, u2} α β _inst_1 _inst_2}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (forall {g₁ : OrderHom.{u1, u3} α γ _inst_1 _inst_3} {g₂ : OrderHom.{u1, u3} α γ _inst_1 _inst_3}, (LE.le.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) g₁ g₂) -> (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₁ g₁) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₂ g₂)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] {f₁ : OrderHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : OrderHom.{u1, u2} α β _inst_1 _inst_2}, (LE.le.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (forall {g₁ : OrderHom.{u1, u3} α γ _inst_1 _inst_3} {g₂ : OrderHom.{u1, u3} α γ _inst_1 _inst_3}, (LE.le.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)) g₁ g₂) -> (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₁ g₁) (OrderHom.prod.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f₂ g₂)))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u1} γ] {f₁ : OrderHom.{u3, u2} α β _inst_1 _inst_2} {f₂ : OrderHom.{u3, u2} α β _inst_1 _inst_2}, (LE.le.{max u3 u2} (OrderHom.{u3, u2} α β _inst_1 _inst_2) (Preorder.toLE.{max u3 u2} (OrderHom.{u3, u2} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u3, u2} α β _inst_1 _inst_2)) f₁ f₂) -> (forall {g₁ : OrderHom.{u3, u1} α γ _inst_1 _inst_3} {g₂ : OrderHom.{u3, u1} α γ _inst_1 _inst_3}, (LE.le.{max u3 u1} (OrderHom.{u3, u1} α γ _inst_1 _inst_3) (Preorder.toLE.{max u3 u1} (OrderHom.{u3, u1} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u3, u1} α γ _inst_1 _inst_3)) g₁ g₂) -> (LE.le.{max (max u3 u2) u1} (OrderHom.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u2) u1} (OrderHom.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u2 u1} α (Prod.{u2, u1} β γ) _inst_1 (Prod.instPreorderProd.{u2, u1} β γ _inst_2 _inst_3))) (OrderHom.prod.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f₁ g₁) (OrderHom.prod.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f₂ g₂)))
 Case conversion may be inaccurate. Consider using '#align order_hom.prod_mono OrderHom.prod_monoₓ'. -/
@@ -690,7 +690,7 @@ theorem snd_comp_prod (f : α →o β) (g : α →o γ) : snd.comp (f.Prod g) =
 
 /- warning: order_hom.prod_iso -> OrderHom.prodIso is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max u1 u2 u3, max (max u1 u2) u1 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Prod.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))) (Prod.hasLe.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) (Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max u1 u2 u3, max (max u1 u2) u1 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Prod.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.preorder.{u2, u3} β γ _inst_2 _inst_3))) (Prod.hasLe.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.preorder.{u1, u2} α β _inst_1 _inst_2)) (Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.preorder.{u1, u3} α γ _inst_1 _inst_3)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ], OrderIso.{max (max u3 u2) u1, max (max u3 u1) u2 u1} (OrderHom.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3)) (Prod.{max u2 u1, max u3 u1} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.instPreorderProd.{u2, u3} β γ _inst_2 _inst_3))) (Prod.instLEProd.{max u1 u2, max u1 u3} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.instPreorderOrderHom.{u1, u2} α β _inst_1 _inst_2)) (Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.instPreorderOrderHom.{u1, u3} α γ _inst_1 _inst_3)))
 Case conversion may be inaccurate. Consider using '#align order_hom.prod_iso OrderHom.prodIsoₓ'. -/
@@ -756,7 +756,12 @@ def pi (f : ∀ i, α →o π i) : α →o ∀ i, π i :=
 #align order_hom.pi OrderHom.pi
 -/
 
-#print OrderHom.piIso /-
+/- warning: order_hom.pi_iso -> OrderHom.piIso is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {ι : Type.{u2}} {π : ι -> Type.{u3}} [_inst_5 : forall (i : ι), Preorder.{u3} (π i)], OrderIso.{max u1 u2 u3, max u2 u1 u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (forall (i : ι), OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (Preorder.toHasLe.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (OrderHom.preorder.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i)))) (Pi.hasLe.{u2, max u1 u3} ι (fun (i : ι) => OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (fun (i : ι) => Preorder.toHasLe.{max u1 u3} (OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (OrderHom.preorder.{u1, u3} α (π i) _inst_1 (_inst_5 i))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {ι : Type.{u2}} {π : ι -> Type.{u3}} [_inst_5 : forall (i : ι), Preorder.{u3} (π i)], OrderIso.{max (max u2 u3) u1, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (forall (i : ι), OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i))) (OrderHom.instPreorderOrderHom.{u1, max u2 u3} α (forall (i : ι), π i) _inst_1 (Pi.preorder.{u2, u3} ι (fun (i : ι) => π i) (fun (i : ι) => _inst_5 i)))) (Pi.hasLe.{u2, max u1 u3} ι (fun (i : ι) => OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (fun (i : ι) => Preorder.toLE.{max u1 u3} (OrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i)) (OrderHom.instPreorderOrderHom.{u1, u3} α (π i) _inst_1 (_inst_5 i))))
+Case conversion may be inaccurate. Consider using '#align order_hom.pi_iso OrderHom.piIsoₓ'. -/
 /-- Order isomorphism between bundled monotone maps `α →o Π i, π i` and families of bundled monotone
 maps `Π i, α →o π i`. -/
 @[simps]
@@ -772,7 +777,6 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i
     rfl
   map_rel_iff' f g := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
--/
 
 #print OrderHom.Subtype.val /-
 /-- `subtype.val` as a bundled monotone function.  -/
@@ -846,14 +850,18 @@ theorem symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ)
   rfl
 #align order_hom.symm_dual_comp OrderHom.symm_dual_comp
 
-#print OrderHom.dualIso /-
+/- warning: order_hom.dual_iso -> OrderHom.dualIso is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_6 : Preorder.{u1} α] [_inst_7 : Preorder.{u2} β], OrderIso.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderDual.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderHom.preorder.{u1, u2} α β _inst_6 _inst_7)) (OrderDual.hasLe.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (Preorder.toHasLe.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (OrderHom.preorder.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))))
+but is expected to have type
+  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_6 : Preorder.{u1} α] [_inst_7 : Preorder.{u2} β], OrderIso.{max u2 u1, max u2 u1} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderDual.{max u2 u1} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} α β _inst_6 _inst_7) (OrderHom.instPreorderOrderHom.{u1, u2} α β _inst_6 _inst_7)) (OrderDual.instLEOrderDual.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (Preorder.toLE.{max u1 u2} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7)) (OrderHom.instPreorderOrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_6) (OrderDual.preorder.{u2} β _inst_7))))
+Case conversion may be inaccurate. Consider using '#align order_hom.dual_iso OrderHom.dualIsoₓ'. -/
 /-- `order_hom.dual` as an order isomorphism. -/
 def dualIso (α β : Type _) [Preorder α] [Preorder β] : (α →o β) ≃o (αᵒᵈ →o βᵒᵈ)ᵒᵈ
     where
   toEquiv := OrderHom.dual.trans OrderDual.toDual
   map_rel_iff' f g := Iff.rfl
 #align order_hom.dual_iso OrderHom.dualIso
--/
 
 #print OrderHom.withBotMap /-
 /-- Lift an order homomorphism `f : α →o β` to an order homomorphism `with_bot α →o with_bot β`. -/
@@ -873,7 +881,12 @@ protected def withTopMap (f : α →o β) : WithTop α →o WithTop β :=
 
 end OrderHom
 
-#print RelEmbedding.orderEmbeddingOfLTEmbedding /-
+/- warning: rel_embedding.order_embedding_of_lt_embedding -> RelEmbedding.orderEmbeddingOfLTEmbedding is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6312 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6314 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6312 x._@.Mathlib.Order.Hom.Basic._hyg.6314) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6334 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6336 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6334 x._@.Mathlib.Order.Hom.Basic._hyg.6336)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))
+Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbeddingₓ'. -/
 /-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
 def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) : α ↪o β :=
@@ -882,11 +895,10 @@ def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
       intros
       simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
 #align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbedding
--/
 
 /- warning: rel_embedding.order_embedding_of_lt_embedding_apply -> RelEmbedding.orderEmbeddingOfLTEmbedding_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419))) f x)
 Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_applyₓ'. -/
@@ -901,16 +913,20 @@ namespace OrderEmbedding
 
 variable [Preorder α] [Preorder β] (f : α ↪o β)
 
-#print OrderEmbedding.ltEmbedding /-
+/- warning: order_embedding.lt_embedding -> OrderEmbedding.ltEmbedding is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518))
+Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding OrderEmbedding.ltEmbeddingₓ'. -/
 /-- `<` is preserved by order embeddings of preorders. -/
 def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop) :=
   { f with map_rel_iff' := by intros <;> simp [lt_iff_le_not_le, f.map_rel_iff] }
 #align order_embedding.lt_embedding OrderEmbedding.ltEmbedding
--/
 
 /- warning: order_embedding.lt_embedding_apply -> OrderEmbedding.ltEmbedding_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f x)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_applyₓ'. -/
@@ -921,7 +937,7 @@ theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
 
 /- warning: order_embedding.le_iff_le -> OrderEmbedding.le_iff_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.le_iff_le OrderEmbedding.le_iff_leₓ'. -/
@@ -932,7 +948,7 @@ theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
 
 /- warning: order_embedding.lt_iff_lt -> OrderEmbedding.lt_iff_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_ltₓ'. -/
@@ -943,7 +959,7 @@ theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
 
 /- warning: order_embedding.eq_iff_eq -> OrderEmbedding.eq_iff_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (Eq.{succ u1} α a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Eq.{succ u1} α a b)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Eq.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eqₓ'. -/
@@ -954,7 +970,7 @@ theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
 
 /- warning: order_embedding.monotone -> OrderEmbedding.monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f)
 Case conversion may be inaccurate. Consider using '#align order_embedding.monotone OrderEmbedding.monotoneₓ'. -/
@@ -964,7 +980,7 @@ protected theorem monotone : Monotone f :=
 
 /- warning: order_embedding.strict_mono -> OrderEmbedding.strictMono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f)
 Case conversion may be inaccurate. Consider using '#align order_embedding.strict_mono OrderEmbedding.strictMonoₓ'. -/
@@ -973,7 +989,7 @@ protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 
 /- warning: order_embedding.acc -> OrderEmbedding.acc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) a)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6759 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6761 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6759 x._@.Mathlib.Order.Hom.Basic._hyg.6761) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6780 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6782 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6780 x._@.Mathlib.Order.Hom.Basic._hyg.6782) a)
 Case conversion may be inaccurate. Consider using '#align order_embedding.acc OrderEmbedding.accₓ'. -/
@@ -981,27 +997,44 @@ protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
 #align order_embedding.acc OrderEmbedding.acc
 
-#print OrderEmbedding.wellFounded /-
+/- warning: order_embedding.well_founded -> OrderEmbedding.wellFounded is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (WellFounded.{succ u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6825 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6827 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6825 x._@.Mathlib.Order.Hom.Basic._hyg.6827)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6848 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6850 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6848 x._@.Mathlib.Order.Hom.Basic._hyg.6850))
+Case conversion may be inaccurate. Consider using '#align order_embedding.well_founded OrderEmbedding.wellFoundedₓ'. -/
 protected theorem wellFounded :
     WellFounded ((· < ·) : β → β → Prop) → WellFounded ((· < ·) : α → α → Prop) :=
   f.ltEmbedding.WellFounded
 #align order_embedding.well_founded OrderEmbedding.wellFounded
--/
 
-#print OrderEmbedding.isWellOrder /-
+/- warning: order_embedding.is_well_order -> OrderEmbedding.isWellOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (forall [_inst_3 : IsWellOrder.{u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))], IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (forall [_inst_3 : IsWellOrder.{u2} β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6885 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6887 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6885 x._@.Mathlib.Order.Hom.Basic._hyg.6887)], IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6904 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6902 x._@.Mathlib.Order.Hom.Basic._hyg.6904))
+Case conversion may be inaccurate. Consider using '#align order_embedding.is_well_order OrderEmbedding.isWellOrderₓ'. -/
 protected theorem isWellOrder [IsWellOrder β (· < ·)] : IsWellOrder α (· < ·) :=
   f.ltEmbedding.IsWellOrder
 #align order_embedding.is_well_order OrderEmbedding.isWellOrder
--/
 
-#print OrderEmbedding.dual /-
+/- warning: order_embedding.dual -> OrderEmbedding.dual is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasLe.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u2} β (Preorder.toHasLe.{u2} β _inst_2)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.instLEOrderDual.{u1} α (Preorder.toLE.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u2} β (Preorder.toLE.{u2} β _inst_2)))
+Case conversion may be inaccurate. Consider using '#align order_embedding.dual OrderEmbedding.dualₓ'. -/
 /-- An order embedding is also an order embedding between dual orders. -/
 protected def dual : αᵒᵈ ↪o βᵒᵈ :=
   ⟨f.toEmbedding, fun a b => f.map_rel_iff⟩
 #align order_embedding.dual OrderEmbedding.dual
--/
 
-#print OrderEmbedding.withBotMap /-
+/- warning: order_embedding.with_bot_map -> OrderEmbedding.withBotMap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β _inst_2)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α _inst_1)) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β _inst_2)))
+Case conversion may be inaccurate. Consider using '#align order_embedding.with_bot_map OrderEmbedding.withBotMapₓ'. -/
 /-- A version of `with_bot.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
@@ -1009,17 +1042,25 @@ protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
     toFun := WithBot.map f
     map_rel_iff' := WithBot.map_le_iff f fun a b => f.map_rel_iff }
 #align order_embedding.with_bot_map OrderEmbedding.withBotMap
--/
 
-#print OrderEmbedding.withTopMap /-
+/- warning: order_embedding.with_top_map -> OrderEmbedding.withTopMap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β _inst_2)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (OrderEmbedding.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α _inst_1)) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β _inst_2)))
+Case conversion may be inaccurate. Consider using '#align order_embedding.with_top_map OrderEmbedding.withTopMapₓ'. -/
 /-- A version of `with_top.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withTopMap (f : α ↪o β) : WithTop α ↪o WithTop β :=
   { f.dual.withBot_map.dual with toFun := WithTop.map f }
 #align order_embedding.with_top_map OrderEmbedding.withTopMap
--/
 
-#print OrderEmbedding.ofMapLEIff /-
+/- warning: order_embedding.of_map_le_iff -> OrderEmbedding.ofMapLEIff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toHasLe.{u2} β _inst_4))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toLE.{u2} β _inst_4))
+Case conversion may be inaccurate. Consider using '#align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIffₓ'. -/
 /-- To define an order embedding from a partial order to a preorder it suffices to give a function
 together with a proof that it satisfies `f a ≤ f b ↔ a ≤ b`.
 -/
@@ -1027,11 +1068,10 @@ def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀
     α ↪o β :=
   RelEmbedding.ofMapRelIff f hf
 #align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIff
--/
 
 /- warning: order_embedding.coe_of_map_le_iff -> OrderEmbedding.coe_ofMapLEIff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toLE.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) (OrderEmbedding.ofMapLEIff.{u1, u2} α β _inst_3 _inst_4 f h)) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toHasLe.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) (OrderEmbedding.ofMapLEIff.{u1, u2} α β _inst_3 _inst_4 f h)) f
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderEmbedding.ofMapLEIff.{u2, u1} α β _inst_3 _inst_4 f h)) f
 Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIffₓ'. -/
@@ -1041,16 +1081,20 @@ theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (
   rfl
 #align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIff
 
-#print OrderEmbedding.ofStrictMono /-
+/- warning: order_embedding.of_strict_mono -> OrderEmbedding.ofStrictMono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) _inst_4 f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3))))) (Preorder.toHasLe.{u2} β _inst_4))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3))))) _inst_4 f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3)))))) (Preorder.toLE.{u2} β _inst_4))
+Case conversion may be inaccurate. Consider using '#align order_embedding.of_strict_mono OrderEmbedding.ofStrictMonoₓ'. -/
 /-- A strictly monotone map from a linear order is an order embedding. -/
 def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : StrictMono f) : α ↪o β :=
   ofMapLEIff f fun _ _ => h.le_iff_le
 #align order_embedding.of_strict_mono OrderEmbedding.ofStrictMono
--/
 
 /- warning: order_embedding.coe_of_strict_mono -> OrderEmbedding.coe_ofStrictMono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) _inst_4 f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3))))) (Preorder.toLE.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) (OrderEmbedding.ofStrictMono.{u1, u2} α β _inst_3 _inst_4 f h)) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) _inst_4 f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3))))) (Preorder.toHasLe.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_4))) (OrderEmbedding.ofStrictMono.{u1, u2} α β _inst_3 _inst_4 f h)) f
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : LinearOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : StrictMono.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3))))) _inst_4 f), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderEmbedding.ofStrictMono.{u2, u1} α β _inst_3 _inst_4 f h)) f
 Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMonoₓ'. -/
@@ -1060,15 +1104,24 @@ theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β}
   rfl
 #align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMono
 
-#print OrderEmbedding.subtype /-
+/- warning: order_embedding.subtype -> OrderEmbedding.subtype is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop), OrderEmbedding.{u1, u1} (Subtype.{succ u1} α p) α (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α _inst_1) p) (Preorder.toHasLe.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop), OrderEmbedding.{u1, u1} (Subtype.{succ u1} α p) α (Subtype.le.{u1} α (Preorder.toLE.{u1} α _inst_1) p) (Preorder.toLE.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align order_embedding.subtype OrderEmbedding.subtypeₓ'. -/
 /-- Embedding of a subtype into the ambient type as an `order_embedding`. -/
 @[simps (config := { fullyApplied := false })]
 def subtype (p : α → Prop) : Subtype p ↪o α :=
   ⟨Function.Embedding.subtype p, fun x y => Iff.rfl⟩
 #align order_embedding.subtype OrderEmbedding.subtype
--/
 
-#print OrderEmbedding.toOrderHom /-
+/- warning: order_embedding.to_order_hom -> OrderEmbedding.toOrderHom is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_3 : Preorder.{u1} X] [_inst_4 : Preorder.{u2} Y], (OrderEmbedding.{u1, u2} X Y (Preorder.toHasLe.{u1} X _inst_3) (Preorder.toHasLe.{u2} Y _inst_4)) -> (OrderHom.{u1, u2} X Y _inst_3 _inst_4)
+but is expected to have type
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_3 : Preorder.{u1} X] [_inst_4 : Preorder.{u2} Y], (OrderEmbedding.{u1, u2} X Y (Preorder.toLE.{u1} X _inst_3) (Preorder.toLE.{u2} Y _inst_4)) -> (OrderHom.{u1, u2} X Y _inst_3 _inst_4)
+Case conversion may be inaccurate. Consider using '#align order_embedding.to_order_hom OrderEmbedding.toOrderHomₓ'. -/
 /-- Convert an `order_embedding` to a `order_hom`. -/
 @[simps (config := { fullyApplied := false })]
 def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y
@@ -1076,7 +1129,6 @@ def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o
   toFun := f
   monotone' := f.Monotone
 #align order_embedding.to_order_hom OrderEmbedding.toOrderHom
--/
 
 end OrderEmbedding
 
@@ -1088,7 +1140,12 @@ namespace RelHom
 
 variable (f : ((· < ·) : α → α → Prop) →r ((· < ·) : β → β → Prop))
 
-#print RelHom.toOrderHom /-
+/- warning: rel_hom.to_order_hom -> RelHom.toOrderHom is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β], (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) -> (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β], (RelHom.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7497 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7499 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7497 x._@.Mathlib.Order.Hom.Basic._hyg.7499) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7519 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7521 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7519 x._@.Mathlib.Order.Hom.Basic._hyg.7521)) -> (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2)
+Case conversion may be inaccurate. Consider using '#align rel_hom.to_order_hom RelHom.toOrderHomₓ'. -/
 /-- A bundled expression of the fact that a map between partial orders that is strictly monotone
 is weakly monotone. -/
 @[simps (config := { fullyApplied := false })]
@@ -1096,13 +1153,12 @@ def toOrderHom : α →o β where
   toFun := f
   monotone' := StrictMono.monotone fun x y => f.map_rel
 #align rel_hom.to_order_hom RelHom.toOrderHom
--/
 
 end RelHom
 
 /- warning: rel_embedding.to_order_hom_injective -> RelEmbedding.toOrderHom_injective is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (fun (_x : OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (RelHom.toOrderHom.{u1, u2} α β _inst_1 _inst_2 ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (coeBase.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelEmbedding.RelHom.hasCoe.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)))))) f)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (fun (_x : OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (RelHom.toOrderHom.{u1, u2} α β _inst_1 _inst_2 ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (coeBase.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (RelEmbedding.RelHom.hasCoe.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))))) f)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7595 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7597 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7595 x._@.Mathlib.Order.Hom.Basic._hyg.7597) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7617 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7619 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7617 x._@.Mathlib.Order.Hom.Basic._hyg.7619)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7595 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7597 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7595 x._@.Mathlib.Order.Hom.Basic._hyg.7597) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7617 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7619 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7617 x._@.Mathlib.Order.Hom.Basic._hyg.7619) f)))
 Case conversion may be inaccurate. Consider using '#align rel_embedding.to_order_hom_injective RelEmbedding.toOrderHom_injectiveₓ'. -/
@@ -1547,7 +1603,7 @@ variable [Preorder α] [Preorder β] [Preorder γ]
 
 /- warning: order_iso.monotone -> OrderIso.monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.monotone OrderIso.monotoneₓ'. -/
@@ -1557,7 +1613,7 @@ protected theorem monotone (e : α ≃o β) : Monotone e :=
 
 /- warning: order_iso.strict_mono -> OrderIso.strictMono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.strict_mono OrderIso.strictMonoₓ'. -/
@@ -1567,7 +1623,7 @@ protected theorem strictMono (e : α ≃o β) : StrictMono e :=
 
 /- warning: order_iso.lt_iff_lt -> OrderIso.lt_iff_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x y)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x y)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e y)) (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x y)
 Case conversion may be inaccurate. Consider using '#align order_iso.lt_iff_lt OrderIso.lt_iff_ltₓ'. -/
@@ -1576,16 +1632,20 @@ theorem lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
   e.toOrderEmbedding.lt_iff_lt
 #align order_iso.lt_iff_lt OrderIso.lt_iff_lt
 
-#print OrderIso.toRelIsoLT /-
+/- warning: order_iso.to_rel_iso_lt -> OrderIso.toRelIsoLT is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416))
+Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt OrderIso.toRelIsoLTₓ'. -/
 /-- Converts an `order_iso` into a `rel_iso (<) (<)`. -/
 def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop) :=
   ⟨e.toEquiv, fun x y => lt_iff_lt e⟩
 #align order_iso.to_rel_iso_lt OrderIso.toRelIsoLT
--/
 
 /- warning: order_iso.to_rel_iso_lt_apply -> OrderIso.toRelIsoLT_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e x)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416))) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_applyₓ'. -/
@@ -1596,7 +1656,7 @@ theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
 
 /- warning: order_iso.to_rel_iso_lt_symm -> OrderIso.toRelIsoLT_symm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} β α (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1))) (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) e))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} β α (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1))) (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β _inst_2)) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) e))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symmₓ'. -/
@@ -1605,17 +1665,21 @@ theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT
   rfl
 #align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symm
 
-#print OrderIso.ofRelIsoLT /-
+/- warning: order_iso.of_rel_iso_lt -> OrderIso.ofRelIsoLT is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β], (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) -> (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β], (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9529 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9531 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9529 x._@.Mathlib.Order.Hom.Basic._hyg.9531) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9551 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9553 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9551 x._@.Mathlib.Order.Hom.Basic._hyg.9553)) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))
+Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLTₓ'. -/
 /-- Converts a `rel_iso (<) (<)` into an `order_iso`. -/
 def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : α ≃o β :=
   ⟨e.toEquiv, fun x y => by simp [le_iff_eq_or_lt, e.map_rel_iff]⟩
 #align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLT
--/
 
 /- warning: order_iso.of_rel_iso_lt_apply -> OrderIso.ofRelIsoLT_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638))) e x)
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_applyₓ'. -/
@@ -1627,7 +1691,7 @@ theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
 
 /- warning: order_iso.of_rel_iso_lt_symm -> OrderIso.ofRelIsoLT_symm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9697 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9699 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9697 x._@.Mathlib.Order.Hom.Basic._hyg.9699) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9719 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9721 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9719 x._@.Mathlib.Order.Hom.Basic._hyg.9721)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9697 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9699 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9697 x._@.Mathlib.Order.Hom.Basic._hyg.9699) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9719 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9721 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9719 x._@.Mathlib.Order.Hom.Basic._hyg.9721) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symmₓ'. -/
@@ -1640,7 +1704,7 @@ theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
 
 /- warning: order_iso.of_rel_iso_lt_to_rel_iso_lt -> OrderIso.ofRelIsoLT_toRelIsoLT is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))), Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) e)) e
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))), Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) e)) e
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5))) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_to_rel_iso_lt OrderIso.ofRelIsoLT_toRelIsoLTₓ'. -/
@@ -1653,7 +1717,7 @@ theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : 
 
 /- warning: order_iso.to_rel_iso_lt_of_rel_iso_lt -> OrderIso.toRelIsoLT_ofRelIsoLT is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9823 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9825 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9823 x._@.Mathlib.Order.Hom.Basic._hyg.9825) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9845 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9847 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9845 x._@.Mathlib.Order.Hom.Basic._hyg.9847)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
@@ -1689,7 +1753,7 @@ def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β
 
 /- warning: order_iso.of_hom_inv -> OrderIso.ofHomInv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {F : Type.{u3}} {G : Type.{u4}} [_inst_4 : OrderHomClass.{u3, u1, u2} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] [_inst_5 : OrderHomClass.{u4, u2, u1} G β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)] (f : F) (g : G), (Eq.{succ u2} (OrderHom.{u2, u2} β β _inst_2 _inst_2) (OrderHom.comp.{u2, u1, u2} β α β _inst_2 _inst_1 _inst_2 ((fun (a : Type.{u3}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ u3, max (succ u1) (succ u2)} a b] => self.0) F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHomClass.OrderHom.hasCoeT.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4))) f) ((fun (a : Type.{u4}) (b : Sort.{max (succ u2) (succ u1)}) [self : HasLiftT.{succ u4, max (succ u2) (succ u1)} a b] => self.0) G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (HasLiftT.mk.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (CoeTCₓ.coe.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (OrderHomClass.OrderHom.hasCoeT.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5))) g)) (OrderHom.id.{u2} β _inst_2)) -> (Eq.{succ u1} (OrderHom.{u1, u1} α α _inst_1 _inst_1) (OrderHom.comp.{u1, u2, u1} α β α _inst_1 _inst_2 _inst_1 ((fun (a : Type.{u4}) (b : Sort.{max (succ u2) (succ u1)}) [self : HasLiftT.{succ u4, max (succ u2) (succ u1)} a b] => self.0) G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (HasLiftT.mk.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (CoeTCₓ.coe.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (OrderHomClass.OrderHom.hasCoeT.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5))) g) ((fun (a : Type.{u3}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ u3, max (succ u1) (succ u2)} a b] => self.0) F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHomClass.OrderHom.hasCoeT.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4))) f)) (OrderHom.id.{u1} α _inst_1)) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {F : Type.{u3}} {G : Type.{u4}} [_inst_4 : OrderHomClass.{u3, u1, u2} F α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] [_inst_5 : OrderHomClass.{u4, u2, u1} G β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)] (f : F) (g : G), (Eq.{succ u2} (OrderHom.{u2, u2} β β _inst_2 _inst_2) (OrderHom.comp.{u2, u1, u2} β α β _inst_2 _inst_1 _inst_2 ((fun (a : Type.{u3}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ u3, max (succ u1) (succ u2)} a b] => self.0) F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHomClass.OrderHom.hasCoeT.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4))) f) ((fun (a : Type.{u4}) (b : Sort.{max (succ u2) (succ u1)}) [self : HasLiftT.{succ u4, max (succ u2) (succ u1)} a b] => self.0) G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (HasLiftT.mk.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (CoeTCₓ.coe.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (OrderHomClass.OrderHom.hasCoeT.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5))) g)) (OrderHom.id.{u2} β _inst_2)) -> (Eq.{succ u1} (OrderHom.{u1, u1} α α _inst_1 _inst_1) (OrderHom.comp.{u1, u2, u1} α β α _inst_1 _inst_2 _inst_1 ((fun (a : Type.{u4}) (b : Sort.{max (succ u2) (succ u1)}) [self : HasLiftT.{succ u4, max (succ u2) (succ u1)} a b] => self.0) G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (HasLiftT.mk.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (CoeTCₓ.coe.{succ u4, max (succ u2) (succ u1)} G (OrderHom.{u2, u1} β α _inst_2 _inst_1) (OrderHomClass.OrderHom.hasCoeT.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5))) g) ((fun (a : Type.{u3}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ u3, max (succ u1) (succ u2)} a b] => self.0) F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{succ u3, max (succ u1) (succ u2)} F (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHomClass.OrderHom.hasCoeT.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4))) f)) (OrderHom.id.{u1} α _inst_1)) -> (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {F : Type.{u3}} {G : Type.{u4}} [_inst_4 : OrderHomClass.{u3, u1, u2} F α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] [_inst_5 : OrderHomClass.{u4, u2, u1} G β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)] (f : F) (g : G), (Eq.{succ u2} (OrderHom.{u2, u2} β β _inst_2 _inst_2) (OrderHom.comp.{u2, u1, u2} β α β _inst_2 _inst_1 _inst_2 (OrderHomClass.toOrderHom.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4 f) (OrderHomClass.toOrderHom.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5 g)) (OrderHom.id.{u2} β _inst_2)) -> (Eq.{succ u1} (OrderHom.{u1, u1} α α _inst_1 _inst_1) (OrderHom.comp.{u1, u2, u1} α β α _inst_1 _inst_2 _inst_1 (OrderHomClass.toOrderHom.{u4, u2, u1} G β α _inst_2 _inst_1 _inst_5 g) (OrderHomClass.toOrderHom.{u3, u1, u2} F α β _inst_1 _inst_2 _inst_4 f)) (OrderHom.id.{u1} α _inst_1)) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_hom_inv OrderIso.ofHomInvₓ'. -/
@@ -1711,7 +1775,12 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
       fun h => (f : α →o β).Monotone h⟩
 #align order_iso.of_hom_inv OrderIso.ofHomInv
 
-#print OrderIso.funUnique /-
+/- warning: order_iso.fun_unique -> OrderIso.funUnique is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], OrderIso.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5)
+but is expected to have type
+  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], OrderIso.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5)
+Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique OrderIso.funUniqueₓ'. -/
 /-- Order isomorphism between `α → β` and `β`, where `α` has a unique element. -/
 @[simps toEquiv apply]
 def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
@@ -1719,11 +1788,10 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
   toEquiv := Equiv.funUnique α β
   map_rel_iff' f g := by simp [Pi.le_def, Unique.forall_iff]
 #align order_iso.fun_unique OrderIso.funUnique
--/
 
 /- warning: order_iso.fun_unique_symm_apply -> OrderIso.funUnique_symm_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toLE.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toHasLe.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_5)) (Preorder.toHasLe.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (β -> α -> β) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α -> β) (RelHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))) (Function.const.{succ u1, succ u2} β α)
 Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_applyₓ'. -/
@@ -1749,7 +1817,7 @@ def toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) : α
 
 /- warning: equiv.coe_to_order_iso -> Equiv.coe_toOrderIso is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
 Case conversion may be inaccurate. Consider using '#align equiv.coe_to_order_iso Equiv.coe_toOrderIsoₓ'. -/
@@ -1761,7 +1829,7 @@ theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.sy
 
 /- warning: equiv.to_order_iso_to_equiv -> Equiv.toOrderIso_toEquiv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} α β) (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) e
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} α β) (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) e
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} α β) (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) e
 Case conversion may be inaccurate. Consider using '#align equiv.to_order_iso_to_equiv Equiv.toOrderIso_toEquivₓ'. -/
@@ -1779,7 +1847,12 @@ variable {α β} [LinearOrder α] [Preorder β]
 
 variable (f : α → β) (h_mono : StrictMono f) (h_surj : Function.Surjective f)
 
-#print StrictMono.orderIsoOfRightInverse /-
+/- warning: strict_mono.order_iso_of_right_inverse -> StrictMono.orderIsoOfRightInverse is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) _inst_2 f) -> (forall (g : β -> α), (Function.RightInverse.{succ u1, succ u2} α β g f) -> (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β _inst_2)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : α -> β), (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) _inst_2 f) -> (forall (g : β -> α), (Function.RightInverse.{succ u1, succ u2} α β g f) -> (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (Preorder.toLE.{u2} β _inst_2)))
+Case conversion may be inaccurate. Consider using '#align strict_mono.order_iso_of_right_inverse StrictMono.orderIsoOfRightInverseₓ'. -/
 /-- A strictly monotone function with a right inverse is an order isomorphism. -/
 @[simps (config := { fullyApplied := False })]
 def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α ≃o β :=
@@ -1789,7 +1862,6 @@ def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α
     left_inv := fun x => h_mono.Injective <| hg _
     right_inv := hg }
 #align strict_mono.order_iso_of_right_inverse StrictMono.orderIsoOfRightInverse
--/
 
 end StrictMono
 
@@ -1804,7 +1876,7 @@ section LatticeIsos
 
 /- warning: order_iso.map_bot' -> OrderIso.map_bot' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x x') -> (forall (y' : β), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y y') -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x x') -> (forall (y' : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y y') -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x x') -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y y') -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.map_bot' OrderIso.map_bot'ₓ'. -/
@@ -1818,7 +1890,7 @@ theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y
 
 /- warning: order_iso.map_bot -> OrderIso.map_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α _inst_1] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_3))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α _inst_1] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_3))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α _inst_1] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (Bot.bot.{u1} β (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_bot OrderIso.map_botₓ'. -/
@@ -1828,7 +1900,7 @@ theorem OrderIso.map_bot [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (
 
 /- warning: order_iso.map_top' -> OrderIso.map_top' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y' y) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y' y) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y' y) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.map_top' OrderIso.map_top'ₓ'. -/
@@ -1839,7 +1911,7 @@ theorem OrderIso.map_top' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y
 
 /- warning: order_iso.map_top -> OrderIso.map_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α _inst_1] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_3))) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α _inst_1] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_3))) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α _inst_1] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (Top.top.{u1} β (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_top OrderIso.map_topₓ'. -/
@@ -1849,7 +1921,7 @@ theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (
 
 /- warning: order_embedding.map_inf_le -> OrderEmbedding.map_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.map_inf_le OrderEmbedding.map_inf_leₓ'. -/
@@ -1860,7 +1932,7 @@ theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : 
 
 /- warning: order_embedding.le_map_sup -> OrderEmbedding.le_map_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2))) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.le_map_sup OrderEmbedding.le_map_supₓ'. -/
@@ -1871,7 +1943,7 @@ theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : 
 
 /- warning: order_iso.map_inf -> OrderIso.map_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} β (SemilatticeInf.toInf.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_inf OrderIso.map_infₓ'. -/
@@ -1885,7 +1957,7 @@ theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β
 
 /- warning: order_iso.map_sup -> OrderIso.map_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (Sup.sup.{u1} β (SemilatticeSup.toSup.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_sup OrderIso.map_supₓ'. -/
@@ -1896,7 +1968,7 @@ theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β
 
 /- warning: disjoint.map_order_iso -> Disjoint.map_orderIso is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b))
 Case conversion may be inaccurate. Consider using '#align disjoint.map_order_iso Disjoint.map_orderIsoₓ'. -/
@@ -1910,7 +1982,7 @@ theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf
 
 /- warning: codisjoint.map_order_iso -> Codisjoint.map_orderIso is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.map_order_iso Codisjoint.map_orderIsoₓ'. -/
@@ -1924,7 +1996,7 @@ theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSu
 
 /- warning: disjoint_map_order_iso_iff -> disjoint_map_orderIso_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), Iff (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), Iff (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), Iff (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b)) (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align disjoint_map_order_iso_iff disjoint_map_orderIso_iffₓ'. -/
@@ -1937,7 +2009,7 @@ theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [Semilattice
 
 /- warning: codisjoint_map_order_iso_iff -> codisjoint_map_orderIso_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), Iff (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), Iff (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), Iff (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b)) (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_map_order_iso_iff codisjoint_map_orderIso_iffₓ'. -/
@@ -2099,24 +2171,32 @@ namespace OrderIso
 
 variable [PartialOrder α] [PartialOrder β] [PartialOrder γ]
 
-#print OrderIso.withTopCongr /-
+/- warning: order_iso.with_top_congr -> OrderIso.withTopCongr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
+Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr OrderIso.withTopCongrₓ'. -/
 /-- A version of `equiv.option_congr` for `with_top`. -/
 @[simps apply]
 def withTopCongr (e : α ≃o β) : WithTop α ≃o WithTop β :=
   { e.toOrderEmbedding.withTop_map with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_top_congr OrderIso.withTopCongr
--/
 
-#print OrderIso.withTopCongr_refl /-
+/- warning: order_iso.with_top_congr_refl -> OrderIso.withTopCongr_refl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithTop.{u1} α) (WithTop.{u1} α) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withTopCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithTop.{u1} α) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithTop.{u1} α) (WithTop.{u1} α) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withTopCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithTop.{u1} α) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
+Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr_refl OrderIso.withTopCongr_reflₓ'. -/
 @[simp]
 theorem withTopCongr_refl : (OrderIso.refl α).withTopCongr = OrderIso.refl _ :=
   RelIso.toEquiv_injective Equiv.optionCongr_refl
 #align order_iso.with_top_congr_refl OrderIso.withTopCongr_refl
--/
 
 /- warning: order_iso.with_top_congr_symm -> OrderIso.withTopCongr_symm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} (WithTop.{u2} β) (WithTop.{u1} α) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (OrderIso.withTopCongr.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.withTopCongr.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} (WithTop.{u2} β) (WithTop.{u1} α) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} (WithTop.{u1} α) (WithTop.{u2} β) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (OrderIso.withTopCongr.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.withTopCongr.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} (WithTop.{u1} β) (WithTop.{u2} α) (Preorder.toLE.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (Preorder.toLE.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)))) (OrderIso.symm.{u2, u1} (WithTop.{u2} α) (WithTop.{u1} β) (Preorder.toLE.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))) (Preorder.toLE.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (OrderIso.withTopCongr.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.withTopCongr.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr_symm OrderIso.withTopCongr_symmₓ'. -/
@@ -2127,7 +2207,7 @@ theorem withTopCongr_symm (e : α ≃o β) : e.withTopCongr.symm = e.symm.withTo
 
 /- warning: order_iso.with_top_congr_trans -> OrderIso.withTopCongr_trans is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u3} γ] (e₁ : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u3} β γ (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))), Eq.{max (succ u1) (succ u3)} (OrderIso.{u1, u3} (WithTop.{u1} α) (WithTop.{u3} γ) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u3} (WithTop.{u3} γ) (WithTop.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)))) (OrderIso.trans.{u1, u2, u3} (WithTop.{u1} α) (WithTop.{u2} β) (WithTop.{u3} γ) (Preorder.toLE.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u3} (WithTop.{u3} γ) (WithTop.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))) (OrderIso.withTopCongr.{u1, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withTopCongr.{u2, u3} β γ _inst_2 _inst_3 e₂)) (OrderIso.withTopCongr.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)) e₁ e₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u3} γ] (e₁ : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))), Eq.{max (succ u1) (succ u3)} (OrderIso.{u1, u3} (WithTop.{u1} α) (WithTop.{u3} γ) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u3} (WithTop.{u3} γ) (WithTop.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)))) (OrderIso.trans.{u1, u2, u3} (WithTop.{u1} α) (WithTop.{u2} β) (WithTop.{u3} γ) (Preorder.toHasLe.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u3} (WithTop.{u3} γ) (WithTop.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))) (OrderIso.withTopCongr.{u1, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withTopCongr.{u2, u3} β γ _inst_2 _inst_3 e₂)) (OrderIso.withTopCongr.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)) e₁ e₂))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : PartialOrder.{u3} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u1} γ] (e₁ : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u1} β γ (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))), Eq.{max (succ u3) (succ u1)} (OrderIso.{u3, u1} (WithTop.{u3} α) (WithTop.{u1} γ) (Preorder.toLE.{u3} (WithTop.{u3} α) (WithTop.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u1} (WithTop.{u1} γ) (WithTop.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)))) (OrderIso.trans.{u3, u2, u1} (WithTop.{u3} α) (WithTop.{u2} β) (WithTop.{u1} γ) (Preorder.toLE.{u3} (WithTop.{u3} α) (WithTop.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u2} (WithTop.{u2} β) (WithTop.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u1} (WithTop.{u1} γ) (WithTop.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))) (OrderIso.withTopCongr.{u3, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withTopCongr.{u2, u1} β γ _inst_2 _inst_3 e₂)) (OrderIso.withTopCongr.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)) e₁ e₂))
 Case conversion may be inaccurate. Consider using '#align order_iso.with_top_congr_trans OrderIso.withTopCongr_transₓ'. -/
@@ -2137,24 +2217,32 @@ theorem withTopCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
   RelIso.toEquiv_injective <| e₁.toEquiv.optionCongr_trans e₂.toEquiv
 #align order_iso.with_top_congr_trans OrderIso.withTopCongr_trans
 
-#print OrderIso.withBotCongr /-
+/- warning: order_iso.with_bot_congr -> OrderIso.withBotCongr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) -> (OrderIso.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))))
+Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr OrderIso.withBotCongrₓ'. -/
 /-- A version of `equiv.option_congr` for `with_bot`. -/
 @[simps apply]
 def withBotCongr (e : α ≃o β) : WithBot α ≃o WithBot β :=
   { e.toOrderEmbedding.withBot_map with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_bot_congr OrderIso.withBotCongr
--/
 
-#print OrderIso.withBotCongr_refl /-
+/- warning: order_iso.with_bot_congr_refl -> OrderIso.withBotCongr_refl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithBot.{u1} α) (WithBot.{u1} α) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withBotCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithBot.{u1} α) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α], Eq.{succ u1} (OrderIso.{u1, u1} (WithBot.{u1} α) (WithBot.{u1} α) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.withBotCongr.{u1, u1} α α _inst_1 _inst_1 (OrderIso.refl.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.refl.{u1} (WithBot.{u1} α) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))))
+Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr_refl OrderIso.withBotCongr_reflₓ'. -/
 @[simp]
 theorem withBotCongr_refl : (OrderIso.refl α).withBotCongr = OrderIso.refl _ :=
   RelIso.toEquiv_injective Equiv.optionCongr_refl
 #align order_iso.with_bot_congr_refl OrderIso.withBotCongr_refl
--/
 
 /- warning: order_iso.with_bot_congr_symm -> OrderIso.withBotCongr_symm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} (WithBot.{u2} β) (WithBot.{u1} α) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (OrderIso.withBotCongr.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.withBotCongr.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} (WithBot.{u2} β) (WithBot.{u1} α) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))) (OrderIso.symm.{u1, u2} (WithBot.{u1} α) (WithBot.{u2} β) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (OrderIso.withBotCongr.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.withBotCongr.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) e))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} (WithBot.{u1} β) (WithBot.{u2} α) (Preorder.toLE.{u1} (WithBot.{u1} β) (WithBot.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (Preorder.toLE.{u2} (WithBot.{u2} α) (WithBot.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)))) (OrderIso.symm.{u2, u1} (WithBot.{u2} α) (WithBot.{u1} β) (Preorder.toLE.{u2} (WithBot.{u2} α) (WithBot.preorder.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))) (Preorder.toLE.{u1} (WithBot.{u1} β) (WithBot.preorder.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) (OrderIso.withBotCongr.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.withBotCongr.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr_symm OrderIso.withBotCongr_symmₓ'. -/
@@ -2165,7 +2253,7 @@ theorem withBotCongr_symm (e : α ≃o β) : e.withBotCongr.symm = e.symm.withBo
 
 /- warning: order_iso.with_bot_congr_trans -> OrderIso.withBotCongr_trans is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u3} γ] (e₁ : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u3} β γ (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))), Eq.{max (succ u1) (succ u3)} (OrderIso.{u1, u3} (WithBot.{u1} α) (WithBot.{u3} γ) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u3} (WithBot.{u3} γ) (WithBot.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)))) (OrderIso.trans.{u1, u2, u3} (WithBot.{u1} α) (WithBot.{u2} β) (WithBot.{u3} γ) (Preorder.toLE.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u3} (WithBot.{u3} γ) (WithBot.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))) (OrderIso.withBotCongr.{u1, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withBotCongr.{u2, u3} β γ _inst_2 _inst_3 e₂)) (OrderIso.withBotCongr.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)) e₁ e₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u3} γ] (e₁ : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))), Eq.{max (succ u1) (succ u3)} (OrderIso.{u1, u3} (WithBot.{u1} α) (WithBot.{u3} γ) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u3} (WithBot.{u3} γ) (WithBot.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)))) (OrderIso.trans.{u1, u2, u3} (WithBot.{u1} α) (WithBot.{u2} β) (WithBot.{u3} γ) (Preorder.toHasLe.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toHasLe.{u3} (WithBot.{u3} γ) (WithBot.preorder.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3))) (OrderIso.withBotCongr.{u1, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withBotCongr.{u2, u3} β γ _inst_2 _inst_3 e₂)) (OrderIso.withBotCongr.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_3)) e₁ e₂))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : PartialOrder.{u3} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : PartialOrder.{u1} γ] (e₁ : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (e₂ : OrderIso.{u2, u1} β γ (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))), Eq.{max (succ u3) (succ u1)} (OrderIso.{u3, u1} (WithBot.{u3} α) (WithBot.{u1} γ) (Preorder.toLE.{u3} (WithBot.{u3} α) (WithBot.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u1} (WithBot.{u1} γ) (WithBot.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)))) (OrderIso.trans.{u3, u2, u1} (WithBot.{u3} α) (WithBot.{u2} β) (WithBot.{u1} γ) (Preorder.toLE.{u3} (WithBot.{u3} α) (WithBot.preorder.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1))) (Preorder.toLE.{u2} (WithBot.{u2} β) (WithBot.preorder.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (Preorder.toLE.{u1} (WithBot.{u1} γ) (WithBot.preorder.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3))) (OrderIso.withBotCongr.{u3, u2} α β _inst_1 _inst_2 e₁) (OrderIso.withBotCongr.{u2, u1} β γ _inst_2 _inst_3 e₂)) (OrderIso.withBotCongr.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Preorder.toLE.{u1} γ (PartialOrder.toPreorder.{u1} γ _inst_3)) e₁ e₂))
 Case conversion may be inaccurate. Consider using '#align order_iso.with_bot_congr_trans OrderIso.withBotCongr_transₓ'. -/
@@ -2185,7 +2273,7 @@ include f
 
 /- warning: order_iso.is_compl -> OrderIso.isCompl is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) -> (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) -> (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) -> (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl OrderIso.isComplₓ'. -/
@@ -2195,7 +2283,7 @@ theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
 
 /- warning: order_iso.is_compl_iff -> OrderIso.isCompl_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl_iff OrderIso.isCompl_iffₓ'. -/
@@ -2205,7 +2293,7 @@ theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
 
 /- warning: order_iso.complemented_lattice -> OrderIso.complementedLattice is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) -> (forall [_inst_5 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u2} β _inst_2 _inst_4)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) -> (forall [_inst_5 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u2} β _inst_2 _inst_4)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))], (OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) -> (forall [_inst_5 : ComplementedLattice.{u2} α _inst_1 _inst_3], ComplementedLattice.{u1} β _inst_2 _inst_4)
 Case conversion may be inaccurate. Consider using '#align order_iso.complemented_lattice OrderIso.complementedLatticeₓ'. -/
@@ -2218,7 +2306,7 @@ theorem OrderIso.complementedLattice [ComplementedLattice α] : ComplementedLatt
 
 /- warning: order_iso.complemented_lattice_iff -> OrderIso.complementedLattice_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) -> (Iff (ComplementedLattice.{u1} α _inst_1 _inst_3) (ComplementedLattice.{u2} β _inst_2 _inst_4))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) -> (Iff (ComplementedLattice.{u1} α _inst_1 _inst_3) (ComplementedLattice.{u2} β _inst_2 _inst_4))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))], (OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) -> (Iff (ComplementedLattice.{u2} α _inst_1 _inst_3) (ComplementedLattice.{u1} β _inst_2 _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.complemented_lattice_iff OrderIso.complementedLattice_iffₓ'. -/
Diff
@@ -459,7 +459,7 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (coeFn.{max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3)), max (succ (max (max u1 u2) u3)) (succ (max u1 u2 u3))} (OrderIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (fun (_x : RelIso.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) => (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) -> (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))) (RelIso.hasCoeToFun.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3))))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) f (Prod.mk.{u1, u2} α β x y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {γ : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u1} γ (OrderHom.toFun.{u3, u1} β γ _inst_2 _inst_3 (OrderHom.toFun.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3) (FunLike.coe.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (Function.Embedding.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) _x) (EmbeddingLike.toFunLike.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (Function.Embedding.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Function.instEmbeddingLikeEmbedding.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)))) (RelEmbedding.toEmbedding.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderHom.curry.{u2, u3, u1} α β γ _inst_1 _inst_2 _inst_3))) f) x) y) (OrderHom.toFun.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3 f (Prod.mk.{u2, u3} α β x y))
+  forall {α : Type.{u2}} {β : Type.{u3}} {γ : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u1} γ] (f : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x : α) (y : β), Eq.{succ u1} γ (OrderHom.toFun.{u3, u1} β γ _inst_2 _inst_3 (OrderHom.toFun.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3) (FunLike.coe.{succ (max (max u1 u3) u2), succ (max (max u1 u3) u2), succ (max (max u1 u3) u2)} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (RelHomClass.toFunLike.{max (max u1 u3) u2, max (max u1 u3) u2, max (max u1 u3) u2} (RelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{max (max u1 u3) u2, max (max u1 u3) u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u1 u3 u2} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{max u3 u2, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) => LE.le.{max (max u1 u3) u2} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u2 u3) u1} (OrderHom.{u2, max u1 u3} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u2, max u3 u1} α (OrderHom.{u3, u1} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u3, u1} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderHom.curry.{u2, u3, u1} α β γ _inst_1 _inst_2 _inst_3) f) x) y) (OrderHom.toFun.{max u2 u3, u1} (Prod.{u2, u3} α β) γ (Prod.instPreorderProd.{u2, u3} α β _inst_1 _inst_2) _inst_3 f (Prod.mk.{u2, u3} α β x y))
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_apply OrderHom.curry_applyₓ'. -/
 @[simp]
 theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (x, y) :=
@@ -470,7 +470,7 @@ theorem curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (f : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (x : Prod.{u1, u2} α β), Eq.{succ u3} γ (coeFn.{max (succ (max u1 u2)) (succ u3), max (succ (max u1 u2)) (succ u3)} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (fun (_x : OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) => (Prod.{u1, u2} α β) -> γ) (OrderHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (coeFn.{max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3)), max (succ (max u1 u2 u3)) (succ (max (max u1 u2) u3))} (RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (fun (_x : RelIso.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) => (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) -> (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)) (RelIso.hasCoeToFun.{max u1 u2 u3, max (max u1 u2) u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3)))) (RelIso.symm.{max (max u1 u2) u3, max u1 u2 u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (LE.le.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u1 u2) u3} (OrderHom.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3) (OrderHom.preorder.{max u1 u2, u3} (Prod.{u1, u2} α β) γ (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) _inst_3))) (LE.le.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (Preorder.toLE.{max u1 u2 u3} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.preorder.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)))) (OrderHom.curry.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3)) f) x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (OrderHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) (coeFn.{max (succ u1) (succ (max u2 u3)), max (succ u1) (succ (max u2 u3))} (OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) => α -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (OrderHom.hasCoeToFun.{u1, max u2 u3} α (OrderHom.{u2, u3} β γ _inst_2 _inst_3) _inst_1 (OrderHom.preorder.{u2, u3} β γ _inst_2 _inst_3)) f (Prod.fst.{u1, u2} α β x)) (Prod.snd.{u1, u2} α β x))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : Preorder.{u2} γ] (f : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x : Prod.{u3, u1} α β), Eq.{succ u2} γ (OrderHom.toFun.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3 (FunLike.coe.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (Function.Embedding.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) _x) (EmbeddingLike.toFunLike.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (Function.Embedding.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Function.instEmbeddingLikeEmbedding.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3))) (RelEmbedding.toEmbedding.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (RelIso.toRelEmbedding.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (RelIso.symm.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderHom.curry.{u3, u1, u2} α β γ _inst_1 _inst_2 _inst_3)))) f) x) (OrderHom.toFun.{u1, u2} β γ _inst_2 _inst_3 (OrderHom.toFun.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3) f (Prod.fst.{u3, u1} α β x)) (Prod.snd.{u3, u1} α β x))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : Preorder.{u3} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : Preorder.{u2} γ] (f : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x : Prod.{u3, u1} α β), Eq.{succ u2} γ (OrderHom.toFun.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3 (FunLike.coe.{succ (max (max u2 u1) u3), succ (max (max u2 u1) u3), succ (max (max u2 u1) u3)} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (_x : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (RelHomClass.toFunLike.{max (max u2 u1) u3, max (max u2 u1) u3, max (max u2 u1) u3} (RelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283)) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (RelIso.instRelHomClassRelIso.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283))) (RelIso.symm.{max (max u2 u1) u3, max (max u2 u1) u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) => LE.le.{max u2 u1 u3} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{max u1 u3, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3) (OrderHom.instPreorderOrderHom.{max u3 u1, u2} (Prod.{u3, u1} α β) γ (Prod.instPreorderProd.{u3, u1} α β _inst_1 _inst_2) _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) => LE.le.{max (max u2 u1) u3} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (Preorder.toLE.{max (max u3 u1) u2} (OrderHom.{u3, max u2 u1} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3)) (OrderHom.instPreorderOrderHom.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderHom.curry.{u3, u1, u2} α β γ _inst_1 _inst_2 _inst_3)) f) x) (OrderHom.toFun.{u1, u2} β γ _inst_2 _inst_3 (OrderHom.toFun.{u3, max u1 u2} α (OrderHom.{u1, u2} β γ _inst_2 _inst_3) _inst_1 (OrderHom.instPreorderOrderHom.{u1, u2} β γ _inst_2 _inst_3) f (Prod.fst.{u3, u1} α β x)) (Prod.snd.{u3, u1} α β x))
 Case conversion may be inaccurate. Consider using '#align order_hom.curry_symm_apply OrderHom.curry_symm_applyₓ'. -/
 @[simp]
 theorem curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f x = f x.1 x.2 :=
@@ -888,7 +888,7 @@ def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419) f) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419))) f x)
 Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_applyₓ'. -/
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
@@ -912,7 +912,7 @@ def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f x)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_applyₓ'. -/
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
@@ -923,7 +923,7 @@ theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LE.le.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.le_iff_le OrderEmbedding.le_iff_leₓ'. -/
 @[simp]
 theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
@@ -934,7 +934,7 @@ theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_ltₓ'. -/
 @[simp]
 theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
@@ -945,7 +945,7 @@ theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (Eq.{succ u1} α a b)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b)) (Eq.{succ u1} α a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {a : α} {b : α}, Iff (Eq.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Eq.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eqₓ'. -/
 @[simp]
 theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
@@ -956,7 +956,7 @@ theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f)
 Case conversion may be inaccurate. Consider using '#align order_embedding.monotone OrderEmbedding.monotoneₓ'. -/
 protected theorem monotone : Monotone f :=
   OrderHomClass.monotone f
@@ -966,7 +966,7 @@ protected theorem monotone : Monotone f :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f)
 Case conversion may be inaccurate. Consider using '#align order_embedding.strict_mono OrderEmbedding.strictMonoₓ'. -/
 protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 #align order_embedding.strict_mono OrderEmbedding.strictMono
@@ -975,7 +975,7 @@ protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) a)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6759 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6761 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6759 x._@.Mathlib.Order.Hom.Basic._hyg.6761) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6780 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6782 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6780 x._@.Mathlib.Order.Hom.Basic._hyg.6782) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6759 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6761 : (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6759 x._@.Mathlib.Order.Hom.Basic._hyg.6761) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6780 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6782 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6780 x._@.Mathlib.Order.Hom.Basic._hyg.6782) a)
 Case conversion may be inaccurate. Consider using '#align order_embedding.acc OrderEmbedding.accₓ'. -/
 protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
@@ -1033,7 +1033,7 @@ def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toLE.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) (OrderEmbedding.ofMapLEIff.{u1, u2} α β _inst_3 _inst_4 f h)) f
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (OrderEmbedding.ofMapLEIff.{u2, u1} α β _inst_3 _inst_4 f h))) f
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderEmbedding.ofMapLEIff.{u2, u1} α β _inst_3 _inst_4 f h)) f
 Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIffₓ'. -/
 @[simp]
 theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
@@ -1052,7 +1052,7 @@ def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : Str
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : LinearOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) _inst_4 f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3))))) (Preorder.toLE.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) (OrderEmbedding.ofStrictMono.{u1, u2} α β _inst_3 _inst_4 f h)) f
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : LinearOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : StrictMono.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3))))) _inst_4 f), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (OrderEmbedding.ofStrictMono.{u2, u1} α β _inst_3 _inst_4 f h))) f
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : LinearOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : StrictMono.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3))))) _inst_4 f), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) (Preorder.toLE.{u1} β _inst_4)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_3)))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderEmbedding.ofStrictMono.{u2, u1} α β _inst_3 _inst_4 f h)) f
 Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMonoₓ'. -/
 @[simp]
 theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β} (h : StrictMono f) :
@@ -1135,7 +1135,7 @@ instance : OrderIsoClass (α ≃o β) α β where
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] {f : OrderIso.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (Equiv.toFun.{succ u1, succ u2} α β (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2) f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) f)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (Equiv.toFun.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (Equiv.toFun.{succ u2, succ u1} α β (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_fun_eq_coe OrderIso.toFun_eq_coeₓ'. -/
 @[simp]
 theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
@@ -1146,7 +1146,7 @@ theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] {f : OrderIso.{u1, u2} α β _inst_1 _inst_2} {g : OrderIso.{u1, u2} α β _inst_1 _inst_2}, (Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) g)) -> (Eq.{max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) f g)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2} {g : OrderIso.{u2, u1} α β _inst_1 _inst_2}, (Eq.{max (succ u2) (succ u1)} (forall (a : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) g)))) -> (Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) f g)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] {f : OrderIso.{u2, u1} α β _inst_1 _inst_2} {g : OrderIso.{u2, u1} α β _inst_1 _inst_2}, (Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) g)) -> (Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} α β _inst_1 _inst_2) f g)
 Case conversion may be inaccurate. Consider using '#align order_iso.ext OrderIso.extₓ'. -/
 -- See note [partially-applied ext lemmas]
 @[ext]
@@ -1165,7 +1165,7 @@ def toOrderEmbedding (e : α ≃o β) : α ↪o β :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) (OrderIso.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 e)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (OrderIso.toOrderEmbedding.{u2, u1} α β _inst_1 _inst_2 e))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β _inst_1 _inst_2) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (OrderIso.toOrderEmbedding.{u2, u1} α β _inst_1 _inst_2 e)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_to_order_embedding OrderIso.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (e : α ≃o β) : ⇑e.toOrderEmbedding = e :=
@@ -1176,7 +1176,7 @@ theorem coe_toOrderEmbedding (e : α ≃o β) : ⇑e.toOrderEmbedding = e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Bijective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Bijective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Bijective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.bijective OrderIso.bijectiveₓ'. -/
 protected theorem bijective (e : α ≃o β) : Function.Bijective e :=
   e.toEquiv.Bijective
@@ -1186,7 +1186,7 @@ protected theorem bijective (e : α ≃o β) : Function.Bijective e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.injective OrderIso.injectiveₓ'. -/
 protected theorem injective (e : α ≃o β) : Function.Injective e :=
   e.toEquiv.Injective
@@ -1196,7 +1196,7 @@ protected theorem injective (e : α ≃o β) : Function.Injective e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2), Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Surjective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2), Function.Surjective.{succ u2, succ u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.surjective OrderIso.surjectiveₓ'. -/
 protected theorem surjective (e : α ≃o β) : Function.Surjective e :=
   e.toEquiv.Surjective
@@ -1206,7 +1206,7 @@ protected theorem surjective (e : α ≃o β) : Function.Surjective e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e y)) (Eq.{succ u1} α x y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) y)) (Eq.{succ u2} α x y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e y)) (Eq.{succ u2} α x y)
 Case conversion may be inaccurate. Consider using '#align order_iso.apply_eq_iff_eq OrderIso.apply_eq_iff_eqₓ'. -/
 @[simp]
 theorem apply_eq_iff_eq (e : α ≃o β) {x y : α} : e x = e y ↔ x = y :=
@@ -1224,7 +1224,7 @@ def refl (α : Type _) [LE α] : α ≃o α :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α α _inst_1 _inst_1) (fun (_x : RelIso.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) => α -> α) (RelIso.hasCoeToFun.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) (OrderIso.refl.{u1} α _inst_1)) (id.{succ u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α α) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α α) α α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α α)) (RelEmbedding.toEmbedding.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.refl.{u1} α _inst_1)))) (id.{succ u1} α)
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.refl.{u1} α _inst_1)) (id.{succ u1} α)
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_refl OrderIso.coe_reflₓ'. -/
 @[simp]
 theorem coe_refl : ⇑(refl α) = id :=
@@ -1235,7 +1235,7 @@ theorem coe_refl : ⇑(refl α) = id :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α α _inst_1 _inst_1) (fun (_x : RelIso.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) => α -> α) (RelIso.hasCoeToFun.{u1, u1} α α (LE.le.{u1} α _inst_1) (LE.le.{u1} α _inst_1)) (OrderIso.refl.{u1} α _inst_1) x) x
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α α) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α α) α α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α α)) (RelEmbedding.toEmbedding.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.refl.{u1} α _inst_1))) x) x
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (x : α), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.refl.{u1} α _inst_1) x) x
 Case conversion may be inaccurate. Consider using '#align order_iso.refl_apply OrderIso.refl_applyₓ'. -/
 @[simp]
 theorem refl_apply (x : α) : refl α x = x :=
@@ -1260,7 +1260,7 @@ def symm (e : α ≃o β) : β ≃o α :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : β), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) x)) x
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : β), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (a : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) a) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))) x)) x
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : β), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) x)) x
 Case conversion may be inaccurate. Consider using '#align order_iso.apply_symm_apply OrderIso.apply_symm_applyₓ'. -/
 @[simp]
 theorem apply_symm_apply (e : α ≃o β) (x : β) : e (e.symm x) = x :=
@@ -1271,7 +1271,7 @@ theorem apply_symm_apply (e : α ≃o β) (x : β) : e (e.symm x) = x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : α), Eq.{succ u1} α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x)) x
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (a : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)) x
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α), Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x)) x
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_apply OrderIso.symm_apply_applyₓ'. -/
 @[simp]
 theorem symm_apply_apply (e : α ≃o β) (x : α) : e.symm (e x) = x :=
@@ -1289,7 +1289,7 @@ theorem symm_refl (α : Type _) [LE α] : (refl α).symm = refl α :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) y) (Eq.{succ u1} α x (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x) y) (Eq.{succ u2} α x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) (x : α) (y : β), Iff (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) y) (Eq.{succ u2} α x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y))
 Case conversion may be inaccurate. Consider using '#align order_iso.apply_eq_iff_eq_symm_apply OrderIso.apply_eq_iff_eq_symm_applyₓ'. -/
 theorem apply_eq_iff_eq_symm_apply (e : α ≃o β) (x : α) (y : β) : e x = y ↔ x = e.symm y :=
   e.toEquiv.apply_eq_iff_eq_symm_apply
@@ -1299,7 +1299,7 @@ theorem apply_eq_iff_eq_symm_apply (e : α ≃o β) (x : α) (y : β) : e x = y
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u1} α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y) x) (Eq.{succ u2} β y (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) y) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))) y) x) (Eq.{succ u1} β y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (Eq.{succ u2} α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (Eq.{succ u1} β y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x))
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_eq OrderIso.symm_apply_eqₓ'. -/
 theorem symm_apply_eq (e : α ≃o β) {x : α} {y : β} : e.symm y = x ↔ y = e x :=
   e.toEquiv.symm_apply_eq
@@ -1351,7 +1351,7 @@ def trans (e : α ≃o β) (e' : β ≃o γ) : α ≃o γ :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u3} β γ _inst_2 _inst_3), Eq.{max (succ u1) (succ u3)} (α -> γ) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderIso.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : RelIso.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) => α -> γ) (RelIso.hasCoeToFun.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e e')) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) e') (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => γ) ᾰ) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (Function.Embedding.{succ u3, succ u1} α γ) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => γ) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u1), succ u3, succ u1} (Function.Embedding.{succ u3, succ u1} α γ) α γ (Function.instEmbeddingLikeEmbedding.{succ u3, succ u1} α γ)) (RelEmbedding.toEmbedding.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e')))) (Function.comp.{succ u3, succ u2, succ u1} α β γ (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β γ) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => γ) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β γ) β γ (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} β γ)) (RelEmbedding.toEmbedding.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e'))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (α -> γ) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e')) (Function.comp.{succ u3, succ u2, succ u1} α β γ (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e') (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_trans OrderIso.coe_transₓ'. -/
 @[simp]
 theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘ e :=
@@ -1362,7 +1362,7 @@ theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u3} β γ _inst_2 _inst_3) (x : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderIso.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : RelIso.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) => α -> γ) (RelIso.hasCoeToFun.{u1, u3} α γ (LE.le.{u1} α _inst_1) (LE.le.{u3} γ _inst_3)) (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e e') x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β _inst_2) (LE.le.{u3} γ _inst_3)) e' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => γ) x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (Function.Embedding.{succ u3, succ u1} α γ) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => γ) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u1), succ u3, succ u1} (Function.Embedding.{succ u3, succ u1} α γ) α γ (Function.instEmbeddingLikeEmbedding.{succ u3, succ u1} α γ)) (RelEmbedding.toEmbedding.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e'))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β γ) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => γ) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β γ) β γ (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} β γ)) (RelEmbedding.toEmbedding.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e')) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e' : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (x : α), Eq.{succ u1} γ (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => γ) (RelHomClass.toFunLike.{max u3 u1, u3, u1} (RelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u1} α γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e e') x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e' (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x))
 Case conversion may be inaccurate. Consider using '#align order_iso.trans_apply OrderIso.trans_applyₓ'. -/
 @[simp]
 theorem trans_apply (e : α ≃o β) (e' : β ≃o γ) (x : α) : e.trans e' x = e' (e x) :=
@@ -1399,7 +1399,7 @@ theorem trans_refl (e : α ≃o β) : e.trans (refl β) = e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u3} γ] (e₁ : OrderIso.{u1, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u3} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u1} α (coeFn.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderIso.{u3, u1} γ α _inst_3 _inst_1) (fun (_x : RelIso.{u3, u1} γ α (LE.le.{u3} γ _inst_3) (LE.le.{u1} α _inst_1)) => γ -> α) (RelIso.hasCoeToFun.{u3, u1} γ α (LE.le.{u3} γ _inst_3) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u3} α γ _inst_1 _inst_3 (OrderIso.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) c) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e₁) (coeFn.{max (succ u3) (succ u2), max (succ u3) (succ u2)} (OrderIso.{u3, u2} γ β _inst_3 _inst_2) (fun (_x : RelIso.{u3, u2} γ β (LE.le.{u3} γ _inst_3) (LE.le.{u2} β _inst_2)) => γ -> β) (RelIso.hasCoeToFun.{u3, u2} γ β (LE.le.{u3} γ _inst_3) (LE.le.{u2} β _inst_2)) (OrderIso.symm.{u2, u3} β γ _inst_2 _inst_3 e₂) c))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e₁ : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u3} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : γ) => α) c) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (Function.Embedding.{succ u1, succ u3} γ α) γ (fun (_x : γ) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : γ) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u3), succ u1, succ u3} (Function.Embedding.{succ u1, succ u3} γ α) γ α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u3} γ α)) (RelEmbedding.toEmbedding.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)))) c) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u2, succ u3} β α)) (RelEmbedding.toEmbedding.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u3, u2} α β _inst_1 _inst_2 e₁))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} γ β) γ (fun (_x : γ) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : γ) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} γ β) γ β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} γ β)) (RelEmbedding.toEmbedding.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} β γ _inst_2 _inst_3 e₂))) c))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : LE.{u3} α] [_inst_2 : LE.{u2} β] [_inst_3 : LE.{u1} γ] (e₁ : OrderIso.{u3, u2} α β _inst_1 _inst_2) (e₂ : OrderIso.{u2, u1} β γ _inst_2 _inst_3) (c : γ), Eq.{succ u3} α (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ (fun (_x : γ) => α) (RelHomClass.toFunLike.{max u1 u3, u1, u3} (RelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u3} γ α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u3, u1} α γ _inst_1 _inst_3 (OrderIso.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 e₁ e₂)) c) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u3} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u3, u2} α β _inst_1 _inst_2 e₁) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ (fun (_x : γ) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} γ β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : γ) => LE.le.{u1} γ _inst_3 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} β γ _inst_2 _inst_3 e₂) c))
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_trans_apply OrderIso.symm_trans_applyₓ'. -/
 @[simp]
 theorem symm_trans_apply (e₁ : α ≃o β) (e₂ : β ≃o γ) (c : γ) :
@@ -1429,7 +1429,7 @@ def prodComm : α × β ≃o β × α where
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β], Eq.{max (succ (max u1 u2)) (succ (max u2 u1))} ((Prod.{u1, u2} α β) -> (Prod.{u2, u1} β α)) (coeFn.{max (succ (max u1 u2)) (succ (max u2 u1)), max (succ (max u1 u2)) (succ (max u2 u1))} (OrderIso.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1)) (fun (_x : RelIso.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2)) (LE.le.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1))) => (Prod.{u1, u2} α β) -> (Prod.{u2, u1} β α)) (RelIso.hasCoeToFun.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β _inst_1 _inst_2)) (LE.le.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasLe.{u2, u1} β α _inst_2 _inst_1))) (OrderIso.prodComm.{u1, u2} α β _inst_1 _inst_2)) (Prod.swap.{u1, u2} α β)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} α β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} α β) => Prod.{u1, u2} β α) ᾰ) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (Function.Embedding.{succ (max u2 u1), succ (max u2 u1)} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α)) (Prod.{u2, u1} α β) (fun (_x : Prod.{u2, u1} α β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} α β) => Prod.{u1, u2} β α) _x) (EmbeddingLike.toFunLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (Function.Embedding.{succ (max u2 u1), succ (max u2 u1)} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α)) (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Function.instEmbeddingLikeEmbedding.{succ (max u2 u1), succ (max u2 u1)} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α))) (RelEmbedding.toEmbedding.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.prodComm.{u2, u1} α β _inst_1 _inst_2)))) (Prod.swap.{u2, u1} α β)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β], Eq.{max (succ u2) (succ u1)} ((Prod.{u2, u1} α β) -> (Prod.{u1, u2} β α)) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (Prod.{u2, u1} α β) (fun (_x : Prod.{u2, u1} α β) => Prod.{u1, u2} β α) (RelHomClass.toFunLike.{max u2 u1, max u2 u1, max u2 u1} (RelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{max u2 u1, max u2 u1} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : Prod.{u2, u1} α β) => LE.le.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β _inst_1 _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : Prod.{u1, u2} β α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : Prod.{u1, u2} β α) => LE.le.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instLEProd.{u1, u2} β α _inst_2 _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.prodComm.{u2, u1} α β _inst_1 _inst_2)) (Prod.swap.{u2, u1} α β)
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_prod_comm OrderIso.coe_prodCommₓ'. -/
 @[simp]
 theorem coe_prodComm : ⇑(prodComm : α × β ≃o β × α) = Prod.swap :=
@@ -1460,7 +1460,7 @@ def dualDual : α ≃o αᵒᵈᵒᵈ :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (OrderDual.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.dualDual.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
+  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual OrderIso.coe_dualDualₓ'. -/
 @[simp]
 theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
@@ -1471,7 +1471,7 @@ theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (ᾰ : OrderDual.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α)) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
+  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual_symm OrderIso.coe_dualDual_symmₓ'. -/
 @[simp]
 theorem coe_dualDual_symm : ⇑(dualDual α).symm = ofDual ∘ ofDual :=
@@ -1484,7 +1484,7 @@ variable {α}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (OrderDual.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.dualDual.{u1} α _inst_1))) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (fun (_x : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) (OrderDual.toDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => OrderDual.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.dualDual.{u1} α _inst_1) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (fun (_x : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) (OrderDual.toDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_apply OrderIso.dualDual_applyₓ'. -/
 @[simp]
 theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
@@ -1495,7 +1495,7 @@ theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α)) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)))) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => α) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
 Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_symm_apply OrderIso.dualDual_symm_applyₓ'. -/
 @[simp]
 theorem dualDual_symm_apply (a : αᵒᵈᵒᵈ) : (dualDual α).symm a = ofDual (ofDual a) :=
@@ -1514,7 +1514,7 @@ variable [LE α] [LE β] [LE γ]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e y)) (LE.le.{u1} α _inst_1 x y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) y)) (LE.le.{u2} α _inst_1 x y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : α}, Iff (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e y)) (LE.le.{u2} α _inst_1 x y)
 Case conversion may be inaccurate. Consider using '#align order_iso.le_iff_le OrderIso.le_iff_leₓ'. -/
 @[simp]
 theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
@@ -1525,7 +1525,7 @@ theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u1} α _inst_1 x (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y)) (LE.le.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x) y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))) y)) (LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x) y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 x (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y)) (LE.le.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.le_symm_apply OrderIso.le_symm_applyₓ'. -/
 theorem le_symm_apply (e : α ≃o β) {x : α} {y : β} : x ≤ e.symm y ↔ e x ≤ y :=
   e.rel_symm_apply
@@ -1535,7 +1535,7 @@ theorem le_symm_apply (e : α ≃o β) {x : α} {y : β} : x ≤ e.symm y ↔ e
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : LE.{u2} β] (e : OrderIso.{u1, u2} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u1} α _inst_1 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α _inst_2 _inst_1) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β _inst_2) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u2} α β _inst_1 _inst_2 e) y) x) (LE.le.{u2} β _inst_2 y (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 _inst_2) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β _inst_2)) e x))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) y) _inst_1 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} β α)) (RelEmbedding.toEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e))) y) x) (LE.le.{u1} β _inst_2 y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : LE.{u1} β] (e : OrderIso.{u2, u1} α β _inst_1 _inst_2) {x : α} {y : β}, Iff (LE.le.{u2} α _inst_1 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u2, u1} α β _inst_1 _inst_2 e) y) x) (LE.le.{u1} β _inst_2 y (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β _inst_2 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x))
 Case conversion may be inaccurate. Consider using '#align order_iso.symm_apply_le OrderIso.symm_apply_leₓ'. -/
 theorem symm_apply_le (e : α ≃o β) {x : α} {y : β} : e.symm y ≤ x ↔ y ≤ e x :=
   e.symm_apply_rel
@@ -1549,7 +1549,7 @@ variable [Preorder α] [Preorder β] [Preorder γ]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.monotone OrderIso.monotoneₓ'. -/
 protected theorem monotone (e : α ≃o β) : Monotone e :=
   e.toOrderEmbedding.Monotone
@@ -1559,7 +1559,7 @@ protected theorem monotone (e : α ≃o β) : Monotone e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), StrictMono.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), StrictMono.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.strict_mono OrderIso.strictMonoₓ'. -/
 protected theorem strictMono (e : α ≃o β) : StrictMono e :=
   e.toOrderEmbedding.StrictMono
@@ -1569,7 +1569,7 @@ protected theorem strictMono (e : α ≃o β) : StrictMono e :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) y)) (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) {x : α} {y : α}, Iff (LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e y)) (LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x y)
 Case conversion may be inaccurate. Consider using '#align order_iso.lt_iff_lt OrderIso.lt_iff_ltₓ'. -/
 @[simp]
 theorem lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
@@ -1587,7 +1587,7 @@ def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416))) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e x)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_applyₓ'. -/
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
@@ -1617,7 +1617,7 @@ def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9613 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9615 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9613 x._@.Mathlib.Order.Hom.Basic._hyg.9615) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9635 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9637 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9635 x._@.Mathlib.Order.Hom.Basic._hyg.9637)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9613 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9615 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9613 x._@.Mathlib.Order.Hom.Basic._hyg.9615) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9635 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9637 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9635 x._@.Mathlib.Order.Hom.Basic._hyg.9637) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9613 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9615 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9613 x._@.Mathlib.Order.Hom.Basic._hyg.9615) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9635 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9637 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9635 x._@.Mathlib.Order.Hom.Basic._hyg.9637) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) (x : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9614 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9616 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9614 x._@.Mathlib.Order.Hom.Basic._hyg.9616) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9636 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9638 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9636 x._@.Mathlib.Order.Hom.Basic._hyg.9638))) e x)
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_applyₓ'. -/
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
@@ -1629,7 +1629,7 @@ theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9696 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9698 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9696 x._@.Mathlib.Order.Hom.Basic._hyg.9698) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9718 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9720 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9718 x._@.Mathlib.Order.Hom.Basic._hyg.9720)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9696 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9698 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9696 x._@.Mathlib.Order.Hom.Basic._hyg.9698) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9718 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9720 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9718 x._@.Mathlib.Order.Hom.Basic._hyg.9720) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9697 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9699 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9697 x._@.Mathlib.Order.Hom.Basic._hyg.9699) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9719 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9721 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9719 x._@.Mathlib.Order.Hom.Basic._hyg.9721)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9697 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9699 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9697 x._@.Mathlib.Order.Hom.Basic._hyg.9699) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9719 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9721 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9719 x._@.Mathlib.Order.Hom.Basic._hyg.9721) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symmₓ'. -/
 @[simp]
 theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
@@ -1655,7 +1655,7 @@ theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9822 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9824 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9822 x._@.Mathlib.Order.Hom.Basic._hyg.9824) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9844 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9846 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9844 x._@.Mathlib.Order.Hom.Basic._hyg.9846)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9823 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9825 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9823 x._@.Mathlib.Order.Hom.Basic._hyg.9825) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9845 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9847 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9845 x._@.Mathlib.Order.Hom.Basic._hyg.9847)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
@@ -1725,7 +1725,7 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toLE.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) a) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (α -> β) (Function.instEmbeddingLikeEmbedding.{succ u1, succ (max u2 u1)} β (α -> β))) (RelEmbedding.toEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10437 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10437 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10437 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))))) (Function.const.{succ u1, succ u2} β α)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (β -> α -> β) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α -> β) (RelHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (RelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10438 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))) (Function.const.{succ u1, succ u2} β α)
 Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_applyₓ'. -/
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
@@ -1751,7 +1751,7 @@ def toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) : α
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
 Case conversion may be inaccurate. Consider using '#align equiv.coe_to_order_iso Equiv.coe_toOrderIsoₓ'. -/
 @[simp]
 theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
@@ -1806,7 +1806,7 @@ section LatticeIsos
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x x') -> (forall (y' : β), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y y') -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x x') -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y y') -> (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x x') -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y y') -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.map_bot' OrderIso.map_bot'ₓ'. -/
 theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x ≤ x')
     (hy : ∀ y', y ≤ y') : f x = y :=
@@ -1820,7 +1820,7 @@ theorem OrderIso.map_bot' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α _inst_1] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_3))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α _inst_1] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (Bot.bot.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) _inst_2)) _inst_4))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α _inst_1] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Bot.bot.{u2} α (OrderBot.toBot.{u2} α _inst_1 _inst_3))) (Bot.bot.{u1} β (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_bot OrderIso.map_botₓ'. -/
 theorem OrderIso.map_bot [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (f : α ≃o β) : f ⊥ = ⊥ :=
   f.map_bot' (fun _ => bot_le) fun _ => bot_le
@@ -1830,7 +1830,7 @@ theorem OrderIso.map_bot [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u1} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) y' y) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x) y)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y' y) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) y)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))) {x : α} {y : β}, (forall (x' : α), LE.le.{u2} α _inst_1 x' x) -> (forall (y' : β), LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) y' y) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) y)
 Case conversion may be inaccurate. Consider using '#align order_iso.map_top' OrderIso.map_top'ₓ'. -/
 theorem OrderIso.map_top' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ x', x' ≤ x)
     (hy : ∀ y', y' ≤ y) : f x = y :=
@@ -1841,7 +1841,7 @@ theorem OrderIso.map_top' [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α _inst_1] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] (f : OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β _inst_1 (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α _inst_1) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_3))) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_4))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α _inst_1] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (Top.top.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) _inst_2)) _inst_4))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LE.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α _inst_1] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] (f : OrderIso.{u2, u1} α β _inst_1 (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Top.top.{u2} α (OrderTop.toTop.{u2} α _inst_1 _inst_3))) (Top.top.{u1} β (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_4))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_top OrderIso.map_topₓ'. -/
 theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (f : α ≃o β) : f ⊤ = ⊤ :=
   f.dual.map_bot
@@ -1851,7 +1851,7 @@ theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.map_inf_le OrderEmbedding.map_inf_leₓ'. -/
 theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : α ↪o β) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
@@ -1862,7 +1862,7 @@ theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2))) (Sup.sup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2))) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.le_map_sup OrderEmbedding.le_map_supₓ'. -/
 theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ↪o β) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
@@ -1873,7 +1873,7 @@ theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} β (SemilatticeInf.toInf.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_inf OrderIso.map_infₓ'. -/
 theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
@@ -1887,7 +1887,7 @@ theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (Sup.sup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (Sup.sup.{u1} β (SemilatticeSup.toSup.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_sup OrderIso.map_supₓ'. -/
 theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
@@ -1898,7 +1898,7 @@ theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b))
 Case conversion may be inaccurate. Consider using '#align disjoint.map_order_iso Disjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(disjoint on f) a b` -/
 theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
@@ -1912,7 +1912,7 @@ theorem Disjoint.map_orderIso [SemilatticeInf α] [OrderBot α] [SemilatticeInf
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.map_order_iso Codisjoint.map_orderIsoₓ'. -/
 /-- Note that this goal could also be stated `(codisjoint on f) a b` -/
 theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
@@ -1926,7 +1926,7 @@ theorem Codisjoint.map_orderIso [SemilatticeSup α] [OrderTop α] [SemilatticeSu
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))), Iff (Disjoint.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))))) f b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) b)) (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))), Iff (Disjoint.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b)) (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align disjoint_map_order_iso_iff disjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β]
@@ -1939,7 +1939,7 @@ theorem disjoint_map_orderIso_iff [SemilatticeInf α] [OrderBot α] [Semilattice
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))), Iff (Codisjoint.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))))) f b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) b)) (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] {a : α} {b : α} (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))), Iff (Codisjoint.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f b)) (Codisjoint.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_map_order_iso_iff codisjoint_map_orderIso_iffₓ'. -/
 @[simp]
 theorem codisjoint_map_orderIso_iff [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β]
@@ -1967,7 +1967,7 @@ protected def toDualTopEquiv [LE α] : WithBot αᵒᵈ ≃o (WithTop α)ᵒᵈ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (a : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithBot.toDualTopEquiv.{u1} α _inst_1))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_coe WithBot.toDualTopEquiv_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_coe [LE α] (a : α) :
@@ -1979,7 +1979,7 @@ theorem toDualTopEquiv_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithTop.{u1} α)) -> (WithBot.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (a : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_symm_coe WithBot.toDualTopEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_symm_coe [LE α] (a : α) :
@@ -1991,7 +1991,7 @@ theorem toDualTopEquiv_symm_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasBot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasBot.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithBot.toDualTopEquiv.{u1} α _inst_1))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithBot.toDualTopEquiv.{u1} α _inst_1) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_bot WithBot.toDualTopEquiv_botₓ'. -/
 @[simp]
 theorem toDualTopEquiv_bot [LE α] : WithBot.toDualTopEquiv (⊥ : WithBot αᵒᵈ) = ⊥ :=
@@ -2002,7 +2002,7 @@ theorem toDualTopEquiv_bot [LE α] : WithBot.toDualTopEquiv (⊥ : WithBot αᵒ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithTop.{u1} α)) -> (WithBot.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasBot.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasBot.{u1} (OrderDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)))) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))) (Bot.bot.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))) (WithBot.bot.{u1} (OrderDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Bot.bot.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.bot.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.bot.{u1} (OrderDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_symm_bot WithBot.toDualTopEquiv_symm_botₓ'. -/
 @[simp]
 theorem toDualTopEquiv_symm_bot [LE α] : WithBot.toDualTopEquiv.symm (⊥ : (WithTop α)ᵒᵈ) = ⊥ :=
@@ -2013,7 +2013,7 @@ theorem toDualTopEquiv_symm_bot [LE α] : WithBot.toDualTopEquiv.symm (⊥ : (Wi
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) => (WithBot.{u1} (OrderDual.{u1} α)) -> (WithTop.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (a : WithBot.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithBot.toDualTopEquiv.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} (OrderDual.{u1} α)) => WithTop.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} (OrderDual.{u1} α)) => WithTop.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_bot.coe_to_dual_top_equiv_eq WithBot.coe_toDualTopEquiv_eqₓ'. -/
 theorem coe_toDualTopEquiv_eq [LE α] :
     (WithBot.toDualTopEquiv : WithBot αᵒᵈ → (WithTop α)ᵒᵈ) = toDual ∘ WithBot.ofDual :=
@@ -2040,7 +2040,7 @@ protected def toDualBotEquiv [LE α] : WithTop αᵒᵈ ≃o (WithBot α)ᵒᵈ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (a : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithTop.toDualBotEquiv.{u1} α _inst_1))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_coe WithTop.toDualBotEquiv_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_coe [LE α] (a : α) :
@@ -2052,7 +2052,7 @@ theorem toDualBotEquiv_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithBot.{u1} α)) -> (WithTop.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (a : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_symm_coe WithTop.toDualBotEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_symm_coe [LE α] (a : α) :
@@ -2064,7 +2064,7 @@ theorem toDualBotEquiv_symm_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasTop.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasTop.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithTop.toDualBotEquiv.{u1} α _inst_1))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithTop.toDualBotEquiv.{u1} α _inst_1) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_top WithTop.toDualBotEquiv_topₓ'. -/
 @[simp]
 theorem toDualBotEquiv_top [LE α] : WithTop.toDualBotEquiv (⊤ : WithTop αᵒᵈ) = ⊤ :=
@@ -2075,7 +2075,7 @@ theorem toDualBotEquiv_top [LE α] : WithTop.toDualBotEquiv (⊤ : WithTop αᵒ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithBot.{u1} α)) -> (WithTop.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasTop.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasTop.{u1} (OrderDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)))) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))) (Top.top.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))) (WithTop.top.{u1} (OrderDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Top.top.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.top.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)))) (Top.top.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.top.{u1} (OrderDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_symm_top WithTop.toDualBotEquiv_symm_topₓ'. -/
 @[simp]
 theorem toDualBotEquiv_symm_top [LE α] : WithTop.toDualBotEquiv.symm (⊤ : (WithBot α)ᵒᵈ) = ⊤ :=
@@ -2086,7 +2086,7 @@ theorem toDualBotEquiv_symm_top [LE α] : WithTop.toDualBotEquiv.symm (⊤ : (Wi
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) => (WithTop.{u1} (OrderDual.{u1} α)) -> (WithBot.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (a : WithTop.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithTop.toDualBotEquiv.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} (OrderDual.{u1} α)) => WithBot.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (RelHomClass.toFunLike.{u1, u1, u1} (RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} (OrderDual.{u1} α)) => WithBot.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_top.coe_to_dual_bot_equiv_eq WithTop.coe_toDualBotEquivₓ'. -/
 theorem coe_toDualBotEquiv [LE α] :
     (WithTop.toDualBotEquiv : WithTop αᵒᵈ → (WithBot α)ᵒᵈ) = toDual ∘ WithTop.ofDual :=
@@ -2187,7 +2187,7 @@ include f
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) -> (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) -> (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl OrderIso.isComplₓ'. -/
 theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
   ⟨h.1.map_orderIso _, h.2.map_orderIso _⟩
@@ -2197,7 +2197,7 @@ theorem OrderIso.isCompl {x y : α} (h : IsCompl x y) : IsCompl (f x) (f y) :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_3 x y) (IsCompl.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) _inst_4 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) (IsCompl.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) {x : α} {y : α}, Iff (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_3 x y) (IsCompl.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)) _inst_4 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f y))
 Case conversion may be inaccurate. Consider using '#align order_iso.is_compl_iff OrderIso.isCompl_iffₓ'. -/
 theorem OrderIso.isCompl_iff {x y : α} : IsCompl x y ↔ IsCompl (f x) (f y) :=
   ⟨f.IsCompl, fun h => f.symm_apply_apply x ▸ f.symm_apply_apply y ▸ f.symm.IsCompl h⟩
Diff
@@ -888,7 +888,7 @@ def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6399 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6399 x._@.Mathlib.Order.Hom.Basic._hyg.6401) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6421 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6421 x._@.Mathlib.Order.Hom.Basic._hyg.6423)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6399 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6399 x._@.Mathlib.Order.Hom.Basic._hyg.6401) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6421 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6421 x._@.Mathlib.Order.Hom.Basic._hyg.6423) f) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6395 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6397 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6395 x._@.Mathlib.Order.Hom.Basic._hyg.6397) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6417 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6419 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6417 x._@.Mathlib.Order.Hom.Basic._hyg.6419) f) x)
 Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_applyₓ'. -/
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
@@ -912,7 +912,7 @@ def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f x)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6498 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6498 x._@.Mathlib.Order.Hom.Basic._hyg.6500) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6520 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6520 x._@.Mathlib.Order.Hom.Basic._hyg.6522) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6494 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6496 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6494 x._@.Mathlib.Order.Hom.Basic._hyg.6496) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6516 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6518 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6516 x._@.Mathlib.Order.Hom.Basic._hyg.6518) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_applyₓ'. -/
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
@@ -975,7 +975,7 @@ protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) a)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6763 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6765 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6763 x._@.Mathlib.Order.Hom.Basic._hyg.6765) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6784 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6786 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6784 x._@.Mathlib.Order.Hom.Basic._hyg.6786) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6759 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6761 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6759 x._@.Mathlib.Order.Hom.Basic._hyg.6761) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6780 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6782 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6780 x._@.Mathlib.Order.Hom.Basic._hyg.6782) a)
 Case conversion may be inaccurate. Consider using '#align order_embedding.acc OrderEmbedding.accₓ'. -/
 protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
@@ -1104,7 +1104,7 @@ end RelHom
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (fun (_x : OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (RelHom.toOrderHom.{u1, u2} α β _inst_1 _inst_2 ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (coeBase.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelEmbedding.RelHom.hasCoe.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)))))) f)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7599 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7599 x._@.Mathlib.Order.Hom.Basic._hyg.7601) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7621 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7621 x._@.Mathlib.Order.Hom.Basic._hyg.7623)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7599 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7599 x._@.Mathlib.Order.Hom.Basic._hyg.7601) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7621 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7621 x._@.Mathlib.Order.Hom.Basic._hyg.7623) f)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7595 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7597 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7595 x._@.Mathlib.Order.Hom.Basic._hyg.7597) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7617 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7619 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7617 x._@.Mathlib.Order.Hom.Basic._hyg.7619)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7595 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7597 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7595 x._@.Mathlib.Order.Hom.Basic._hyg.7597) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7617 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7619 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7617 x._@.Mathlib.Order.Hom.Basic._hyg.7619) f)))
 Case conversion may be inaccurate. Consider using '#align rel_embedding.to_order_hom_injective RelEmbedding.toOrderHom_injectiveₓ'. -/
 theorem RelEmbedding.toOrderHom_injective
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) :
@@ -1587,7 +1587,7 @@ def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_applyₓ'. -/
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
@@ -1598,7 +1598,7 @@ theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} β α (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1))) (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symmₓ'. -/
 @[simp]
 theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT :=
@@ -1617,7 +1617,7 @@ def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9617 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9619 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9617 x._@.Mathlib.Order.Hom.Basic._hyg.9619) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9639 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9641 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9639 x._@.Mathlib.Order.Hom.Basic._hyg.9641)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9617 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9619 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9617 x._@.Mathlib.Order.Hom.Basic._hyg.9619) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9639 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9641 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9639 x._@.Mathlib.Order.Hom.Basic._hyg.9641) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9617 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9619 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9617 x._@.Mathlib.Order.Hom.Basic._hyg.9619) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9639 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9641 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9639 x._@.Mathlib.Order.Hom.Basic._hyg.9641) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9613 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9615 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9613 x._@.Mathlib.Order.Hom.Basic._hyg.9615) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9635 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9637 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9635 x._@.Mathlib.Order.Hom.Basic._hyg.9637)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9613 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9615 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9613 x._@.Mathlib.Order.Hom.Basic._hyg.9615) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9635 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9637 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9635 x._@.Mathlib.Order.Hom.Basic._hyg.9637) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9613 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9615 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9613 x._@.Mathlib.Order.Hom.Basic._hyg.9615) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9635 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9637 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9635 x._@.Mathlib.Order.Hom.Basic._hyg.9637) e)) x)
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_applyₓ'. -/
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
@@ -1629,7 +1629,7 @@ theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9700 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9702 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9700 x._@.Mathlib.Order.Hom.Basic._hyg.9702) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9722 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9724 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9722 x._@.Mathlib.Order.Hom.Basic._hyg.9724)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9700 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9702 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9700 x._@.Mathlib.Order.Hom.Basic._hyg.9702) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9722 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9724 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9722 x._@.Mathlib.Order.Hom.Basic._hyg.9724) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9696 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9698 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9696 x._@.Mathlib.Order.Hom.Basic._hyg.9698) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9718 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9720 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9718 x._@.Mathlib.Order.Hom.Basic._hyg.9720)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9696 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9698 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9696 x._@.Mathlib.Order.Hom.Basic._hyg.9698) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9718 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9720 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9718 x._@.Mathlib.Order.Hom.Basic._hyg.9720) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symmₓ'. -/
 @[simp]
 theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
@@ -1655,7 +1655,7 @@ theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9826 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9828 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9826 x._@.Mathlib.Order.Hom.Basic._hyg.9828) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9848 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9850 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9848 x._@.Mathlib.Order.Hom.Basic._hyg.9850)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9822 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9824 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9822 x._@.Mathlib.Order.Hom.Basic._hyg.9824) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9844 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9846 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9844 x._@.Mathlib.Order.Hom.Basic._hyg.9846)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9392 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9394 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9392 x._@.Mathlib.Order.Hom.Basic._hyg.9394) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9414 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9416 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9414 x._@.Mathlib.Order.Hom.Basic._hyg.9416)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
@@ -1725,7 +1725,7 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toLE.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) a) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (α -> β) (Function.instEmbeddingLikeEmbedding.{succ u1, succ (max u2 u1)} β (α -> β))) (RelEmbedding.toEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10441 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10441 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10441 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))))) (Function.const.{succ u1, succ u2} β α)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) a) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (α -> β) (Function.instEmbeddingLikeEmbedding.{succ u1, succ (max u2 u1)} β (α -> β))) (RelEmbedding.toEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10437 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10437 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10437 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))))) (Function.const.{succ u1, succ u2} β α)
 Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_applyₓ'. -/
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
Diff
@@ -194,7 +194,7 @@ Case conversion may be inaccurate. Consider using '#align map_inv_le_iff map_inv
 @[simp]
 theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a :=
   by
-  convert (map_le_map_iff _).symm
+  convert(map_le_map_iff _).symm
   exact (EquivLike.right_inv _ _).symm
 #align map_inv_le_iff map_inv_le_iff
 
@@ -207,7 +207,7 @@ Case conversion may be inaccurate. Consider using '#align le_map_inv_iff le_map_
 @[simp]
 theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b :=
   by
-  convert (map_le_map_iff _).symm
+  convert(map_le_map_iff _).symm
   exact (EquivLike.right_inv _ _).symm
 #align le_map_inv_iff le_map_inv_iff
 
@@ -236,7 +236,7 @@ Case conversion may be inaccurate. Consider using '#align map_inv_lt_iff map_inv
 @[simp]
 theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a :=
   by
-  convert (map_lt_map_iff _).symm
+  convert(map_lt_map_iff _).symm
   exact (EquivLike.right_inv _ _).symm
 #align map_inv_lt_iff map_inv_lt_iff
 
@@ -249,7 +249,7 @@ Case conversion may be inaccurate. Consider using '#align lt_map_inv_iff lt_map_
 @[simp]
 theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b :=
   by
-  convert (map_lt_map_iff _).symm
+  convert(map_lt_map_iff _).symm
   exact (EquivLike.right_inv _ _).symm
 #align lt_map_inv_iff lt_map_inv_iff
 
@@ -888,7 +888,7 @@ def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6295 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6297 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6295 x._@.Mathlib.Order.Hom.Basic._hyg.6297) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6317 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6319 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6317 x._@.Mathlib.Order.Hom.Basic._hyg.6319)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6295 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6297 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6295 x._@.Mathlib.Order.Hom.Basic._hyg.6297) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6317 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6319 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6317 x._@.Mathlib.Order.Hom.Basic._hyg.6319) f) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6399 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6399 x._@.Mathlib.Order.Hom.Basic._hyg.6401) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6421 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6421 x._@.Mathlib.Order.Hom.Basic._hyg.6423)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6399 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6401 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6399 x._@.Mathlib.Order.Hom.Basic._hyg.6401) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6421 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6423 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6421 x._@.Mathlib.Order.Hom.Basic._hyg.6423) f) x)
 Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_applyₓ'. -/
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
@@ -912,7 +912,7 @@ def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f x)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6394 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6396 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6394 x._@.Mathlib.Order.Hom.Basic._hyg.6396) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6416 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6418 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6416 x._@.Mathlib.Order.Hom.Basic._hyg.6418) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6498 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6500 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6498 x._@.Mathlib.Order.Hom.Basic._hyg.6500) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6520 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6522 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6520 x._@.Mathlib.Order.Hom.Basic._hyg.6522) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_applyₓ'. -/
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
@@ -975,7 +975,7 @@ protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) a)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6659 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6661 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6659 x._@.Mathlib.Order.Hom.Basic._hyg.6661) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6682 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6680 x._@.Mathlib.Order.Hom.Basic._hyg.6682) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6763 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6765 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6763 x._@.Mathlib.Order.Hom.Basic._hyg.6765) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6784 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6786 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6784 x._@.Mathlib.Order.Hom.Basic._hyg.6786) a)
 Case conversion may be inaccurate. Consider using '#align order_embedding.acc OrderEmbedding.accₓ'. -/
 protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
@@ -1104,7 +1104,7 @@ end RelHom
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (fun (_x : OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (RelHom.toOrderHom.{u1, u2} α β _inst_1 _inst_2 ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (coeBase.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelEmbedding.RelHom.hasCoe.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)))))) f)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7495 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7497 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7495 x._@.Mathlib.Order.Hom.Basic._hyg.7497) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7517 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7519 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7517 x._@.Mathlib.Order.Hom.Basic._hyg.7519)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7495 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7497 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7495 x._@.Mathlib.Order.Hom.Basic._hyg.7497) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7517 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7519 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7517 x._@.Mathlib.Order.Hom.Basic._hyg.7519) f)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7599 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7599 x._@.Mathlib.Order.Hom.Basic._hyg.7601) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7621 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7621 x._@.Mathlib.Order.Hom.Basic._hyg.7623)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7599 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7601 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7599 x._@.Mathlib.Order.Hom.Basic._hyg.7601) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7621 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7623 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7621 x._@.Mathlib.Order.Hom.Basic._hyg.7623) f)))
 Case conversion may be inaccurate. Consider using '#align rel_embedding.to_order_hom_injective RelEmbedding.toOrderHom_injectiveₓ'. -/
 theorem RelEmbedding.toOrderHom_injective
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) :
@@ -1587,7 +1587,7 @@ def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_applyₓ'. -/
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
@@ -1598,7 +1598,7 @@ theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} β α (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1))) (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symmₓ'. -/
 @[simp]
 theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT :=
@@ -1617,7 +1617,7 @@ def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9513 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9515 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9513 x._@.Mathlib.Order.Hom.Basic._hyg.9515) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9513 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9515 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9513 x._@.Mathlib.Order.Hom.Basic._hyg.9515) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9513 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9515 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9513 x._@.Mathlib.Order.Hom.Basic._hyg.9515) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9617 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9619 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9617 x._@.Mathlib.Order.Hom.Basic._hyg.9619) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9639 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9641 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9639 x._@.Mathlib.Order.Hom.Basic._hyg.9641)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9617 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9619 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9617 x._@.Mathlib.Order.Hom.Basic._hyg.9619) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9639 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9641 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9639 x._@.Mathlib.Order.Hom.Basic._hyg.9641) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9617 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9619 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9617 x._@.Mathlib.Order.Hom.Basic._hyg.9619) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9639 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9641 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9639 x._@.Mathlib.Order.Hom.Basic._hyg.9641) e)) x)
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_applyₓ'. -/
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
@@ -1629,7 +1629,7 @@ theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9596 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9598 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9596 x._@.Mathlib.Order.Hom.Basic._hyg.9598) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9618 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9618 x._@.Mathlib.Order.Hom.Basic._hyg.9620)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9596 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9598 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9596 x._@.Mathlib.Order.Hom.Basic._hyg.9598) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9618 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9618 x._@.Mathlib.Order.Hom.Basic._hyg.9620) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9700 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9702 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9700 x._@.Mathlib.Order.Hom.Basic._hyg.9702) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9722 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9724 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9722 x._@.Mathlib.Order.Hom.Basic._hyg.9724)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9700 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9702 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9700 x._@.Mathlib.Order.Hom.Basic._hyg.9702) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9722 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9724 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9722 x._@.Mathlib.Order.Hom.Basic._hyg.9724) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symmₓ'. -/
 @[simp]
 theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
@@ -1655,7 +1655,7 @@ theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9722 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9724 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9722 x._@.Mathlib.Order.Hom.Basic._hyg.9724) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9744 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9746 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9744 x._@.Mathlib.Order.Hom.Basic._hyg.9746)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9826 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9828 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9826 x._@.Mathlib.Order.Hom.Basic._hyg.9828) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9848 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9850 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9848 x._@.Mathlib.Order.Hom.Basic._hyg.9850)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9396 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9398 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9396 x._@.Mathlib.Order.Hom.Basic._hyg.9398) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9418 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9420 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9418 x._@.Mathlib.Order.Hom.Basic._hyg.9420)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
@@ -1682,7 +1682,7 @@ def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β
     map_rel_iff' := by
       intros
       apply le_iff_le_of_cmp_eq_cmp
-      convert (h _ _).symm
+      convert(h _ _).symm
       apply gf }
 #align order_iso.of_cmp_eq_cmp OrderIso.ofCmpEqCmp
 -/
@@ -1725,7 +1725,7 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toLE.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) a) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (α -> β) (Function.instEmbeddingLikeEmbedding.{succ u1, succ (max u2 u1)} β (α -> β))) (RelEmbedding.toEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10220 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10220 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10220 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))))) (Function.const.{succ u1, succ u2} β α)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) a) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (α -> β) (Function.instEmbeddingLikeEmbedding.{succ u1, succ (max u2 u1)} β (α -> β))) (RelEmbedding.toEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10441 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10441 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10441 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))))) (Function.const.{succ u1, succ u2} β α)
 Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_applyₓ'. -/
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
Diff
@@ -820,7 +820,7 @@ theorem dual_id : (OrderHom.id : α →o α).dual = OrderHom.id :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (g : OrderHom.{u2, u3} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) => (OrderHom.{u1, u3} α γ _inst_1 _inst_3) -> (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3))) (OrderHom.dual.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) => (OrderHom.{u2, u3} β γ _inst_2 _inst_3) -> (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3))) (OrderHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) => (OrderHom.{u1, u2} α β _inst_1 _inst_2) -> (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2))) (OrderHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u1, u3} α β _inst_1 _inst_2) => OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} β γ _inst_2 _inst_3) (f : OrderHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} α γ _inst_1 _inst_3) => OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u3, u2} β γ _inst_2 _inst_3) => OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3))) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : OrderHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u3} α β _inst_1 _inst_2) => OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2))) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
 Case conversion may be inaccurate. Consider using '#align order_hom.dual_comp OrderHom.dual_compₓ'. -/
 @[simp]
 theorem dual_comp (g : β →o γ) (f : α →o β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -838,7 +838,7 @@ theorem symm_dual_id : OrderHom.dual.symm OrderHom.id = (OrderHom.id : α →o 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : Preorder.{u3} γ] (g : OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (f : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) => (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) -> (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (OrderHom.{u1, u3} α γ _inst_1 _inst_3) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3) g f)) (OrderHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) => (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) -> (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u2, u3} β γ _inst_2 _inst_3) (OrderHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.preorder.{u2} β _inst_2) (OrderDual.preorder.{u3} γ _inst_3)) (OrderHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) => (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) -> (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 _inst_2) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} β _inst_2)) (OrderHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (f : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (fun (_x : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => OrderHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u3} β] [_inst_3 : Preorder.{u2} γ] (g : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (f : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderHom.{u1, u2} α γ _inst_1 _inst_3) (OrderHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (OrderHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3) g f)) (OrderHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (fun (_x : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) => OrderHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderHom.{u3, u2} β γ _inst_2 _inst_3) (OrderHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.preorder.{u3} β _inst_2) (OrderDual.preorder.{u2} γ _inst_3)) (OrderHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (fun (_x : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) => OrderHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (OrderHom.{u1, u3} α β _inst_1 _inst_2) (OrderHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.preorder.{u1} α _inst_1) (OrderDual.preorder.{u3} β _inst_2)) (OrderHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
 Case conversion may be inaccurate. Consider using '#align order_hom.symm_dual_comp OrderHom.symm_dual_compₓ'. -/
 @[simp]
 theorem symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ) :
@@ -888,7 +888,7 @@ def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))} {x : α}, Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)))) f x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6223 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6225 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6223 x._@.Mathlib.Order.Hom.Basic._hyg.6225) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6245 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6247 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6245 x._@.Mathlib.Order.Hom.Basic._hyg.6247)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6223 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6225 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6223 x._@.Mathlib.Order.Hom.Basic._hyg.6225) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6245 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6247 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6245 x._@.Mathlib.Order.Hom.Basic._hyg.6247) f) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6295 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6297 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6295 x._@.Mathlib.Order.Hom.Basic._hyg.6297) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6317 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6319 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6317 x._@.Mathlib.Order.Hom.Basic._hyg.6319)} {x : α}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.orderEmbeddingOfLTEmbedding.{u2, u1} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6295 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6297 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.6295 x._@.Mathlib.Order.Hom.Basic._hyg.6297) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6317 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6319 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) x._@.Mathlib.Order.Hom.Basic._hyg.6317 x._@.Mathlib.Order.Hom.Basic._hyg.6319) f) x)
 Case conversion may be inaccurate. Consider using '#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_applyₓ'. -/
 @[simp]
 theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
@@ -912,7 +912,7 @@ def ltEmbedding : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f x)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6320 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6322 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6320 x._@.Mathlib.Order.Hom.Basic._hyg.6322) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6342 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6344 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6342 x._@.Mathlib.Order.Hom.Basic._hyg.6344) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6394 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6396 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6394 x._@.Mathlib.Order.Hom.Basic._hyg.6396) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6416 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.6418 : β) => LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6416 x._@.Mathlib.Order.Hom.Basic._hyg.6418) (OrderEmbedding.ltEmbedding.{u1, u2} α β _inst_1 _inst_2 f)) x) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x)
 Case conversion may be inaccurate. Consider using '#align order_embedding.lt_embedding_apply OrderEmbedding.ltEmbedding_applyₓ'. -/
 @[simp]
 theorem ltEmbedding_apply (x : α) : f.ltEmbedding x = f x :=
@@ -975,7 +975,7 @@ protected theorem strictMono : StrictMono f := fun x y => f.lt_iff_lt.2
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a)) -> (Acc.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) a)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6575 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6577 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6575 x._@.Mathlib.Order.Hom.Basic._hyg.6577) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6595 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6597 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6595 x._@.Mathlib.Order.Hom.Basic._hyg.6597) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (a : α), (Acc.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6659 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (x._@.Mathlib.Order.Hom.Basic._hyg.6661 : (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) => LT.lt.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.6659 x._@.Mathlib.Order.Hom.Basic._hyg.6661) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a)) -> (Acc.{succ u1} α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.6680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.6682 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.6680 x._@.Mathlib.Order.Hom.Basic._hyg.6682) a)
 Case conversion may be inaccurate. Consider using '#align order_embedding.acc OrderEmbedding.accₓ'. -/
 protected theorem acc (a : α) : Acc (· < ·) (f a) → Acc (· < ·) a :=
   f.ltEmbedding.Acc a
@@ -1104,7 +1104,7 @@ end RelHom
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] (f : RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))), Function.Injective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (fun (_x : OrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2) (RelHom.toOrderHom.{u1, u2} α β _inst_1 _inst_2 ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (coeBase.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelEmbedding.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelHom.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (RelEmbedding.RelHom.hasCoe.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)))))) f)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7403 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7405 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7403 x._@.Mathlib.Order.Hom.Basic._hyg.7405) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7425 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7427 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7425 x._@.Mathlib.Order.Hom.Basic._hyg.7427)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7403 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7405 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7403 x._@.Mathlib.Order.Hom.Basic._hyg.7405) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7425 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7427 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7425 x._@.Mathlib.Order.Hom.Basic._hyg.7427) f)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : Preorder.{u1} β] (f : RelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7495 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7497 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7495 x._@.Mathlib.Order.Hom.Basic._hyg.7497) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7517 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7519 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7517 x._@.Mathlib.Order.Hom.Basic._hyg.7519)), Function.Injective.{succ u2, succ u1} α β (OrderHom.toFun.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) _inst_2 (RelHom.toOrderHom.{u2, u1} α β _inst_1 _inst_2 (RelEmbedding.toRelHom.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7495 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.7497 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.7495 x._@.Mathlib.Order.Hom.Basic._hyg.7497) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.7517 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.7519 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.7517 x._@.Mathlib.Order.Hom.Basic._hyg.7519) f)))
 Case conversion may be inaccurate. Consider using '#align rel_embedding.to_order_hom_injective RelEmbedding.toOrderHom_injectiveₓ'. -/
 theorem RelEmbedding.toOrderHom_injective
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) :
@@ -1460,7 +1460,7 @@ def dualDual : α ≃o αᵒᵈᵒᵈ :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (α -> (OrderDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (OrderDual.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.dualDual.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
+  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (OrderDual.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.dualDual.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} α (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual OrderIso.coe_dualDualₓ'. -/
 @[simp]
 theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
@@ -1471,7 +1471,7 @@ theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} ((OrderDual.{u1} (OrderDual.{u1} α)) -> α) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (ᾰ : OrderDual.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α)) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
+  forall (α : Type.{u1}) [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (ᾰ : OrderDual.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α)) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1))))) (Function.comp.{succ u1, succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α) α (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α))))
 Case conversion may be inaccurate. Consider using '#align order_iso.coe_dual_dual_symm OrderIso.coe_dualDual_symmₓ'. -/
 @[simp]
 theorem coe_dualDual_symm : ⇑(dualDual α).symm = ofDual ∘ ofDual :=
@@ -1484,7 +1484,7 @@ variable {α}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => α -> (OrderDual.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (LE.le.{u1} α _inst_1) (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.dualDual.{u1} α _inst_1) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) => (OrderDual.{u1} α) -> (OrderDual.{u1} (OrderDual.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) (OrderDual.{u1} (OrderDual.{u1} α))) (OrderDual.toDual.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (OrderDual.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.dualDual.{u1} α _inst_1))) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a))) ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (fun (_x : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) => OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a))) (OrderDual.toDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => OrderDual.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α))) α (OrderDual.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} α (OrderDual.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.dualDual.{u1} α _inst_1))) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (fun (_x : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) => OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a))) (OrderDual.toDual.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_apply OrderIso.dualDual_applyₓ'. -/
 @[simp]
 theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
@@ -1495,7 +1495,7 @@ theorem dualDual_apply (a : α) : dualDual α a = toDual (toDual a) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) _inst_1) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> α) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} α _inst_1)) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) => (OrderDual.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α)) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)))) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : OrderDual.{u1} (OrderDual.{u1} α)), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (OrderDual.{u1} α)) => α) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α) (OrderDual.{u1} (OrderDual.{u1} α)) α (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) α)) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (OrderDual.{u1} α)) α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α _inst_1 x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} α (OrderDual.{u1} (OrderDual.{u1} α)) _inst_1 (OrderDual.instLEOrderDual.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderIso.dualDual.{u1} α _inst_1)))) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.{u1} (OrderDual.{u1} α)) (fun (_x : OrderDual.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} α)) (OrderDual.ofDual.{u1} (OrderDual.{u1} α)) a))
 Case conversion may be inaccurate. Consider using '#align order_iso.dual_dual_symm_apply OrderIso.dualDual_symm_applyₓ'. -/
 @[simp]
 theorem dualDual_symm_apply (a : αᵒᵈᵒᵈ) : (dualDual α).symm a = ofDual (ofDual a) :=
@@ -1587,7 +1587,7 @@ def toRelIsoLT (e : α ≃o β) : ((· < ·) : α → α → Prop) ≃r ((· < 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2))) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9147 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9149 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9147 x._@.Mathlib.Order.Hom.Basic._hyg.9149) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9169 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9171 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9169 x._@.Mathlib.Order.Hom.Basic._hyg.9171) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9147 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9149 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9147 x._@.Mathlib.Order.Hom.Basic._hyg.9149) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9169 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9171 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9169 x._@.Mathlib.Order.Hom.Basic._hyg.9171) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) x)
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_apply OrderIso.toRelIsoLT_applyₓ'. -/
 @[simp]
 theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
@@ -1598,7 +1598,7 @@ theorem toRelIsoLT_apply (e : α ≃o β) (x : α) : e.toRelIsoLT x = e x :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} β α (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1))) (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) (LT.lt.{u2} β (Preorder.toLT.{u2} β _inst_2)) (OrderIso.toRelIsoLT.{u1, u2} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u2, u1} β α _inst_2 _inst_1 (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9169 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9171 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9169 x._@.Mathlib.Order.Hom.Basic._hyg.9171) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9147 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9149 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9147 x._@.Mathlib.Order.Hom.Basic._hyg.9149)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9147 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9149 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9147 x._@.Mathlib.Order.Hom.Basic._hyg.9149) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9169 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9171 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9169 x._@.Mathlib.Order.Hom.Basic._hyg.9171) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (RelIso.{u1, u2} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294)) (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316) (OrderIso.toRelIsoLT.{u2, u1} α β _inst_1 _inst_2 e)) (OrderIso.toRelIsoLT.{u1, u2} β α _inst_2 _inst_1 (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_symm OrderIso.toRelIsoLT_symmₓ'. -/
 @[simp]
 theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT :=
@@ -1617,7 +1617,7 @@ def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e) x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (fun (_x : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) e x)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9366 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9368 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9366 x._@.Mathlib.Order.Hom.Basic._hyg.9368) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9388 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9390 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9388 x._@.Mathlib.Order.Hom.Basic._hyg.9390)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9366 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9368 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9366 x._@.Mathlib.Order.Hom.Basic._hyg.9368) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9388 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9390 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9388 x._@.Mathlib.Order.Hom.Basic._hyg.9390) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9366 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9368 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9366 x._@.Mathlib.Order.Hom.Basic._hyg.9368) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9388 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9390 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9388 x._@.Mathlib.Order.Hom.Basic._hyg.9390) e)) x)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9513 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9515 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9513 x._@.Mathlib.Order.Hom.Basic._hyg.9515) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537)) (x : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e))) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9513 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9515 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9513 x._@.Mathlib.Order.Hom.Basic._hyg.9515) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9513 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9515 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9513 x._@.Mathlib.Order.Hom.Basic._hyg.9515) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9535 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9537 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9535 x._@.Mathlib.Order.Hom.Basic._hyg.9537) e)) x)
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_apply OrderIso.ofRelIsoLT_applyₓ'. -/
 @[simp]
 theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
@@ -1629,7 +1629,7 @@ theorem ofRelIsoLT_apply {α β} [PartialOrder α] [PartialOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u2, u1} β α _inst_5 _inst_4 (RelIso.symm.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5))) e))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9447 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9449 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9447 x._@.Mathlib.Order.Hom.Basic._hyg.9449) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9469 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9471 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9469 x._@.Mathlib.Order.Hom.Basic._hyg.9471)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9447 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9449 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9447 x._@.Mathlib.Order.Hom.Basic._hyg.9449) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9469 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9471 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9469 x._@.Mathlib.Order.Hom.Basic._hyg.9471) e))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9596 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9598 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9596 x._@.Mathlib.Order.Hom.Basic._hyg.9598) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9618 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9618 x._@.Mathlib.Order.Hom.Basic._hyg.9620)), Eq.{max (succ u2) (succ u1)} (OrderIso.{u1, u2} β α (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4))) (OrderIso.symm.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) (OrderIso.ofRelIsoLT.{u1, u2} β α _inst_5 _inst_4 (RelIso.symm.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9596 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9598 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9596 x._@.Mathlib.Order.Hom.Basic._hyg.9598) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9618 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9620 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9618 x._@.Mathlib.Order.Hom.Basic._hyg.9620) e))
 Case conversion may be inaccurate. Consider using '#align order_iso.of_rel_iso_lt_symm OrderIso.ofRelIsoLT_symmₓ'. -/
 @[simp]
 theorem ofRelIsoLT_symm {α β} [PartialOrder α] [PartialOrder β]
@@ -1655,7 +1655,7 @@ theorem ofRelIsoLT_toRelIsoLT {α β} [PartialOrder α] [PartialOrder β] (e : 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : PartialOrder.{u1} α] [_inst_5 : PartialOrder.{u2} β] (e : RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))), Eq.{max (succ u1) (succ u2)} (RelIso.{u1, u2} α β (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_4))) (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_5)))) (OrderIso.toRelIsoLT.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_4) (PartialOrder.toPreorder.{u2} β _inst_5) (OrderIso.ofRelIsoLT.{u1, u2} α β _inst_4 _inst_5 e)) e
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9573 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9575 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9573 x._@.Mathlib.Order.Hom.Basic._hyg.9575) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9595 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9597 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9595 x._@.Mathlib.Order.Hom.Basic._hyg.9597)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9147 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9149 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9147 x._@.Mathlib.Order.Hom.Basic._hyg.9149) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9169 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9171 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9169 x._@.Mathlib.Order.Hom.Basic._hyg.9171)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : PartialOrder.{u2} α] [_inst_5 : PartialOrder.{u1} β] (e : RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9722 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9724 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9722 x._@.Mathlib.Order.Hom.Basic._hyg.9724) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9744 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9746 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9744 x._@.Mathlib.Order.Hom.Basic._hyg.9746)), Eq.{max (succ u2) (succ u1)} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9292 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.9294 : α) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_4)) x._@.Mathlib.Order.Hom.Basic._hyg.9292 x._@.Mathlib.Order.Hom.Basic._hyg.9294) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.9314 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.9316 : β) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.9314 x._@.Mathlib.Order.Hom.Basic._hyg.9316)) (OrderIso.toRelIsoLT.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_4) (PartialOrder.toPreorder.{u1} β _inst_5) (OrderIso.ofRelIsoLT.{u2, u1} α β _inst_4 _inst_5 e)) e
 Case conversion may be inaccurate. Consider using '#align order_iso.to_rel_iso_lt_of_rel_iso_lt OrderIso.toRelIsoLT_ofRelIsoLTₓ'. -/
 @[simp]
 theorem toRelIsoLT_ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
@@ -1725,7 +1725,7 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_4 : Unique.{succ u1} α] [_inst_5 : Preorder.{u2} β], Eq.{max (succ u1) (succ u2)} ((fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ u2) (succ (max u1 u2))} (OrderIso.{u2, max u1 u2} β (α -> β) (Preorder.toLE.{u2} β _inst_5) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5))) (fun (_x : RelIso.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) => β -> α -> β) (RelIso.hasCoeToFun.{u2, max u1 u2} β (α -> β) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_5)) (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)))) (OrderIso.symm.{max u1 u2, u2} (α -> β) β (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_5)) (Preorder.toLE.{u2} β _inst_5) (OrderIso.funUnique.{u1, u2} α β _inst_4 _inst_5))) (Function.const.{succ u2, succ u1} β α)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) a) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (α -> β) (Function.instEmbeddingLikeEmbedding.{succ u1, succ (max u2 u1)} β (α -> β))) (RelEmbedding.toEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10063 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10063 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10063 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))))) (Function.const.{succ u1, succ u2} β α)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_4 : Unique.{succ u2} α] [_inst_5 : Preorder.{u1} β], Eq.{max (succ u2) (succ u1)} (forall (a : β), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) a) (FunLike.coe.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α -> β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ (max u2 u1)), succ u1, succ (max u2 u1)} (Function.Embedding.{succ u1, succ (max u2 u1)} β (α -> β)) β (α -> β) (Function.instEmbeddingLikeEmbedding.{succ u1, succ (max u2 u1)} β (α -> β))) (RelEmbedding.toEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10220 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, max u2 u1} β (α -> β) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_5) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α -> β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α -> β) => LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10220 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{max u2 u1, u1} (α -> β) β (Pi.hasLe.{u2, u1} α (fun (a._@.Mathlib.Order.Hom.Basic._hyg.10220 : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_5)) (Preorder.toLE.{u1} β _inst_5) (OrderIso.funUnique.{u2, u1} α β _inst_4 _inst_5))))) (Function.const.{succ u1, succ u2} β α)
 Case conversion may be inaccurate. Consider using '#align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_applyₓ'. -/
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
@@ -1751,7 +1751,7 @@ def toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) : α
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)
 Case conversion may be inaccurate. Consider using '#align equiv.coe_to_order_iso Equiv.coe_toOrderIsoₓ'. -/
 @[simp]
 theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
@@ -1763,7 +1763,7 @@ theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.sy
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : Equiv.{succ u1, succ u2} α β) (h₁ : Monotone.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e)) (h₂ : Monotone.{u2, u1} β α _inst_2 _inst_1 (coeFn.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2), max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} β α) (fun (_x : Equiv.{succ u2, succ u1} β α) => β -> α) (Equiv.hasCoeToFun.{succ u2, succ u1} β α) (Equiv.symm.{succ u1, succ u2} α β e))), Eq.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} α β) (RelIso.toEquiv.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (Equiv.toOrderIso.{u1, u2} α β _inst_1 _inst_2 e h₁ h₂)) e
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} α β) (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) e
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] (e : Equiv.{succ u2, succ u1} α β) (h₁ : Monotone.{u2, u1} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} α β) e)) (h₂ : Monotone.{u1, u2} β α _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Equiv.{succ u1, succ u2} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u2} β α) (Equiv.symm.{succ u2, succ u1} α β e))), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u2, succ u1} α β) (RelIso.toEquiv.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (Equiv.toOrderIso.{u2, u1} α β _inst_1 _inst_2 e h₁ h₂)) e
 Case conversion may be inaccurate. Consider using '#align equiv.to_order_iso_to_equiv Equiv.toOrderIso_toEquivₓ'. -/
 @[simp]
 theorem toOrderIso_toEquiv (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
@@ -1967,7 +1967,7 @@ protected def toDualTopEquiv [LE α] : WithBot αᵒᵈ ≃o (WithTop α)ᵒᵈ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (a : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithBot.toDualTopEquiv.{u1} α _inst_1))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (a : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithBot.toDualTopEquiv.{u1} α _inst_1))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_coe WithBot.toDualTopEquiv_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_coe [LE α] (a : α) :
@@ -1979,7 +1979,7 @@ theorem toDualTopEquiv_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithTop.{u1} α)) -> (WithBot.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (a : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (a : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (fun (_x : OrderDual.{u1} (WithTop.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithTop.{u1} α)) => WithBot.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) (WithBot.toDualTopEquiv.{u1} α _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α)) (WithTop.some.{u1} α a))) (WithBot.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align with_bot.to_dual_top_equiv_symm_coe WithBot.toDualTopEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualTopEquiv_symm_coe [LE α] (a : α) :
@@ -2013,7 +2013,7 @@ theorem toDualTopEquiv_symm_bot [LE α] : WithBot.toDualTopEquiv.symm (⊥ : (Wi
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) => (WithBot.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithTop.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.hasLe.{u1} (WithTop.{u1} α) (WithTop.hasLe.{u1} α _inst_1)))) (WithBot.toDualTopEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) => (WithTop.{u1} α) -> (OrderDual.{u1} (WithTop.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) => (WithBot.{u1} (OrderDual.{u1} α)) -> (WithTop.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (a : WithBot.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithBot.toDualTopEquiv.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithBot.{u1} (OrderDual.{u1} α)) => WithTop.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (a : WithBot.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithBot.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithTop.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α))) (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithBot.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithTop.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithBot.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithBot.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithBot.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithTop.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithTop.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithTop.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithTop.{u1} α) (WithTop.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithBot.toDualTopEquiv.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (WithTop.{u1} α) (fun (_x : WithTop.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} α) => OrderDual.{u1} (WithTop.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} α) (OrderDual.{u1} (WithTop.{u1} α))) (OrderDual.toDual.{u1} (WithTop.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.{u1} (OrderDual.{u1} α)) (fun (_x : WithBot.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} (OrderDual.{u1} α)) => WithTop.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} (OrderDual.{u1} α)) (WithTop.{u1} α)) (WithBot.ofDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_bot.coe_to_dual_top_equiv_eq WithBot.coe_toDualTopEquiv_eqₓ'. -/
 theorem coe_toDualTopEquiv_eq [LE α] :
     (WithBot.toDualTopEquiv : WithBot αᵒᵈ → (WithTop α)ᵒᵈ) = toDual ∘ WithBot.ofDual :=
@@ -2040,7 +2040,7 @@ protected def toDualBotEquiv [LE α] : WithTop αᵒᵈ ≃o (WithBot α)ᵒᵈ
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (a : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithTop.toDualBotEquiv.{u1} α _inst_1))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (a : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithTop.toDualBotEquiv.{u1} α _inst_1))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_coe WithTop.toDualBotEquiv_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_coe [LE α] (a : α) :
@@ -2052,7 +2052,7 @@ theorem toDualBotEquiv_coe [LE α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) => (OrderDual.{u1} (WithBot.{u1} α)) -> (WithTop.{u1} (OrderDual.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)))) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (HasLiftT.mk.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (CoeTCₓ.coe.{succ u1, succ u1} (OrderDual.{u1} α) (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasCoeT.{u1} (OrderDual.{u1} α)))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (a : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (a : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) a) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (fun (_x : OrderDual.{u1} (WithBot.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : OrderDual.{u1} (WithBot.{u1} α)) => WithTop.{u1} (OrderDual.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α))) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) (WithTop.toDualBotEquiv.{u1} α _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α)) (WithBot.some.{u1} α a))) (WithTop.some.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a))
 Case conversion may be inaccurate. Consider using '#align with_top.to_dual_bot_equiv_symm_coe WithTop.toDualBotEquiv_symm_coeₓ'. -/
 @[simp]
 theorem toDualBotEquiv_symm_coe [LE α] (a : α) :
@@ -2086,7 +2086,7 @@ theorem toDualBotEquiv_symm_top [LE α] : WithTop.toDualBotEquiv.symm (⊤ : (Wi
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} ((fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (coeFn.{succ u1, succ u1} (OrderIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1))) (fun (_x : RelIso.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) => (WithTop.{u1} (OrderDual.{u1} α)) -> (OrderDual.{u1} (WithBot.{u1} α))) (RelIso.hasCoeToFun.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.hasLe.{u1} (OrderDual.{u1} α) (OrderDual.hasLe.{u1} α _inst_1))) (LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.hasLe.{u1} (WithBot.{u1} α) (WithBot.hasLe.{u1} α _inst_1)))) (WithTop.toDualBotEquiv.{u1} α _inst_1)) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (fun (_x : Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) => (WithBot.{u1} α) -> (OrderDual.{u1} (WithBot.{u1} α))) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) => (WithTop.{u1} (OrderDual.{u1} α)) -> (WithBot.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (a : WithTop.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithTop.toDualBotEquiv.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : WithTop.{u1} (OrderDual.{u1} α)) => WithBot.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
+  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α], Eq.{succ u1} (forall (a : WithTop.{u1} (OrderDual.{u1} α)), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : WithTop.{u1} (OrderDual.{u1} α)) => OrderDual.{u1} (WithBot.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α))) (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u1} (WithTop.{u1} (OrderDual.{u1} α)) (OrderDual.{u1} (WithBot.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : WithTop.{u1} (OrderDual.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : WithTop.{u1} (OrderDual.{u1} α)) => LE.le.{u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithTop.le.{u1} (OrderDual.{u1} α) (OrderDual.instLEOrderDual.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : OrderDual.{u1} (WithBot.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : OrderDual.{u1} (WithBot.{u1} α)) => LE.le.{u1} (OrderDual.{u1} (WithBot.{u1} α)) (OrderDual.instLEOrderDual.{u1} (WithBot.{u1} α) (WithBot.le.{u1} α _inst_1)) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (WithTop.toDualBotEquiv.{u1} α _inst_1)))) (Function.comp.{succ u1, succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (WithBot.{u1} α) (fun (_x : WithBot.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithBot.{u1} α) => OrderDual.{u1} (WithBot.{u1} α)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithBot.{u1} α) (OrderDual.{u1} (WithBot.{u1} α))) (OrderDual.toDual.{u1} (WithBot.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.{u1} (OrderDual.{u1} α)) (fun (_x : WithTop.{u1} (OrderDual.{u1} α)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : WithTop.{u1} (OrderDual.{u1} α)) => WithBot.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (WithTop.{u1} (OrderDual.{u1} α)) (WithBot.{u1} α)) (WithTop.ofDual.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align with_top.coe_to_dual_bot_equiv_eq WithTop.coe_toDualBotEquivₓ'. -/
 theorem coe_toDualBotEquiv [LE α] :
     (WithTop.toDualBotEquiv : WithTop αᵒᵈ → (WithBot α)ᵒᵈ) = toDual ∘ WithTop.ofDual :=
Diff
@@ -1019,32 +1019,32 @@ protected def withTopMap (f : α ↪o β) : WithTop α ↪o WithTop β :=
 #align order_embedding.with_top_map OrderEmbedding.withTopMap
 -/
 
-#print OrderEmbedding.ofMapLeIff /-
+#print OrderEmbedding.ofMapLEIff /-
 /-- To define an order embedding from a partial order to a preorder it suffices to give a function
 together with a proof that it satisfies `f a ≤ f b ↔ a ≤ b`.
 -/
-def ofMapLeIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀ a b, f a ≤ f b ↔ a ≤ b) :
+def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀ a b, f a ≤ f b ↔ a ≤ b) :
     α ↪o β :=
   RelEmbedding.ofMapRelIff f hf
-#align order_embedding.of_map_le_iff OrderEmbedding.ofMapLeIff
+#align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIff
 -/
 
-/- warning: order_embedding.coe_of_map_le_iff -> OrderEmbedding.coe_ofMapLeIff is a dubious translation:
+/- warning: order_embedding.coe_of_map_le_iff -> OrderEmbedding.coe_ofMapLEIff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toLE.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) (OrderEmbedding.ofMapLeIff.{u1, u2} α β _inst_3 _inst_4 f h)) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : PartialOrder.{u1} α] [_inst_4 : Preorder.{u2} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4) (f a) (f b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) a b)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3)) (Preorder.toLE.{u2} β _inst_4)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_4))) (OrderEmbedding.ofMapLEIff.{u1, u2} α β _inst_3 _inst_4 f h)) f
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (OrderEmbedding.ofMapLeIff.{u2, u1} α β _inst_3 _inst_4 f h))) f
-Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLeIffₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : PartialOrder.{u2} α] [_inst_4 : Preorder.{u1} β] {f : α -> β} (h : forall (a : α) (b : α), Iff (LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) (f a) (f b)) (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) a b)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_3)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_4) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (OrderEmbedding.ofMapLEIff.{u2, u1} α β _inst_3 _inst_4 f h))) f
+Case conversion may be inaccurate. Consider using '#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIffₓ'. -/
 @[simp]
-theorem coe_ofMapLeIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
-    ⇑(ofMapLeIff f h) = f :=
+theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
+    ⇑(ofMapLEIff f h) = f :=
   rfl
-#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLeIff
+#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIff
 
 #print OrderEmbedding.ofStrictMono /-
 /-- A strictly monotone map from a linear order is an order embedding. -/
 def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : StrictMono f) : α ↪o β :=
-  ofMapLeIff f fun _ _ => h.le_iff_le
+  ofMapLEIff f fun _ _ => h.le_iff_le
 #align order_embedding.of_strict_mono OrderEmbedding.ofStrictMono
 -/
 
Diff
@@ -1849,9 +1849,9 @@ theorem OrderIso.map_top [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (
 
 /- warning: order_embedding.map_inf_le -> OrderEmbedding.map_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (HasInf.inf.{u2} α (SemilatticeInf.toHasInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (HasInf.inf.{u2} α (SemilatticeInf.toHasInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (HasInf.inf.{u2} α (SemilatticeInf.toHasInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (HasInf.inf.{u2} α (SemilatticeInf.toHasInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) (HasInf.inf.{u2} α (SemilatticeInf.toHasInf.{u2} α _inst_1) x y)) (HasInf.inf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toHasInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) _inst_2))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.map_inf_le OrderEmbedding.map_inf_leₓ'. -/
 theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : α ↪o β) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
@@ -1860,9 +1860,9 @@ theorem OrderEmbedding.map_inf_le [SemilatticeInf α] [SemilatticeInf β] (f : 
 
 /- warning: order_embedding.le_map_sup -> OrderEmbedding.le_map_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2))) (HasSup.sup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α _inst_1) x y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), LE.le.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2))) (Sup.sup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y))
 Case conversion may be inaccurate. Consider using '#align order_embedding.le_map_sup OrderEmbedding.le_map_supₓ'. -/
 theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ↪o β) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
@@ -1871,9 +1871,9 @@ theorem OrderEmbedding.le_map_sup [SemilatticeSup α] [SemilatticeSup β] (f : 
 
 /- warning: order_iso.map_inf -> OrderIso.map_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (HasInf.inf.{u2} α (SemilatticeInf.toHasInf.{u2} α _inst_1) x y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (HasInf.inf.{u2} α (SemilatticeInf.toHasInf.{u2} α _inst_1) x y)) (HasInf.inf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toHasInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (Inf.inf.{u2} α (SemilatticeInf.toInf.{u2} α _inst_1) x y)) (Inf.inf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_inf OrderIso.map_infₓ'. -/
 theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
@@ -1885,9 +1885,9 @@ theorem OrderIso.map_inf [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β
 
 /- warning: order_iso.map_sup -> OrderIso.map_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (x : α) (y : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) f y))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α _inst_1) x y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α _inst_1) x y)) (HasSup.sup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2)))) (x : α) (y : α), Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α _inst_1) x y)) (Sup.sup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) x) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) y))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_sup OrderIso.map_supₓ'. -/
 theorem OrderIso.map_sup [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=

Changes in mathlib4

mathlib3
mathlib4
feat(Order/Hom): prove disjoint from order embedding (#12223)

This adds 3 lemmas which state that if you have an order embedding f such that f a₁ and f a₂ are disjoint/codisjoint/complements, then the same holds for a₁ and a₂.

Motivation: For a project described here, I wanted to know that if two Lie ideals are complements as submodules, then they are complements as Lie ideals too. I realized that the correct level of generality was probably in the Order.Hom.Basic file.

Caveats: I am very much open to golfing/naming/redesign suggestions. Within the modified file, there was already a Disjoint.map_orderIso result, but it requires an OrderIso (not just a one-way embedding) and it requires a SemilatticeInf (whereas my version just uses PartialOrder).

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -747,6 +747,34 @@ lemma coe_ofIsEmpty [IsEmpty α] : (ofIsEmpty : α ↪o β) = (isEmptyElim : α
 
 end OrderEmbedding
 
+section Disjoint
+
+variable [PartialOrder α] [PartialOrder β] (f : OrderEmbedding α β)
+
+/-- If the images by an order embedding of two elements are disjoint,
+then they are themselves disjoint. -/
+lemma Disjoint.of_orderEmbedding [OrderBot α] [OrderBot β] {a₁ a₂ : α} :
+    Disjoint (f a₁) (f a₂) → Disjoint a₁ a₂ := by
+  intro h x h₁ h₂
+  rw [← f.le_iff_le] at h₁ h₂ ⊢
+  calc
+    f x ≤ ⊥ := h h₁ h₂
+    _ ≤ f ⊥ := bot_le
+
+/-- If the images by an order embedding of two elements are codisjoint,
+then they are themselves codisjoint. -/
+lemma Codisjoint.of_orderEmbedding [OrderTop α] [OrderTop β] {a₁ a₂ : α} :
+    Codisjoint (f a₁) (f a₂) → Codisjoint a₁ a₂ :=
+  Disjoint.of_orderEmbedding (α := αᵒᵈ) (β := βᵒᵈ) f.dual
+
+/-- If the images by an order embedding of two elements are complements,
+then they are themselves complements. -/
+lemma IsCompl.of_orderEmbedding [BoundedOrder α] [BoundedOrder β] {a₁ a₂ : α} :
+    IsCompl (f a₁) (f a₂) → IsCompl a₁ a₂ := fun ⟨hd, hcd⟩ ↦
+  ⟨Disjoint.of_orderEmbedding f hd, Codisjoint.of_orderEmbedding f hcd⟩
+
+end Disjoint
+
 section RelHom
 
 variable [PartialOrder α] [Preorder β]
Feat: Add some operations and lemmas on closure operators/order homs (#10348)

This adds conjugation of order homomorphisms & closure operators by order isos, as well as two new extensionality lemmas for closure operators, a proof that the inf of a closed family is closed, and that the closure of an element is the GLB of all closed elements larger than it. There is also includes some minor refactoring, moving Set.image_sSup from Mathlib/Order/Hom/CompleteLattice to Mathlib/Data/Set/Lattice and adding some common lemmas for EquivLike-things to OrderIso.

Diff
@@ -935,6 +935,40 @@ theorem symm_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) : (e₁.trans e₂).s
   rfl
 #align order_iso.symm_trans OrderIso.symm_trans
 
+@[simp]
+theorem self_trans_symm (e : α ≃o β) : e.trans e.symm = OrderIso.refl α :=
+  RelIso.self_trans_symm e
+
+@[simp]
+theorem symm_trans_self (e : α ≃o β) : e.symm.trans e = OrderIso.refl β :=
+  RelIso.symm_trans_self e
+
+/-- An order isomorphism between the domains and codomains of two prosets of
+order homomorphisms gives an order isomorphism between the two function prosets. -/
+@[simps apply symm_apply]
+def arrowCongr {α β γ δ} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ]
+    (f : α ≃o γ) (g : β ≃o δ) : (α →o β) ≃o (γ →o δ) where
+  toFun  p := .comp g <| .comp p f.symm
+  invFun p := .comp g.symm <| .comp p f
+  left_inv p := DFunLike.coe_injective <| by
+    change (g.symm ∘ g) ∘ p ∘ (f.symm ∘ f) = p
+    simp only [← DFunLike.coe_eq_coe_fn, ← OrderIso.coe_trans, Function.id_comp,
+               OrderIso.self_trans_symm, OrderIso.coe_refl, Function.comp_id]
+  right_inv p := DFunLike.coe_injective <| by
+    change (g ∘ g.symm) ∘ p ∘ (f ∘ f.symm) = p
+    simp only [← DFunLike.coe_eq_coe_fn, ← OrderIso.coe_trans, Function.id_comp,
+               OrderIso.symm_trans_self, OrderIso.coe_refl, Function.comp_id]
+  map_rel_iff' {p q} := by
+    simp only [Equiv.coe_fn_mk, OrderHom.le_def, OrderHom.comp_coe,
+               OrderHomClass.coe_coe, Function.comp_apply, map_le_map_iff]
+    exact Iff.symm f.forall_congr_left'
+
+/-- If `α` and `β` are order-isomorphic then the two orders of order-homomorphisms
+from `α` and `β` to themselves are order-isomorphic. -/
+@[simps! apply symm_apply]
+def conj {α β} [Preorder α] [Preorder β] (f : α ≃o β) : (α →o α) ≃ (β →o β) :=
+  arrowCongr f f
+
 /-- `Prod.swap` as an `OrderIso`. -/
 def prodComm : α × β ≃o β × α where
   toEquiv := Equiv.prodComm α β
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -1147,7 +1147,6 @@ end Equiv
 namespace StrictMono
 
 variable [LinearOrder α] [Preorder β]
-
 variable (f : α → β) (h_mono : StrictMono f) (h_surj : Function.Surjective f)
 
 /-- A strictly monotone function with a right inverse is an order isomorphism. -/
chore: classify todo porting notes (#11216)

Classifies by adding issue number #11215 to porting notes claiming "TODO".

Diff
@@ -237,7 +237,7 @@ protected theorem mono (f : α →o β) : Monotone f :=
 projection directly instead. -/
 def Simps.coe (f : α →o β) : α → β := f
 
-/- Porting note: TODO: all other DFunLike classes use `apply` instead of `coe`
+/- Porting note (#11215): TODO: all other DFunLike classes use `apply` instead of `coe`
 for the projection names. Maybe we should change this. -/
 initialize_simps_projections OrderHom (toFun → coe)
 
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -826,7 +826,7 @@ protected theorem surjective (e : α ≃o β) : Function.Surjective e :=
   e.toEquiv.surjective
 #align order_iso.surjective OrderIso.surjective
 
--- Porting note: simp can prove this
+-- Porting note (#10618): simp can prove this
 -- @[simp]
 theorem apply_eq_iff_eq (e : α ≃o β) {x y : α} : e x = e y ↔ x = y :=
   e.toEquiv.apply_eq_iff_eq
@@ -988,7 +988,7 @@ section LE
 
 variable [LE α] [LE β] [LE γ]
 
---@[simp] porting note: simp can prove it
+--@[simp] Porting note (#10618): simp can prove it
 theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
   e.map_rel_iff
 #align order_iso.le_iff_le OrderIso.le_iff_le
refactor(Data/FunLike): use unbundled inheritance from FunLike (#8386)

The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike is EquivLike, since that has a custom coe_injective' field that is easier to implement. All other classes should take FunLike or EquivLike as a parameter.

Zulip thread

Important changes

Previously, morphism classes would be Type-valued and extend FunLike:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  extends FunLike F A B :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

After this PR, they should be Prop-valued and take FunLike as a parameter:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  [FunLike F A B] : Prop :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

(Note that A B stay marked as outParam even though they are not purely required to be so due to the FunLike parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam is slightly faster.)

Similarly, MyEquivClass should take EquivLike as a parameter.

As a result, every mention of [MyHomClass F A B] should become [FunLike F A B] [MyHomClass F A B].

Remaining issues

Slower (failing) search

While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul is more expensive. This is due to suboptimal processing of arguments. For example:

variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)

theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y

example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _

Before this PR, applying map_mul f gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Since M and N are out_params, [MulHomClass F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found.

After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Now [FunLike F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found, before trying MulHomClass F M N which fails. Since the Mul hierarchy is very big, this can be slow to fail, especially when there is no such Mul instance.

A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N] because MulHomClass fails or succeeds much faster than the others.

As a consequence, the simpNF linter is much slower since by design it tries and fails to apply many map_ lemmas. The same issue occurs a few times in existing calls to simp [map_mul], where map_mul is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.

simp not firing sometimes

This affects map_smulₛₗ and related definitions. For simp lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw can find every argument to map_smulₛₗ successfully but simp can't: leanprover/lean4#3701.

Missing instances due to unification failing

Especially in the category theory library, we might sometimes have a type A which is also accessible as a synonym (Bundled A hA).1. Instance synthesis doesn't always work if we have f : A →* B but x * y : (Bundled A hA).1 or vice versa. This seems to be mostly fixed by keeping A B as outParams in MulHomClass F A B. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1 instead of using the syntax in the discrimination tree.)

Workaround for issues

The timeouts can be worked around for now by specifying which map_mul we mean, either as map_mul f for some explicit f, or as e.g. MonoidHomClass.map_mul.

map_smulₛₗ not firing as simp lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulₛₗ a simp lemma instead of the generic map_smulₛₗ. Writing simp [map_smulₛₗ _] also works.

Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>

Diff
@@ -108,15 +108,14 @@ infixl:25 " ≃o " => OrderIso
 section
 
 /-- `OrderHomClass F α b` asserts that `F` is a type of `≤`-preserving morphisms. -/
-abbrev OrderHomClass (F : Type*) (α β : outParam (Type*)) [LE α] [LE β] :=
+abbrev OrderHomClass (F : Type*) (α β : outParam Type*) [LE α] [LE β] [FunLike F α β] :=
   RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop)
 #align order_hom_class OrderHomClass
 
 /-- `OrderIsoClass F α β` states that `F` is a type of order isomorphisms.
 
 You should extend this class when you extend `OrderIso`. -/
-class OrderIsoClass (F : Type*) (α β : outParam (Type*)) [LE α] [LE β] extends
-  EquivLike F α β where
+class OrderIsoClass (F α β : Type*) [LE α] [LE β] [EquivLike F α β] : Prop where
   /-- An order isomorphism respects `≤`. -/
   map_le_map_iff (f : F) {a b : α} : f a ≤ f b ↔ a ≤ b
 #align order_iso_class OrderIsoClass
@@ -130,24 +129,25 @@ attribute [simp] map_le_map_iff
 /-- Turn an element of a type `F` satisfying `OrderIsoClass F α β` into an actual
 `OrderIso`. This is declared as the default coercion from `F` to `α ≃o β`. -/
 @[coe]
-def OrderIsoClass.toOrderIso [LE α] [LE β] [OrderIsoClass F α β] (f : F) : α ≃o β :=
+def OrderIsoClass.toOrderIso [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) :
+    α ≃o β :=
   { EquivLike.toEquiv f with map_rel_iff' := map_le_map_iff f }
 
 /-- Any type satisfying `OrderIsoClass` can be cast into `OrderIso` via
 `OrderIsoClass.toOrderIso`. -/
-instance [LE α] [LE β] [OrderIsoClass F α β] : CoeTC F (α ≃o β) :=
+instance [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] : CoeTC F (α ≃o β) :=
   ⟨OrderIsoClass.toOrderIso⟩
 
 -- See note [lower instance priority]
 instance (priority := 100) OrderIsoClass.toOrderHomClass [LE α] [LE β]
-    [OrderIsoClass F α β] : OrderHomClass F α β :=
-  { EquivLike.toEmbeddingLike with
+    [EquivLike F α β] [OrderIsoClass F α β] : OrderHomClass F α β :=
+  { EquivLike.toEmbeddingLike (E := F) with
     map_rel := fun f _ _ => (map_le_map_iff f).2 }
 #align order_iso_class.to_order_hom_class OrderIsoClass.toOrderHomClass
 
 namespace OrderHomClass
 
-variable [Preorder α] [Preorder β] [OrderHomClass F α β]
+variable [Preorder α] [Preorder β] [FunLike F α β] [OrderHomClass F α β]
 
 protected theorem monotone (f : F) : Monotone f := fun _ _ => map_rel f
 #align order_hom_class.monotone OrderHomClass.monotone
@@ -173,25 +173,25 @@ section OrderIsoClass
 
 section LE
 
-variable [LE α] [LE β] [OrderIsoClass F α β]
+variable [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β]
 
 -- Porting note: needed to add explicit arguments to map_le_map_iff
 @[simp]
 theorem map_inv_le_iff (f : F) {a : α} {b : β} : EquivLike.inv f b ≤ a ↔ b ≤ f a := by
-  convert (@map_le_map_iff _ _ _ _ _ _ f (EquivLike.inv f b) a).symm
+  convert (map_le_map_iff f (a := EquivLike.inv f b) (b := a)).symm
   exact (EquivLike.right_inv f _).symm
 #align map_inv_le_iff map_inv_le_iff
 
 -- Porting note: needed to add explicit arguments to map_le_map_iff
 @[simp]
 theorem le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ EquivLike.inv f b ↔ f a ≤ b := by
-  convert (@map_le_map_iff _ _ _ _ _ _ f a (EquivLike.inv f b)).symm
+  convert (map_le_map_iff f (a := a) (b := EquivLike.inv f b)).symm
   exact (EquivLike.right_inv _ _).symm
 #align le_map_inv_iff le_map_inv_iff
 
 end LE
 
-variable [Preorder α] [Preorder β] [OrderIsoClass F α β]
+variable [Preorder α] [Preorder β] [EquivLike F α β] [OrderIsoClass F α β]
 
 theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
   lt_iff_lt_of_le_iff_le' (map_le_map_iff f) (map_le_map_iff f)
@@ -215,15 +215,12 @@ namespace OrderHom
 
 variable [Preorder α] [Preorder β] [Preorder γ] [Preorder δ]
 
-instance : OrderHomClass (α →o β) α β where
+instance : FunLike (α →o β) α β where
   coe := toFun
   coe_injective' f g h := by cases f; cases g; congr
-  map_rel f _ _ h := f.monotone' h
 
-/-- Helper instance for when there's too many metavariables to apply the coercion via `DFunLike`
-directly. -/
-instance : CoeFun (α →o β) fun _ => α → β :=
-  ⟨DFunLike.coe⟩
+instance : OrderHomClass (α →o β) α β where
+  map_rel f _ _ h := f.monotone' h
 
 @[simp] theorem coe_mk (f : α → β) (hf : Monotone f) : ⇑(mk f hf) = f := rfl
 #align order_hom.coe_fun_mk OrderHom.coe_mk
@@ -255,7 +252,7 @@ theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
 
 @[simp] theorem coe_eq (f : α →o β) : OrderHomClass.toOrderHom f = f := rfl
 
-@[simp] theorem _root_.OrderHomClass.coe_coe {F} [OrderHomClass F α β] (f : F) :
+@[simp] theorem _root_.OrderHomClass.coe_coe {F} [FunLike F α β] [OrderHomClass F α β] (f : F) :
     ⇑(f : α →o β) = f :=
   rfl
 
@@ -783,7 +780,7 @@ section LE
 
 variable [LE α] [LE β] [LE γ]
 
-instance : OrderIsoClass (α ≃o β) α β where
+instance : EquivLike (α ≃o β) α β where
   coe f := f.toFun
   inv f := f.invFun
   left_inv f := f.left_inv
@@ -792,6 +789,8 @@ instance : OrderIsoClass (α ≃o β) α β where
     obtain ⟨⟨_, _⟩, _⟩ := f
     obtain ⟨⟨_, _⟩, _⟩ := g
     congr
+
+instance : OrderIsoClass (α ≃o β) α β where
   map_le_map_iff f _ _ := f.map_rel_iff'
 
 @[simp]
@@ -1087,7 +1086,8 @@ def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β
 
 /-- To show that `f : α →o β` and `g : β →o α` make up an order isomorphism it is enough to show
     that `g` is the inverse of `f`-/
-def ofHomInv {F G : Type*} [OrderHomClass F α β] [OrderHomClass G β α] (f : F) (g : G)
+def ofHomInv {F G : Type*} [FunLike F α β] [OrderHomClass F α β] [FunLike G β α]
+    [OrderHomClass G β α] (f : F) (g : G)
     (h₁ : (f : α →o β).comp (g : β →o α) = OrderHom.id)
     (h₂ : (g : β →o α).comp (f : α →o β) = OrderHom.id) :
     α ≃o β where
chore(*): rename FunLike to DFunLike (#9785)

This prepares for the introduction of a non-dependent synonym of FunLike, which helps a lot with keeping #8386 readable.

This is entirely search-and-replace in 680197f combined with manual fixes in 4145626, e900597 and b8428f8. The commands that generated this change:

sed -i 's/\bFunLike\b/DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoFunLike\b/toDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/import Mathlib.Data.DFunLike/import Mathlib.Data.FunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bHom_FunLike\b/Hom_DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean     
sed -i 's/\binstFunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bfunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoo many metavariables to apply `fun_like.has_coe_to_fun`/too many metavariables to apply `DFunLike.hasCoeToFun`/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean

Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>

Diff
@@ -220,10 +220,10 @@ instance : OrderHomClass (α →o β) α β where
   coe_injective' f g h := by cases f; cases g; congr
   map_rel f _ _ h := f.monotone' h
 
-/-- Helper instance for when there's too many metavariables to apply the coercion via `FunLike`
+/-- Helper instance for when there's too many metavariables to apply the coercion via `DFunLike`
 directly. -/
 instance : CoeFun (α →o β) fun _ => α → β :=
-  ⟨FunLike.coe⟩
+  ⟨DFunLike.coe⟩
 
 @[simp] theorem coe_mk (f : α → β) (hf : Monotone f) : ⇑(mk f hf) = f := rfl
 #align order_hom.coe_fun_mk OrderHom.coe_mk
@@ -240,7 +240,7 @@ protected theorem mono (f : α →o β) : Monotone f :=
 projection directly instead. -/
 def Simps.coe (f : α →o β) : α → β := f
 
-/- Porting note: TODO: all other FunLike classes use `apply` instead of `coe`
+/- Porting note: TODO: all other DFunLike classes use `apply` instead of `coe`
 for the projection names. Maybe we should change this. -/
 initialize_simps_projections OrderHom (toFun → coe)
 
@@ -250,7 +250,7 @@ initialize_simps_projections OrderHom (toFun → coe)
 -- See library note [partially-applied ext lemmas]
 @[ext]
 theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
-  FunLike.coe_injective h
+  DFunLike.coe_injective h
 #align order_hom.ext OrderHom.ext
 
 @[simp] theorem coe_eq (f : α →o β) : OrderHomClass.toOrderHom f = f := rfl
@@ -276,7 +276,7 @@ theorem coe_copy (f : α →o β) (f' : α → β) (h : f' = f) : (f.copy f' h)
 #align order_hom.coe_copy OrderHom.coe_copy
 
 theorem copy_eq (f : α →o β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
-  FunLike.ext' h
+  DFunLike.ext' h
 #align order_hom.copy_eq OrderHom.copy_eq
 
 /-- The identity function as bundled monotone function. -/
@@ -802,7 +802,7 @@ theorem toFun_eq_coe {f : α ≃o β} : f.toFun = f :=
 -- See note [partially-applied ext lemmas]
 @[ext]
 theorem ext {f g : α ≃o β} (h : (f : α → β) = g) : f = g :=
-  FunLike.coe_injective h
+  DFunLike.coe_injective h
 #align order_iso.ext OrderIso.ext
 
 /-- Reinterpret an order isomorphism as an order embedding. -/
@@ -1093,8 +1093,8 @@ def ofHomInv {F G : Type*} [OrderHomClass F α β] [OrderHomClass G β α] (f :
     α ≃o β where
   toFun := f
   invFun := g
-  left_inv := FunLike.congr_fun h₂
-  right_inv := FunLike.congr_fun h₁
+  left_inv := DFunLike.congr_fun h₂
+  right_inv := DFunLike.congr_fun h₁
   map_rel_iff' := @fun a b =>
     ⟨fun h => by
       replace h := map_rel g h
feat(/Equiv/): Add symm_bijective lemmas next to symm_symms (#8444)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: lines <34025592+linesthatinterlace@users.noreply.github.com>

Diff
@@ -886,8 +886,11 @@ theorem symm_symm (e : α ≃o β) : e.symm.symm = e := by
   rfl
 #align order_iso.symm_symm OrderIso.symm_symm
 
-theorem symm_injective : Function.Injective (symm : α ≃o β → β ≃o α) := fun e e' h => by
-  rw [← e.symm_symm, h, e'.symm_symm]
+theorem symm_bijective : Function.Bijective (OrderIso.symm : (α ≃o β) → β ≃o α) :=
+  Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
+
+theorem symm_injective : Function.Injective (symm : α ≃o β → β ≃o α) :=
+  symm_bijective.injective
 #align order_iso.symm_injective OrderIso.symm_injective
 
 @[simp]
fix: correct precedence for coercion arrows (#8297)

The new precedences match coeNotation in core:

syntax:1024 (name := coeNotation) "↑" term:1024 : term

They also match the precedence in Lean 3.

Diff
@@ -709,7 +709,7 @@ def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀
 
 @[simp]
 theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
-    ⇑ofMapLEIff f h = f :=
+    ⇑(ofMapLEIff f h) = f :=
   rfl
 #align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIff
 
@@ -720,7 +720,7 @@ def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : Str
 
 @[simp]
 theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β} (h : StrictMono f) :
-    ⇑ofStrictMono f h = f :=
+    ⇑(ofStrictMono f h) = f :=
   rfl
 #align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMono
 
@@ -839,7 +839,7 @@ def refl (α : Type*) [LE α] : α ≃o α :=
 #align order_iso.refl OrderIso.refl
 
 @[simp]
-theorem coe_refl : ⇑refl α = id :=
+theorem coe_refl : ⇑(refl α) = id :=
   rfl
 #align order_iso.coe_refl OrderIso.coe_refl
 
@@ -902,7 +902,7 @@ def trans (e : α ≃o β) (e' : β ≃o γ) : α ≃o γ :=
 #align order_iso.trans OrderIso.trans
 
 @[simp]
-theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑e.trans e' = e' ∘ e :=
+theorem coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘ e :=
   rfl
 #align order_iso.coe_trans OrderIso.coe_trans
 
@@ -957,7 +957,7 @@ def dualDual : α ≃o αᵒᵈᵒᵈ :=
 #align order_iso.dual_dual OrderIso.dualDual
 
 @[simp]
-theorem coe_dualDual : ⇑dualDual α = toDual ∘ toDual :=
+theorem coe_dualDual : ⇑(dualDual α) = toDual ∘ toDual :=
   rfl
 #align order_iso.coe_dual_dual OrderIso.coe_dualDual
 
@@ -1129,7 +1129,7 @@ def toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) : α
 
 @[simp]
 theorem coe_toOrderIso (e : α ≃ β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
-    ⇑e.toOrderIso h₁ h₂ = e :=
+    ⇑(e.toOrderIso h₁ h₂) = e :=
   rfl
 #align equiv.coe_to_order_iso Equiv.coe_toOrderIso
 
style: shorten simps configurations (#8296)

Use .asFn and .lemmasOnly as simps configuration options.

For reference, these are defined here:

https://github.com/leanprover-community/mathlib4/blob/4055c8b471380825f07416b12cb0cf266da44d84/Mathlib/Tactic/Simps/Basic.lean#L843-L851

Diff
@@ -280,7 +280,7 @@ theorem copy_eq (f : α →o β) (f' : α → β) (h : f' = f) : f.copy f' h = f
 #align order_hom.copy_eq OrderHom.copy_eq
 
 /-- The identity function as bundled monotone function. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def id : α →o α :=
   ⟨_root_.id, monotone_id⟩
 #align order_hom.id OrderHom.id
@@ -336,7 +336,7 @@ theorem curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f
 #align order_hom.curry_symm_apply OrderHom.curry_symm_apply
 
 /-- The composition of two bundled monotone functions. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def comp (g : β →o γ) (f : α →o β) : α →o γ :=
   ⟨g ∘ f, g.mono.comp f.mono⟩
 #align order_hom.comp OrderHom.comp
@@ -348,7 +348,7 @@ theorem comp_mono ⦃g₁ g₂ : β →o γ⦄ (hg : g₁ ≤ g₂) ⦃f₁ f₂
 #align order_hom.comp_mono OrderHom.comp_mono
 
 /-- The composition of two bundled monotone functions, a fully bundled version. -/
-@[simps! (config := { fullyApplied := false })]
+@[simps! (config := .asFn)]
 def compₘ : (β →o γ) →o (α →o β) →o α →o γ :=
   curry ⟨fun f : (β →o γ) × (α →o β) => f.1.comp f.2, fun _ _ h => comp_mono h.1 h.2⟩
 #align order_hom.compₘ OrderHom.compₘ
@@ -367,7 +367,7 @@ theorem id_comp (f : α →o β) : comp id f = f := by
 #align order_hom.id_comp OrderHom.id_comp
 
 /-- Constant function bundled as an `OrderHom`. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def const (α : Type*) [Preorder α] {β : Type*} [Preorder β] : β →o α →o β where
   toFun b := ⟨Function.const α b, fun _ _ _ => le_rfl⟩
   monotone' _ _ h _ := h
@@ -478,7 +478,7 @@ def prodMap (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
 variable {ι : Type*} {π : ι → Type*} [∀ i, Preorder (π i)]
 
 /-- Evaluation of an unbundled function at a point (`Function.eval`) as an `OrderHom`. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def _root_.Pi.evalOrderHom (i : ι) : (∀ j, π j) →o π i :=
   ⟨Function.eval i, Function.monotone_eval i⟩
 #align pi.eval_order_hom Pi.evalOrderHom
@@ -486,7 +486,7 @@ def _root_.Pi.evalOrderHom (i : ι) : (∀ j, π j) →o π i :=
 
 /-- The "forgetful functor" from `α →o β` to `α → β` that takes the underlying function,
 is monotone. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def coeFnHom : (α →o β) →o α → β where
   toFun f := f
   monotone' _ _ h := h
@@ -495,7 +495,7 @@ def coeFnHom : (α →o β) →o α → β where
 
 /-- Function application `fun f => f a` (for fixed `a`) is a monotone function from the
 monotone function space `α →o β` to `β`. See also `Pi.evalOrderHom`.  -/
-@[simps! (config := { fullyApplied := false })]
+@[simps! (config := .asFn)]
 def apply (x : α) : (α →o β) →o β :=
   (Pi.evalOrderHom x).comp coeFnHom
 #align order_hom.apply OrderHom.apply
@@ -523,7 +523,7 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i where
 #align order_hom.pi_iso_symm_apply OrderHom.piIso_symm_apply
 
 /-- `Subtype.val` as a bundled monotone function.  -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def Subtype.val (p : α → Prop) : Subtype p →o α :=
   ⟨_root_.Subtype.val, fun _ _ h => h⟩
 #align order_hom.subtype.val OrderHom.Subtype.val
@@ -590,14 +590,14 @@ def dualIso (α β : Type*) [Preorder α] [Preorder β] : (α →o β) ≃o (α
 #align order_hom.dual_iso OrderHom.dualIso
 
 /-- Lift an order homomorphism `f : α →o β` to an order homomorphism `WithBot α →o WithBot β`. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 protected def withBotMap (f : α →o β) : WithBot α →o WithBot β :=
   ⟨WithBot.map f, f.mono.withBot_map⟩
 #align order_hom.with_bot_map OrderHom.withBotMap
 #align order_hom.with_bot_map_coe OrderHom.withBotMap_coe
 
 /-- Lift an order homomorphism `f : α →o β` to an order homomorphism `WithTop α →o WithTop β`. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 protected def withTopMap (f : α →o β) : WithTop α →o WithTop β :=
   ⟨WithTop.map f, f.mono.withTop_map⟩
 #align order_hom.with_top_map OrderHom.withTopMap
@@ -684,7 +684,7 @@ protected theorem wellFoundedGT [WellFoundedGT β] : WellFoundedGT α :=
   @OrderEmbedding.wellFoundedLT αᵒᵈ _ _ _ f.dual _
 
 /-- A version of `WithBot.map` for order embeddings. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
   { f.toEmbedding.optionMap with
     toFun := WithBot.map f,
@@ -693,7 +693,7 @@ protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
 #align order_embedding.with_bot_map_apply OrderEmbedding.withBotMap_apply
 
 /-- A version of `WithTop.map` for order embeddings. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 protected def withTopMap (f : α ↪o β) : WithTop α ↪o WithTop β :=
   { f.dual.withBotMap.dual with toFun := WithTop.map f }
 #align order_embedding.with_top_map OrderEmbedding.withTopMap
@@ -725,14 +725,14 @@ theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β}
 #align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMono
 
 /-- Embedding of a subtype into the ambient type as an `OrderEmbedding`. -/
-@[simps! (config := { fullyApplied := false })]
+@[simps! (config := .asFn)]
 def subtype (p : α → Prop) : Subtype p ↪o α :=
   ⟨Function.Embedding.subtype p, Iff.rfl⟩
 #align order_embedding.subtype OrderEmbedding.subtype
 #align order_embedding.subtype_apply OrderEmbedding.subtype_apply
 
 /-- Convert an `OrderEmbedding` to an `OrderHom`. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def toOrderHom {X Y : Type*} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y where
   toFun := f
   monotone' := f.monotone
@@ -760,7 +760,7 @@ variable (f : ((· < ·) : α → α → Prop) →r ((· < ·) : β → β → P
 
 /-- A bundled expression of the fact that a map between partial orders that is strictly monotone
 is weakly monotone. -/
-@[simps (config := { fullyApplied := false })]
+@[simps (config := .asFn)]
 def toOrderHom : α →o β where
   toFun := f
   monotone' := StrictMono.monotone fun _ _ => f.map_rel
@@ -1148,7 +1148,7 @@ variable [LinearOrder α] [Preorder β]
 variable (f : α → β) (h_mono : StrictMono f) (h_surj : Function.Surjective f)
 
 /-- A strictly monotone function with a right inverse is an order isomorphism. -/
-@[simps (config := { fullyApplied := False })]
+@[simps (config := .asFn)]
 def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α ≃o β :=
   { OrderEmbedding.ofStrictMono f h_mono with
     toFun := f,
chore(Order): restore missing simp attribute (#8162)

This lemma was marked simp in mathlib3, and the attribute seems to have gone missing during the port.

Diff
@@ -645,7 +645,6 @@ theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
   f.ltEmbedding.map_rel_iff
 #align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_lt
 
-@[simp]
 theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
   f.injective.eq_iff
 #align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eq
feat: Birkhoff representation theorem (#7417)

Any finite distributive lattice is isomorphic to the lattice of lower sets of its irreducible elements (and to the lattice of irreducible elements of its lower sets). In particular, it can be represented as a sublattice of some powerset algebra.

Diff
@@ -740,6 +740,15 @@ def toOrderHom {X Y : Type*} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y
 #align order_embedding.to_order_hom OrderEmbedding.toOrderHom
 #align order_embedding.to_order_hom_coe OrderEmbedding.toOrderHom_coe
 
+/-- The trivial embedding from an empty preorder to another preorder -/
+@[simps] def ofIsEmpty [IsEmpty α] : α ↪o β where
+  toFun := isEmptyElim
+  inj' := isEmptyElim
+  map_rel_iff' {a} := isEmptyElim a
+
+@[simp, norm_cast]
+lemma coe_ofIsEmpty [IsEmpty α] : (ofIsEmpty : α ↪o β) = (isEmptyElim : α → β) := rfl
+
 end OrderEmbedding
 
 section RelHom
chore: make sure that some coercions have an attached definition (#6667)
Diff
@@ -156,7 +156,7 @@ protected theorem mono (f : F) : Monotone f := fun _ _ => map_rel f
 #align order_hom_class.mono OrderHomClass.mono
 
 /-- Turn an element of a type `F` satisfying `OrderHomClass F α β` into an actual
-`OrderHomClass`. This is declared as the default coercion from `F` to `α →o β`. -/
+`OrderHom`. This is declared as the default coercion from `F` to `α →o β`. -/
 @[coe]
 def toOrderHom (f : F) : α →o β where
   toFun := f
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -74,10 +74,10 @@ monotone map, bundled morphism
 
 open OrderDual
 
-variable {F α β γ δ : Type _}
+variable {F α β γ δ : Type*}
 
 /-- Bundled monotone (aka, increasing) function -/
-structure OrderHom (α β : Type _) [Preorder α] [Preorder β] where
+structure OrderHom (α β : Type*) [Preorder α] [Preorder β] where
   /-- The underlying function of an `OrderHom`. -/
   toFun : α → β
   /-- The underlying function of an `OrderHom` is monotone. -/
@@ -89,7 +89,7 @@ infixr:25 " →o " => OrderHom
 
 /-- An order embedding is an embedding `f : α ↪ β` such that `a ≤ b ↔ (f a) ≤ (f b)`.
 This definition is an abbreviation of `RelEmbedding (≤) (≤)`. -/
-abbrev OrderEmbedding (α β : Type _) [LE α] [LE β] :=
+abbrev OrderEmbedding (α β : Type*) [LE α] [LE β] :=
   @RelEmbedding α β (· ≤ ·) (· ≤ ·)
 #align order_embedding OrderEmbedding
 
@@ -98,7 +98,7 @@ infixl:25 " ↪o " => OrderEmbedding
 
 /-- An order isomorphism is an equivalence such that `a ≤ b ↔ (f a) ≤ (f b)`.
 This definition is an abbreviation of `RelIso (≤) (≤)`. -/
-abbrev OrderIso (α β : Type _) [LE α] [LE β] :=
+abbrev OrderIso (α β : Type*) [LE α] [LE β] :=
   @RelIso α β (· ≤ ·) (· ≤ ·)
 #align order_iso OrderIso
 
@@ -108,14 +108,14 @@ infixl:25 " ≃o " => OrderIso
 section
 
 /-- `OrderHomClass F α b` asserts that `F` is a type of `≤`-preserving morphisms. -/
-abbrev OrderHomClass (F : Type _) (α β : outParam (Type _)) [LE α] [LE β] :=
+abbrev OrderHomClass (F : Type*) (α β : outParam (Type*)) [LE α] [LE β] :=
   RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop)
 #align order_hom_class OrderHomClass
 
 /-- `OrderIsoClass F α β` states that `F` is a type of order isomorphisms.
 
 You should extend this class when you extend `OrderIso`. -/
-class OrderIsoClass (F : Type _) (α β : outParam (Type _)) [LE α] [LE β] extends
+class OrderIsoClass (F : Type*) (α β : outParam (Type*)) [LE α] [LE β] extends
   EquivLike F α β where
   /-- An order isomorphism respects `≤`. -/
   map_le_map_iff (f : F) {a b : α} : f a ≤ f b ↔ a ≤ b
@@ -293,7 +293,7 @@ instance : Inhabited (α →o α) :=
 instance : Preorder (α →o β) :=
   @Preorder.lift (α →o β) (α → β) _ toFun
 
-instance {β : Type _} [PartialOrder β] : PartialOrder (α →o β) :=
+instance {β : Type*} [PartialOrder β] : PartialOrder (α →o β) :=
   @PartialOrder.lift (α →o β) (α → β) _ toFun ext
 
 theorem le_def {f g : α →o β} : f ≤ g ↔ ∀ x, f x ≤ g x :=
@@ -368,7 +368,7 @@ theorem id_comp (f : α →o β) : comp id f = f := by
 
 /-- Constant function bundled as an `OrderHom`. -/
 @[simps (config := { fullyApplied := false })]
-def const (α : Type _) [Preorder α] {β : Type _} [Preorder β] : β →o α →o β where
+def const (α : Type*) [Preorder α] {β : Type*} [Preorder β] : β →o α →o β where
   toFun b := ⟨Function.const α b, fun _ _ _ => le_rfl⟩
   monotone' _ _ h _ := h
 #align order_hom.const OrderHom.const
@@ -380,7 +380,7 @@ theorem const_comp (f : α →o β) (c : γ) : (const β c).comp f = const α c
 #align order_hom.const_comp OrderHom.const_comp
 
 @[simp]
-theorem comp_const (γ : Type _) [Preorder γ] (f : α →o β) (c : α) :
+theorem comp_const (γ : Type*) [Preorder γ] (f : α →o β) (c : α) :
     f.comp (const γ c) = const γ (f c) :=
   rfl
 #align order_hom.comp_const OrderHom.comp_const
@@ -475,7 +475,7 @@ def prodMap (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
 #align order_hom.prod_map OrderHom.prodMap
 #align order_hom.prod_map_coe OrderHom.prodMap_coe
 
-variable {ι : Type _} {π : ι → Type _} [∀ i, Preorder (π i)]
+variable {ι : Type*} {π : ι → Type*} [∀ i, Preorder (π i)]
 
 /-- Evaluation of an unbundled function at a point (`Function.eval`) as an `OrderHom`. -/
 @[simps (config := { fullyApplied := false })]
@@ -584,7 +584,7 @@ theorem symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ)
 #align order_hom.symm_dual_comp OrderHom.symm_dual_comp
 
 /-- `OrderHom.dual` as an order isomorphism. -/
-def dualIso (α β : Type _) [Preorder α] [Preorder β] : (α →o β) ≃o (αᵒᵈ →o βᵒᵈ)ᵒᵈ where
+def dualIso (α β : Type*) [Preorder α] [Preorder β] : (α →o β) ≃o (αᵒᵈ →o βᵒᵈ)ᵒᵈ where
   toEquiv := OrderHom.dual.trans OrderDual.toDual
   map_rel_iff' := Iff.rfl
 #align order_hom.dual_iso OrderHom.dualIso
@@ -734,7 +734,7 @@ def subtype (p : α → Prop) : Subtype p ↪o α :=
 
 /-- Convert an `OrderEmbedding` to an `OrderHom`. -/
 @[simps (config := { fullyApplied := false })]
-def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y where
+def toOrderHom {X Y : Type*} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y where
   toFun := f
   monotone' := f.monotone
 #align order_embedding.to_order_hom OrderEmbedding.toOrderHom
@@ -826,7 +826,7 @@ theorem apply_eq_iff_eq (e : α ≃o β) {x y : α} : e x = e y ↔ x = y :=
 #align order_iso.apply_eq_iff_eq OrderIso.apply_eq_iff_eq
 
 /-- Identity order isomorphism. -/
-def refl (α : Type _) [LE α] : α ≃o α :=
+def refl (α : Type*) [LE α] : α ≃o α :=
   RelIso.refl (· ≤ ·)
 #align order_iso.refl OrderIso.refl
 
@@ -860,7 +860,7 @@ theorem symm_apply_apply (e : α ≃o β) (x : α) : e.symm (e x) = x :=
 #align order_iso.symm_apply_apply OrderIso.symm_apply_apply
 
 @[simp]
-theorem symm_refl (α : Type _) [LE α] : (refl α).symm = refl α :=
+theorem symm_refl (α : Type*) [LE α] : (refl α).symm = refl α :=
   rfl
 #align order_iso.symm_refl OrderIso.symm_refl
 
@@ -1076,7 +1076,7 @@ def ofCmpEqCmp {α β} [LinearOrder α] [LinearOrder β] (f : α → β) (g : β
 
 /-- To show that `f : α →o β` and `g : β →o α` make up an order isomorphism it is enough to show
     that `g` is the inverse of `f`-/
-def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f : F) (g : G)
+def ofHomInv {F G : Type*} [OrderHomClass F α β] [OrderHomClass G β α] (f : F) (g : G)
     (h₁ : (f : α →o β).comp (g : β →o α) = OrderHom.id)
     (h₂ : (g : β →o α).comp (f : α →o β) = OrderHom.id) :
     α ≃o β where
@@ -1094,7 +1094,7 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
 
 /-- Order isomorphism between `α → β` and `β`, where `α` has a unique element. -/
 @[simps! toEquiv apply]
-def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β where
+def funUnique (α β : Type*) [Unique α] [Preorder β] : (α → β) ≃o β where
   toEquiv := Equiv.funUnique α β
   map_rel_iff' := by simp [Pi.le_def, Unique.forall_iff]
 #align order_iso.fun_unique OrderIso.funUnique
@@ -1102,7 +1102,7 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β w
 #align order_iso.fun_unique_to_equiv OrderIso.funUnique_toEquiv
 
 @[simp]
-theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
+theorem funUnique_symm_apply {α β : Type*} [Unique α] [Preorder β] :
     ((funUnique α β).symm : β → α → β) = Function.const α :=
   rfl
 #align order_iso.fun_unique_symm_apply OrderIso.funUnique_symm_apply
chore: use FunLike for OrderHom (#5805)

Co-authored-by: Jujian Zhang <jujian.zhang1998@outlook.com> Co-authored-by: Oliver Nash <github@olivernash.org>

Diff
@@ -87,8 +87,6 @@ structure OrderHom (α β : Type _) [Preorder α] [Preorder β] where
 /-- Notation for an `OrderHom`. -/
 infixr:25 " →o " => OrderHom
 
-attribute [coe] OrderHom.toFun
-
 /-- An order embedding is an embedding `f : α ↪ β` such that `a ≤ b ↔ (f a) ≤ (f b)`.
 This definition is an abbreviation of `RelEmbedding (≤) (≤)`. -/
 abbrev OrderEmbedding (α β : Type _) [LE α] [LE β] :=
@@ -217,13 +215,18 @@ namespace OrderHom
 
 variable [Preorder α] [Preorder β] [Preorder γ] [Preorder δ]
 
+instance : OrderHomClass (α →o β) α β where
+  coe := toFun
+  coe_injective' f g h := by cases f; cases g; congr
+  map_rel f _ _ h := f.monotone' h
+
 /-- Helper instance for when there's too many metavariables to apply the coercion via `FunLike`
-directly.
-Remark(Floris): I think this instance is a really bad idea because now applications of
-`FunLike.coe` are not being simplified by `simp`, unlike all other hom-classes.
-Todo: fix after port.-/
+directly. -/
 instance : CoeFun (α →o β) fun _ => α → β :=
-  ⟨OrderHom.toFun⟩
+  ⟨FunLike.coe⟩
+
+@[simp] theorem coe_mk (f : α → β) (hf : Monotone f) : ⇑(mk f hf) = f := rfl
+#align order_hom.coe_fun_mk OrderHom.coe_mk
 
 protected theorem monotone (f : α →o β) : Monotone f :=
   f.monotone'
@@ -233,29 +236,16 @@ protected theorem mono (f : α →o β) : Monotone f :=
   f.monotone
 #align order_hom.mono OrderHom.mono
 
-instance : OrderHomClass (α →o β) α β where
-  coe := toFun
-  coe_injective' f g h := by
-    cases f
-    cases g
-    congr
-  map_rel f _ _ h := f.monotone' h
-
 /-- See Note [custom simps projection]. We give this manually so that we use `toFun` as the
 projection directly instead. -/
 def Simps.coe (f : α →o β) : α → β := f
 
-/- Todo: all other FunLike classes use `apply` instead of `coe`
+/- Porting note: TODO: all other FunLike classes use `apply` instead of `coe`
 for the projection names. Maybe we should change this. -/
 initialize_simps_projections OrderHom (toFun → coe)
 
--- Porting note: dropped `to_fun_eq_coe` as it is a tautology now.
-#noalign order_hom.to_fun_eq_coe
-
--- Porting note: no longer good as a simp lemma, as after `whnfR` the LHS is just `f` anyway.
-theorem coe_fun_mk {f : α → β} (hf : Monotone f) : (mk f hf : α → β) = f :=
-  rfl
-#align order_hom.coe_fun_mk OrderHom.coe_fun_mk
+@[simp] theorem toFun_eq_coe (f : α →o β) : f.toFun = f := rfl
+#align order_hom.to_fun_eq_coe OrderHom.toFun_eq_coe
 
 -- See library note [partially-applied ext lemmas]
 @[ext]
@@ -263,12 +253,16 @@ theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
   FunLike.coe_injective h
 #align order_hom.ext OrderHom.ext
 
-#noalign order_hom.coe_eq
+@[simp] theorem coe_eq (f : α →o β) : OrderHomClass.toOrderHom f = f := rfl
+
+@[simp] theorem _root_.OrderHomClass.coe_coe {F} [OrderHomClass F α β] (f : F) :
+    ⇑(f : α →o β) = f :=
+  rfl
 
 /-- One can lift an unbundled monotone function to a bundled one. -/
-instance : CanLift (α → β) (α →o β) (↑) Monotone where
+protected instance canLift : CanLift (α → β) (α →o β) (↑) Monotone where
   prf f h := ⟨⟨f, h⟩, rfl⟩
-#align order_hom.monotone.can_lift OrderHom.instCanLiftForAllOrderHomToFunMonotone
+#align order_hom.monotone.can_lift OrderHom.canLift
 
 /-- Copy of an `OrderHom` with a new `toFun` equal to the old one. Useful to fix definitional
 equalities. -/
@@ -323,17 +317,11 @@ theorem apply_mono {f g : α →o β} {x y : α} (h₁ : f ≤ g) (h₂ : x ≤
 
 /-- Curry/uncurry as an order isomorphism between `α × β →o γ` and `α →o β →o γ`. -/
 def curry : (α × β →o γ) ≃o (α →o β →o γ) where
-  toFun f :=
-    ⟨fun x => ⟨Function.curry f x, fun y₁ y₂ h => f.mono ⟨le_rfl, h⟩⟩, fun x₁ x₂ h y =>
-      f.mono ⟨h, le_rfl⟩⟩
-  invFun f :=
-    ⟨Function.uncurry fun x => f x, fun x y h => (f.mono h.1 x.2).trans <| (f y.1).mono h.2⟩
-  left_inv f := by
-    ext ⟨x, y⟩
-    rfl
-  right_inv f := by
-    ext x y
-    rfl
+  toFun f := ⟨fun x ↦ ⟨Function.curry f x, fun _ _ h ↦ f.mono ⟨le_rfl, h⟩⟩, fun _ _ h _ =>
+    f.mono ⟨h, le_rfl⟩⟩
+  invFun f := ⟨Function.uncurry fun x ↦ f x, fun x y h ↦ (f.mono h.1 x.2).trans ((f y.1).mono h.2)⟩
+  left_inv _ := rfl
+  right_inv _ := rfl
   map_rel_iff' := by simp [le_def]
 #align order_hom.curry OrderHom.curry
 
@@ -473,8 +461,8 @@ of monotone maps to `β` and `γ`. -/
 def prodIso : (α →o β × γ) ≃o (α →o β) × (α →o γ) where
   toFun f := (fst.comp f, snd.comp f)
   invFun f := f.1.prod f.2
-  left_inv f := by ext <;> rfl
-  right_inv f := by ext <;> rfl
+  left_inv _ := rfl
+  right_inv _ := rfl
   map_rel_iff' := forall_and.symm
 #align order_hom.prod_iso OrderHom.prodIso
 #align order_hom.prod_iso_apply OrderHom.prodIso_apply
@@ -527,12 +515,8 @@ maps `Π i, α →o π i`. -/
 def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i where
   toFun f i := (Pi.evalOrderHom i).comp f
   invFun := pi
-  left_inv f := by
-    ext x i
-    rfl
-  right_inv f := by
-    ext x i
-    rfl
+  left_inv _ := rfl
+  right_inv _ := rfl
   map_rel_iff' := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
 #align order_hom.pi_iso_apply OrderHom.piIso_apply
@@ -568,8 +552,8 @@ protected def dual : (α →o β) ≃ (αᵒᵈ →o βᵒᵈ) where
   toFun f := ⟨(OrderDual.toDual : β → βᵒᵈ) ∘ (f : α → β) ∘
     (OrderDual.ofDual : αᵒᵈ → α), f.mono.dual⟩
   invFun f := ⟨OrderDual.ofDual ∘ f ∘ OrderDual.toDual, f.mono.dual⟩
-  left_inv _ := ext _ _ rfl
-  right_inv _ := ext _ _ rfl
+  left_inv _ := rfl
+  right_inv _ := rfl
 #align order_hom.dual OrderHom.dual
 #align order_hom.dual_apply_coe OrderHom.dual_apply_coe
 #align order_hom.dual_symm_apply_coe OrderHom.dual_symm_apply_coe
feat: Subtype.orderEmbedding (#6097)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -545,6 +545,13 @@ def Subtype.val (p : α → Prop) : Subtype p →o α :=
 #align order_hom.subtype.val OrderHom.Subtype.val
 #align order_hom.subtype.val_coe OrderHom.Subtype.val_coe
 
+/-- `Subtype.impEmbedding` as an order embedding. -/
+@[simps!]
+def _root_.Subtype.orderEmbedding {p q : α → Prop} (h : ∀ a, p a → q a) :
+    {x // p x} ↪o {x // q x} :=
+  { Subtype.impEmbedding _ _ h with
+    map_rel_iff' := by aesop }
+
 /-- There is a unique monotone map from a subsingleton to itself. -/
 instance unique [Subsingleton α] : Unique (α →o α) where
   default := OrderHom.id
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2020 Johan Commelin. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module order.hom.basic
-! leanprover-community/mathlib commit 62a5626868683c104774de8d85b9855234ac807c
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Logic.Equiv.Option
 import Mathlib.Order.RelIso.Basic
@@ -15,6 +10,8 @@ import Mathlib.Order.WithBot
 import Mathlib.Tactic.Monotonicity.Attr
 import Mathlib.Util.AssertExists
 
+#align_import order.hom.basic from "leanprover-community/mathlib"@"62a5626868683c104774de8d85b9855234ac807c"
+
 /-!
 # Order homomorphisms
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -385,7 +385,7 @@ theorem id_comp (f : α →o β) : comp id f = f := by
 @[simps (config := { fullyApplied := false })]
 def const (α : Type _) [Preorder α] {β : Type _} [Preorder β] : β →o α →o β where
   toFun b := ⟨Function.const α b, fun _ _ _ => le_rfl⟩
-  monotone' _ _  h _ := h
+  monotone' _ _ h _ := h
 #align order_hom.const OrderHom.const
 #align order_hom.const_coe_coe OrderHom.const_coe_coe
 
feat: missing WellFoundedLT instances (#5899)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -687,6 +687,15 @@ protected def dual : αᵒᵈ ↪o βᵒᵈ :=
   ⟨f.toEmbedding, f.map_rel_iff⟩
 #align order_embedding.dual OrderEmbedding.dual
 
+/-- A preorder which embeds into a well-founded preorder is itself well-founded. -/
+protected theorem wellFoundedLT [WellFoundedLT β] : WellFoundedLT α where
+  wf := f.wellFounded IsWellFounded.wf
+
+/-- A preorder which embeds into a preorder in which `(· > ·)` is well-founded
+also has `(· > ·)` well-founded. -/
+protected theorem wellFoundedGT [WellFoundedGT β] : WellFoundedGT α :=
+  @OrderEmbedding.wellFoundedLT αᵒᵈ _ _ _ f.dual _
+
 /-- A version of `WithBot.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
chore: remove superfluous parentheses in calls to ext (#5258)

Co-authored-by: Xavier Roblot <46200072+xroblot@users.noreply.github.com> Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr> Co-authored-by: Riccardo Brasca <riccardo.brasca@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Pol'tta / Miyahara Kō <pol_tta@outlook.jp> Co-authored-by: Jason Yuen <jason_yuen2007@hotmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: Jireh Loreaux <loreaujy@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Jujian Zhang <jujian.zhang1998@outlook.com> Co-authored-by: Yaël Dillies <yael.dillies@gmail.com>

Diff
@@ -335,7 +335,7 @@ def curry : (α × β →o γ) ≃o (α →o β →o γ) where
     ext ⟨x, y⟩
     rfl
   right_inv f := by
-    ext (x y)
+    ext x y
     rfl
   map_rel_iff' := by simp [le_def]
 #align order_hom.curry OrderHom.curry
@@ -531,10 +531,10 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i where
   toFun f i := (Pi.evalOrderHom i).comp f
   invFun := pi
   left_inv f := by
-    ext (x i)
+    ext x i
     rfl
   right_inv f := by
-    ext (x i)
+    ext x i
     rfl
   map_rel_iff' := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -54,7 +54,7 @@ because the more bundled version usually does not work with dot notation.
 * `Pi.evalOrderHom`: evaluation of a function at a point `Function.eval i` as a bundled
   monotone map;
 * `OrderHom.coeFnHom`: coercion to function as a bundled monotone map;
-* `OrderHom.apply`: application of a `OrderHom` at a point as a bundled monotone map;
+* `OrderHom.apply`: application of an `OrderHom` at a point as a bundled monotone map;
 * `OrderHom.pi`: combine a family of monotone maps `f i : α →o π i` into a monotone map
   `α →o Π i, π i`;
 * `OrderHom.piIso`: order isomorphism between `α →o Π i, π i` and `Π i, α →o π i`;
@@ -381,7 +381,7 @@ theorem id_comp (f : α →o β) : comp id f = f := by
   rfl
 #align order_hom.id_comp OrderHom.id_comp
 
-/-- Constant function bundled as a `OrderHom`. -/
+/-- Constant function bundled as an `OrderHom`. -/
 @[simps (config := { fullyApplied := false })]
 def const (α : Type _) [Preorder α] {β : Type _} [Preorder β] : β →o α →o β where
   toFun b := ⟨Function.const α b, fun _ _ _ => le_rfl⟩
@@ -426,7 +426,7 @@ def prodₘ : (α →o β) →o (α →o γ) →o α →o β × γ :=
 #align order_hom.prodₘ OrderHom.prodₘ
 #align order_hom.prodₘ_coe_coe_coe OrderHom.prodₘ_coe_coe_coe
 
-/-- Diagonal embedding of `α` into `α × α` as a `OrderHom`. -/
+/-- Diagonal embedding of `α` into `α × α` as an `OrderHom`. -/
 @[simps!]
 def diag : α →o α × α :=
   id.prod id
@@ -440,14 +440,14 @@ def onDiag (f : α →o α →o β) : α →o β :=
 #align order_hom.on_diag OrderHom.onDiag
 #align order_hom.on_diag_coe OrderHom.onDiag_coe
 
-/-- `Prod.fst` as a `OrderHom`. -/
+/-- `Prod.fst` as an `OrderHom`. -/
 @[simps]
 def fst : α × β →o α :=
   ⟨Prod.fst, fun _ _ h => h.1⟩
 #align order_hom.fst OrderHom.fst
 #align order_hom.fst_coe OrderHom.fst_coe
 
-/-- `Prod.snd` as a `OrderHom`. -/
+/-- `Prod.snd` as an `OrderHom`. -/
 @[simps]
 def snd : α × β →o β :=
   ⟨Prod.snd, fun _ _ h => h.2⟩
@@ -483,7 +483,7 @@ def prodIso : (α →o β × γ) ≃o (α →o β) × (α →o γ) where
 #align order_hom.prod_iso_apply OrderHom.prodIso_apply
 #align order_hom.prod_iso_symm_apply OrderHom.prodIso_symm_apply
 
-/-- `Prod.map` of two `OrderHom`s as a `OrderHom`. -/
+/-- `Prod.map` of two `OrderHom`s as an `OrderHom`. -/
 @[simps]
 def prodMap (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
   ⟨Prod.map f g, fun _ _ h => ⟨f.mono h.1, g.mono h.2⟩⟩
@@ -492,7 +492,7 @@ def prodMap (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
 
 variable {ι : Type _} {π : ι → Type _} [∀ i, Preorder (π i)]
 
-/-- Evaluation of an unbundled function at a point (`Function.eval`) as a `OrderHom`. -/
+/-- Evaluation of an unbundled function at a point (`Function.eval`) as an `OrderHom`. -/
 @[simps (config := { fullyApplied := false })]
 def _root_.Pi.evalOrderHom (i : ι) : (∀ j, π j) →o π i :=
   ⟨Function.eval i, Function.monotone_eval i⟩
@@ -735,7 +735,7 @@ def subtype (p : α → Prop) : Subtype p ↪o α :=
 #align order_embedding.subtype OrderEmbedding.subtype
 #align order_embedding.subtype_apply OrderEmbedding.subtype_apply
 
-/-- Convert an `OrderEmbedding` to a `OrderHom`. -/
+/-- Convert an `OrderEmbedding` to an `OrderHom`. -/
 @[simps (config := { fullyApplied := false })]
 def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o Y where
   toFun := f
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -136,7 +136,7 @@ attribute [simp] map_le_map_iff
 `OrderIso`. This is declared as the default coercion from `F` to `α ≃o β`. -/
 @[coe]
 def OrderIsoClass.toOrderIso [LE α] [LE β] [OrderIsoClass F α β] (f : F) : α ≃o β :=
-{ EquivLike.toEquiv f with map_rel_iff' := map_le_map_iff f }
+  { EquivLike.toEquiv f with map_rel_iff' := map_le_map_iff f }
 
 /-- Any type satisfying `OrderIsoClass` can be cast into `OrderIso` via
 `OrderIsoClass.toOrderIso`. -/
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -81,7 +81,7 @@ variable {F α β γ δ : Type _}
 
 /-- Bundled monotone (aka, increasing) function -/
 structure OrderHom (α β : Type _) [Preorder α] [Preorder β] where
-  /-- The underlying funcrion of an `OrderHom`. -/
+  /-- The underlying function of an `OrderHom`. -/
   toFun : α → β
   /-- The underlying function of an `OrderHom` is monotone. -/
   monotone' : Monotone toFun
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -48,8 +48,8 @@ because the more bundled version usually does not work with dot notation.
 * `OrderHom.prodIso`: order isomorphism between `α →o β × γ` and `(α →o β) × (α →o γ)`;
 * `OrderHom.diag`: diagonal embedding of `α` into `α × α` as a bundled monotone map;
 * `OrderHom.onDiag`: restrict a monotone map `α →o α →o β` to the diagonal;
-* `OrderHom.fst`: projection `prod.fst : α × β → α` as a bundled monotone map;
-* `OrderHom.snd`: projection `prod.snd : α × β → β` as a bundled monotone map;
+* `OrderHom.fst`: projection `Prod.fst : α × β → α` as a bundled monotone map;
+* `OrderHom.snd`: projection `Prod.snd : α × β → β` as a bundled monotone map;
 * `OrderHom.prodMap`: `prod.map f g` as a bundled monotone map;
 * `Pi.evalOrderHom`: evaluation of a function at a point `Function.eval i` as a bundled
   monotone map;
feat: assert_not_exists (#4245)
Diff
@@ -13,6 +13,7 @@ import Mathlib.Order.RelIso.Basic
 import Mathlib.Order.Disjoint
 import Mathlib.Order.WithBot
 import Mathlib.Tactic.Monotonicity.Attr
+import Mathlib.Util.AssertExists
 
 /-!
 # Order homomorphisms
@@ -1388,6 +1389,5 @@ end BoundedOrder
 
 end LatticeIsos
 
--- Developments relating order homs and sets belong in `order.hom.set` or later.
--- porting note: command not ported yet (added in mathlib#17416)
--- assert_not_exists set.range
+-- Developments relating order homs and sets belong in `Order.Hom.Set` or later.
+assert_not_exists Set.range
feat: add Mathlib.Tactic.Common, and import (#4056)

This makes a mathlib4 version of mathlib3's tactic.basic, now called Mathlib.Tactic.Common, which imports all tactics which do not have significant theory requirements, and then is imported all across the base of the hierarchy.

This ensures that all common tactics are available nearly everywhere in the library, rather than having to be imported one-by-one as you need them.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -13,7 +13,6 @@ import Mathlib.Order.RelIso.Basic
 import Mathlib.Order.Disjoint
 import Mathlib.Order.WithBot
 import Mathlib.Tactic.Monotonicity.Attr
-import Mathlib.Tactic.Replace
 
 /-!
 # Order homomorphisms
chore: use FunLike.coe as coercion for OrderIso and RelEmbedding (#3082)

The changes I made were.

Use FunLike.coe instead of the previous definition for the coercion from RelEmbedding To functions and OrderIso to functions. The previous definition was

instance : CoeFun (r ↪r s) fun _ => α → β :=
--   ⟨fun o => o.toEmbedding⟩

This does not display nicely.

I also restored the simp attributes on a few lemmas that had their simp attributes removed during the port. Eventually we might want a RelEmbeddingLike class, but this PR does not implement that.

I also added a few lemmas that proved that coercions to function commute with RelEmbedding.toRelHom or similar.

The other changes are just fixing the build. One strange issue is that the lemma Finset.mapEmbedding_apply seems to be harder to use, it has to be used with rw instead of simp

Co-authored-by: Chris Hughes <33847686+ChrisHughes24@users.noreply.github.com>

Diff
@@ -652,14 +652,12 @@ theorem le_iff_le {a b} : f a ≤ f b ↔ a ≤ b :=
   f.map_rel_iff
 #align order_embedding.le_iff_le OrderEmbedding.le_iff_le
 
--- Porting note: `simp` can prove this.
--- @[simp]
+@[simp]
 theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
   f.ltEmbedding.map_rel_iff
 #align order_embedding.lt_iff_lt OrderEmbedding.lt_iff_lt
 
--- Porting note: `simp` can prove this.
--- @[simp]
+@[simp]
 theorem eq_iff_eq {a b} : f a = f b ↔ a = b :=
   f.injective.eq_iff
 #align order_embedding.eq_iff_eq OrderEmbedding.eq_iff_eq
@@ -983,7 +981,7 @@ section LE
 
 variable [LE α] [LE β] [LE γ]
 
-@[simp]
+--@[simp] porting note: simp can prove it
 theorem le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y :=
   e.map_rel_iff
 #align order_iso.le_iff_le OrderIso.le_iff_le
@@ -1031,7 +1029,7 @@ theorem toRelIsoLT_symm (e : α ≃o β) : e.toRelIsoLT.symm = e.symm.toRelIsoLT
 /-- Converts a `RelIso (<) (<)` into an `OrderIso`. -/
 def ofRelIsoLT {α β} [PartialOrder α] [PartialOrder β]
     (e : ((· < ·) : α → α → Prop) ≃r ((· < ·) : β → β → Prop)) : α ≃o β :=
-  ⟨e.toEquiv, by simp [le_iff_eq_or_lt, e.map_rel_iff]⟩
+  ⟨e.toEquiv, by simp [le_iff_eq_or_lt, e.map_rel_iff, e.injective.eq_iff]⟩
 #align order_iso.of_rel_iso_lt OrderIso.ofRelIsoLT
 
 @[simp]
chore: bump to nightly-2023-04-11 (#3139)
Diff
@@ -135,16 +135,16 @@ attribute [simp] map_le_map_iff
 /-- Turn an element of a type `F` satisfying `OrderIsoClass F α β` into an actual
 `OrderIso`. This is declared as the default coercion from `F` to `α ≃o β`. -/
 @[coe]
-def OrderIsoClass.toOrderIso {_ : LE α} {_ : LE β} [OrderIsoClass F α β] (f : F) : α ≃o β :=
+def OrderIsoClass.toOrderIso [LE α] [LE β] [OrderIsoClass F α β] (f : F) : α ≃o β :=
 { EquivLike.toEquiv f with map_rel_iff' := map_le_map_iff f }
 
 /-- Any type satisfying `OrderIsoClass` can be cast into `OrderIso` via
 `OrderIsoClass.toOrderIso`. -/
-instance {_ : LE α} {_ : LE β} [OrderIsoClass F α β] : CoeTC F (α ≃o β) :=
+instance [LE α] [LE β] [OrderIsoClass F α β] : CoeTC F (α ≃o β) :=
   ⟨OrderIsoClass.toOrderIso⟩
 
 -- See note [lower instance priority]
-instance (priority := 100) OrderIsoClass.toOrderHomClass {_ : LE α} {_ : LE β}
+instance (priority := 100) OrderIsoClass.toOrderHomClass [LE α] [LE β]
     [OrderIsoClass F α β] : OrderHomClass F α β :=
   { EquivLike.toEmbeddingLike with
     map_rel := fun f _ _ => (map_le_map_iff f).2 }
chore: tidy various files (#2742)
Diff
@@ -708,20 +708,20 @@ protected def withTopMap (f : α ↪o β) : WithTop α ↪o WithTop β :=
 /-- To define an order embedding from a partial order to a preorder it suffices to give a function
 together with a proof that it satisfies `f a ≤ f b ↔ a ≤ b`.
 -/
-def ofMapLeIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀ a b, f a ≤ f b ↔ a ≤ b) :
+def ofMapLEIff {α β} [PartialOrder α] [Preorder β] (f : α → β) (hf : ∀ a b, f a ≤ f b ↔ a ≤ b) :
     α ↪o β :=
   RelEmbedding.ofMapRelIff f hf
-#align order_embedding.of_map_le_iff OrderEmbedding.ofMapLeIff
+#align order_embedding.of_map_le_iff OrderEmbedding.ofMapLEIff
 
 @[simp]
-theorem coe_ofMapLeIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
-    ⇑ofMapLeIff f h = f :=
+theorem coe_ofMapLEIff {α β} [PartialOrder α] [Preorder β] {f : α → β} (h) :
+    ⇑ofMapLEIff f h = f :=
   rfl
-#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLeIff
+#align order_embedding.coe_of_map_le_iff OrderEmbedding.coe_ofMapLEIff
 
 /-- A strictly monotone map from a linear order is an order embedding. -/
 def ofStrictMono {α β} [LinearOrder α] [Preorder β] (f : α → β) (h : StrictMono f) : α ↪o β :=
-  ofMapLeIff f fun _ _ => h.le_iff_le
+  ofMapLEIff f fun _ _ => h.le_iff_le
 #align order_embedding.of_strict_mono OrderEmbedding.ofStrictMono
 
 @[simp]
feat: initialize_simps_projections automatically finds coercions (#2045)
  • initialize_simps_projections automatically find coercions if there is a Funlike or SetLike instance defined by one of the projections.
  • Some improvements compared to Lean 3:
    • Find coercions even if it is defined by a field of a parent structure
    • Find SetLike coercions

Not yet implemented (and rarely - if ever - used in mathlib3):

  • Automatic custom projections for algebraic notation (like +,*,...)

Co-authored-by: Johan Commelin <johan@commelin.net>

Diff
@@ -221,7 +221,10 @@ namespace OrderHom
 variable [Preorder α] [Preorder β] [Preorder γ] [Preorder δ]
 
 /-- Helper instance for when there's too many metavariables to apply the coercion via `FunLike`
-directly. -/
+directly.
+Remark(Floris): I think this instance is a really bad idea because now applications of
+`FunLike.coe` are not being simplified by `simp`, unlike all other hom-classes.
+Todo: fix after port.-/
 instance : CoeFun (α →o β) fun _ => α → β :=
   ⟨OrderHom.toFun⟩
 
@@ -239,12 +242,14 @@ instance : OrderHomClass (α →o β) α β where
     cases f
     cases g
     congr
-  map_rel f _ _ h := f.monotone h
+  map_rel f _ _ h := f.monotone' h
 
-/-- See Note [custom simps projection]. Note: all other FunLike classes use `apply` instead of `coe`
-for the projection names. Maybe we should change this. -/
+/-- See Note [custom simps projection]. We give this manually so that we use `toFun` as the
+projection directly instead. -/
 def Simps.coe (f : α →o β) : α → β := f
 
+/- Todo: all other FunLike classes use `apply` instead of `coe`
+for the projection names. Maybe we should change this. -/
 initialize_simps_projections OrderHom (toFun → coe)
 
 -- Porting note: dropped `to_fun_eq_coe` as it is a tautology now.
fix: replace symmApply by symm_apply (#2560)
Diff
@@ -476,7 +476,7 @@ def prodIso : (α →o β × γ) ≃o (α →o β) × (α →o γ) where
   map_rel_iff' := forall_and.symm
 #align order_hom.prod_iso OrderHom.prodIso
 #align order_hom.prod_iso_apply OrderHom.prodIso_apply
-#align order_hom.prod_iso_symm_apply OrderHom.prodIso_symmApply
+#align order_hom.prod_iso_symm_apply OrderHom.prodIso_symm_apply
 
 /-- `Prod.map` of two `OrderHom`s as a `OrderHom`. -/
 @[simps]
@@ -534,7 +534,7 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i where
   map_rel_iff' := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
 #align order_hom.pi_iso_apply OrderHom.piIso_apply
-#align order_hom.pi_iso_symm_apply OrderHom.piIso_symmApply
+#align order_hom.pi_iso_symm_apply OrderHom.piIso_symm_apply
 
 /-- `Subtype.val` as a bundled monotone function.  -/
 @[simps (config := { fullyApplied := false })]
@@ -1149,7 +1149,7 @@ def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α
     right_inv := hg }
 #align strict_mono.order_iso_of_right_inverse StrictMono.orderIsoOfRightInverse
 #align strict_mono.order_iso_of_right_inverse_apply StrictMono.orderIsoOfRightInverse_apply
-#align strict_mono.order_iso_of_right_inverse_symm_apply StrictMono.orderIsoOfRightInverse_symmApply
+#align strict_mono.order_iso_of_right_inverse_symm_apply StrictMono.orderIsoOfRightInverse_symm_apply
 
 end StrictMono
 
feat: quick version of mono tactic (#1740)

This is an extremely partial port of the mono* tactic from Lean 3, implemented as a macro on top of solve_by_elim. The original mono had many configuration options and no documentation, so quite a bit is missing (and almost all the Lean 3 tests fail). Nonetheless I think it's worth merging this, because

  • it will get rid of errors in mathport output which come from lemmas being tagged with a nonexistent attribute @[mono]
  • in most mathlib3 uses of mono, only the basic version was used, not the various configuration options; thus I would guess that this version of mono will succeed fairly often in the port even though it fails nearly all the tests

Co-authored-by: thorimur <68410468+thorimur@users.noreply.github.com>

Diff
@@ -12,6 +12,7 @@ import Mathlib.Logic.Equiv.Option
 import Mathlib.Order.RelIso.Basic
 import Mathlib.Order.Disjoint
 import Mathlib.Order.WithBot
+import Mathlib.Tactic.Monotonicity.Attr
 import Mathlib.Tactic.Replace
 
 /-!
@@ -313,8 +314,7 @@ theorem mk_le_mk {f g : α → β} {hf hg} : mk f hf ≤ mk g hg ↔ f ≤ g :=
   Iff.rfl
 #align order_hom.mk_le_mk OrderHom.mk_le_mk
 
--- Porting note: `mono` tactic not implemented yet.
--- @[mono]
+@[mono]
 theorem apply_mono {f g : α →o β} {x y : α} (h₁ : f ≤ g) (h₂ : x ≤ y) : f x ≤ g y :=
   (h₁ x).trans <| g.mono h₂
 #align order_hom.apply_mono OrderHom.apply_mono
@@ -352,8 +352,7 @@ def comp (g : β →o γ) (f : α →o β) : α →o γ :=
 #align order_hom.comp OrderHom.comp
 #align order_hom.comp_coe OrderHom.comp_coe
 
--- Porting note: `mono` tactic not implemented yet.
--- @[mono]
+@[mono]
 theorem comp_mono ⦃g₁ g₂ : β →o γ⦄ (hg : g₁ ≤ g₂) ⦃f₁ f₂ : α →o β⦄ (hf : f₁ ≤ f₂) :
     g₁.comp f₁ ≤ g₂.comp f₂ := fun _ => (hg _).trans (g₂.mono <| hf _)
 #align order_hom.comp_mono OrderHom.comp_mono
@@ -404,7 +403,7 @@ protected def prod (f : α →o β) (g : α →o γ) : α →o β × γ :=
 #align order_hom.prod OrderHom.prod
 #align order_hom.prod_coe OrderHom.prod_coe
 
---@[mono]
+@[mono]
 theorem prod_mono {f₁ f₂ : α →o β} (hf : f₁ ≤ f₂) {g₁ g₂ : α →o γ} (hg : g₁ ≤ g₂) :
     f₁.prod g₁ ≤ f₂.prod g₂ := fun _ => Prod.le_def.2 ⟨hf _, hg _⟩
 #align order_hom.prod_mono OrderHom.prod_mono
feat: require @[simps!] if simps runs in expensive mode (#1885)
  • This does not change the behavior of simps, just raises a linter error if you run simps in a more expensive mode without writing !.
  • Fixed some incorrect occurrences of to_additive, simps. Will do that systematically in future PR.
  • Fix port of OmegaCompletePartialOrder.ContinuousHom.ofMono a bit

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -359,7 +359,7 @@ theorem comp_mono ⦃g₁ g₂ : β →o γ⦄ (hg : g₁ ≤ g₂) ⦃f₁ f₂
 #align order_hom.comp_mono OrderHom.comp_mono
 
 /-- The composition of two bundled monotone functions, a fully bundled version. -/
-@[simps (config := { fullyApplied := false })]
+@[simps! (config := { fullyApplied := false })]
 def compₘ : (β →o γ) →o (α →o β) →o α →o γ :=
   curry ⟨fun f : (β →o γ) × (α →o β) => f.1.comp f.2, fun _ _ h => comp_mono h.1 h.2⟩
 #align order_hom.compₘ OrderHom.compₘ
@@ -416,21 +416,21 @@ theorem comp_prod_comp_same (f₁ f₂ : β →o γ) (g : α →o β) :
 
 /-- Given two bundled monotone maps `f`, `g`, `f.prod g` is the map `x ↦ (f x, g x)` bundled as a
 `OrderHom`. This is a fully bundled version. -/
-@[simps]
+@[simps!]
 def prodₘ : (α →o β) →o (α →o γ) →o α →o β × γ :=
   curry ⟨fun f : (α →o β) × (α →o γ) => f.1.prod f.2, fun _ _ h => prod_mono h.1 h.2⟩
 #align order_hom.prodₘ OrderHom.prodₘ
 #align order_hom.prodₘ_coe_coe_coe OrderHom.prodₘ_coe_coe_coe
 
 /-- Diagonal embedding of `α` into `α × α` as a `OrderHom`. -/
-@[simps]
+@[simps!]
 def diag : α →o α × α :=
   id.prod id
 #align order_hom.diag OrderHom.diag
 #align order_hom.diag_coe OrderHom.diag_coe
 
 /-- Restriction of `f : α →o α →o β` to the diagonal. -/
-@[simps (config := { simpRhs := true })]
+@[simps! (config := { simpRhs := true })]
 def onDiag (f : α →o α →o β) : α →o β :=
   (curry.symm f).comp diag
 #align order_hom.on_diag OrderHom.onDiag
@@ -506,7 +506,7 @@ def coeFnHom : (α →o β) →o α → β where
 
 /-- Function application `fun f => f a` (for fixed `a`) is a monotone function from the
 monotone function space `α →o β` to `β`. See also `Pi.evalOrderHom`.  -/
-@[simps (config := { fullyApplied := false })]
+@[simps! (config := { fullyApplied := false })]
 def apply (x : α) : (α →o β) →o β :=
   (Pi.evalOrderHom x).comp coeFnHom
 #align order_hom.apply OrderHom.apply
@@ -727,7 +727,7 @@ theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β}
 #align order_embedding.coe_of_strict_mono OrderEmbedding.coe_ofStrictMono
 
 /-- Embedding of a subtype into the ambient type as an `OrderEmbedding`. -/
-@[simps (config := { fullyApplied := false })]
+@[simps! (config := { fullyApplied := false })]
 def subtype (p : α → Prop) : Subtype p ↪o α :=
   ⟨Function.Embedding.subtype p, Iff.rfl⟩
 #align order_embedding.subtype OrderEmbedding.subtype
@@ -1094,7 +1094,7 @@ def ofHomInv {F G : Type _} [OrderHomClass F α β] [OrderHomClass G β α] (f :
 #align order_iso.of_hom_inv OrderIso.ofHomInv
 
 /-- Order isomorphism between `α → β` and `β`, where `α` has a unique element. -/
-@[simps toEquiv apply]
+@[simps! toEquiv apply]
 def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β where
   toEquiv := Equiv.funUnique α β
   map_rel_iff' := by simp [Pi.le_def, Unique.forall_iff]
@@ -1311,7 +1311,7 @@ namespace OrderIso
 variable [PartialOrder α] [PartialOrder β] [PartialOrder γ]
 
 /-- A version of `Equiv.optionCongr` for `WithTop`. -/
-@[simps apply]
+@[simps! apply]
 def withTopCongr (e : α ≃o β) : WithTop α ≃o WithTop β :=
   { e.toOrderEmbedding.withTopMap with
     toEquiv := e.toEquiv.optionCongr }
@@ -1335,7 +1335,7 @@ theorem withTopCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
 #align order_iso.with_top_congr_trans OrderIso.withTopCongr_trans
 
 /-- A version of `Equiv.optionCongr` for `WithBot`. -/
-@[simps apply]
+@[simps! apply]
 def withBotCongr (e : α ≃o β) : WithBot α ≃o WithBot β :=
   { e.toOrderEmbedding.withBotMap with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_bot_congr OrderIso.withBotCongr
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -287,6 +287,7 @@ theorem copy_eq (f : α →o β) (f' : α → β) (h : f' = f) : f.copy f' h = f
 def id : α →o α :=
   ⟨_root_.id, monotone_id⟩
 #align order_hom.id OrderHom.id
+#align order_hom.id_coe OrderHom.id_coe
 
 instance : Inhabited (α →o α) :=
   ⟨id⟩
@@ -349,6 +350,7 @@ theorem curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f
 def comp (g : β →o γ) (f : α →o β) : α →o γ :=
   ⟨g ∘ f, g.mono.comp f.mono⟩
 #align order_hom.comp OrderHom.comp
+#align order_hom.comp_coe OrderHom.comp_coe
 
 -- Porting note: `mono` tactic not implemented yet.
 -- @[mono]
@@ -361,6 +363,7 @@ theorem comp_mono ⦃g₁ g₂ : β →o γ⦄ (hg : g₁ ≤ g₂) ⦃f₁ f₂
 def compₘ : (β →o γ) →o (α →o β) →o α →o γ :=
   curry ⟨fun f : (β →o γ) × (α →o β) => f.1.comp f.2, fun _ _ h => comp_mono h.1 h.2⟩
 #align order_hom.compₘ OrderHom.compₘ
+#align order_hom.compₘ_coe_coe_coe OrderHom.compₘ_coe_coe_coe
 
 @[simp]
 theorem comp_id (f : α →o β) : comp f id = f := by
@@ -380,6 +383,7 @@ def const (α : Type _) [Preorder α] {β : Type _} [Preorder β] : β →o α 
   toFun b := ⟨Function.const α b, fun _ _ _ => le_rfl⟩
   monotone' _ _  h _ := h
 #align order_hom.const OrderHom.const
+#align order_hom.const_coe_coe OrderHom.const_coe_coe
 
 @[simp]
 theorem const_comp (f : α →o β) (c : γ) : (const β c).comp f = const α c :=
@@ -398,6 +402,7 @@ theorem comp_const (γ : Type _) [Preorder γ] (f : α →o β) (c : α) :
 protected def prod (f : α →o β) (g : α →o γ) : α →o β × γ :=
   ⟨fun x => (f x, g x), fun _ _ h => ⟨f.mono h, g.mono h⟩⟩
 #align order_hom.prod OrderHom.prod
+#align order_hom.prod_coe OrderHom.prod_coe
 
 --@[mono]
 theorem prod_mono {f₁ f₂ : α →o β} (hf : f₁ ≤ f₂) {g₁ g₂ : α →o γ} (hg : g₁ ≤ g₂) :
@@ -415,30 +420,35 @@ theorem comp_prod_comp_same (f₁ f₂ : β →o γ) (g : α →o β) :
 def prodₘ : (α →o β) →o (α →o γ) →o α →o β × γ :=
   curry ⟨fun f : (α →o β) × (α →o γ) => f.1.prod f.2, fun _ _ h => prod_mono h.1 h.2⟩
 #align order_hom.prodₘ OrderHom.prodₘ
+#align order_hom.prodₘ_coe_coe_coe OrderHom.prodₘ_coe_coe_coe
 
 /-- Diagonal embedding of `α` into `α × α` as a `OrderHom`. -/
 @[simps]
 def diag : α →o α × α :=
   id.prod id
 #align order_hom.diag OrderHom.diag
+#align order_hom.diag_coe OrderHom.diag_coe
 
 /-- Restriction of `f : α →o α →o β` to the diagonal. -/
 @[simps (config := { simpRhs := true })]
 def onDiag (f : α →o α →o β) : α →o β :=
   (curry.symm f).comp diag
 #align order_hom.on_diag OrderHom.onDiag
+#align order_hom.on_diag_coe OrderHom.onDiag_coe
 
 /-- `Prod.fst` as a `OrderHom`. -/
 @[simps]
 def fst : α × β →o α :=
   ⟨Prod.fst, fun _ _ h => h.1⟩
 #align order_hom.fst OrderHom.fst
+#align order_hom.fst_coe OrderHom.fst_coe
 
 /-- `Prod.snd` as a `OrderHom`. -/
 @[simps]
 def snd : α × β →o β :=
   ⟨Prod.snd, fun _ _ h => h.2⟩
 #align order_hom.snd OrderHom.snd
+#align order_hom.snd_coe OrderHom.snd_coe
 
 @[simp]
 theorem fst_prod_snd : (fst : α × β →o α).prod snd = id := by
@@ -466,12 +476,15 @@ def prodIso : (α →o β × γ) ≃o (α →o β) × (α →o γ) where
   right_inv f := by ext <;> rfl
   map_rel_iff' := forall_and.symm
 #align order_hom.prod_iso OrderHom.prodIso
+#align order_hom.prod_iso_apply OrderHom.prodIso_apply
+#align order_hom.prod_iso_symm_apply OrderHom.prodIso_symmApply
 
 /-- `Prod.map` of two `OrderHom`s as a `OrderHom`. -/
 @[simps]
 def prodMap (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
   ⟨Prod.map f g, fun _ _ h => ⟨f.mono h.1, g.mono h.2⟩⟩
 #align order_hom.prod_map OrderHom.prodMap
+#align order_hom.prod_map_coe OrderHom.prodMap_coe
 
 variable {ι : Type _} {π : ι → Type _} [∀ i, Preorder (π i)]
 
@@ -480,6 +493,7 @@ variable {ι : Type _} {π : ι → Type _} [∀ i, Preorder (π i)]
 def _root_.Pi.evalOrderHom (i : ι) : (∀ j, π j) →o π i :=
   ⟨Function.eval i, Function.monotone_eval i⟩
 #align pi.eval_order_hom Pi.evalOrderHom
+#align pi.eval_order_hom_coe Pi.evalOrderHom_coe
 
 /-- The "forgetful functor" from `α →o β` to `α → β` that takes the underlying function,
 is monotone. -/
@@ -488,6 +502,7 @@ def coeFnHom : (α →o β) →o α → β where
   toFun f := f
   monotone' _ _ h := h
 #align order_hom.coe_fn_hom OrderHom.coeFnHom
+#align order_hom.coe_fn_hom_coe OrderHom.coeFnHom_coe
 
 /-- Function application `fun f => f a` (for fixed `a`) is a monotone function from the
 monotone function space `α →o β` to `β`. See also `Pi.evalOrderHom`.  -/
@@ -495,6 +510,7 @@ monotone function space `α →o β` to `β`. See also `Pi.evalOrderHom`.  -/
 def apply (x : α) : (α →o β) →o β :=
   (Pi.evalOrderHom x).comp coeFnHom
 #align order_hom.apply OrderHom.apply
+#align order_hom.apply_coe OrderHom.apply_coe
 
 /-- Construct a bundled monotone map `α →o Π i, π i` from a family of monotone maps
 `f i : α →o π i`. -/
@@ -502,6 +518,7 @@ def apply (x : α) : (α →o β) →o β :=
 def pi (f : ∀ i, α →o π i) : α →o ∀ i, π i :=
   ⟨fun x i => f i x, fun _ _ h i => (f i).mono h⟩
 #align order_hom.pi OrderHom.pi
+#align order_hom.pi_coe OrderHom.pi_coe
 
 /-- Order isomorphism between bundled monotone maps `α →o Π i, π i` and families of bundled monotone
 maps `Π i, α →o π i`. -/
@@ -517,12 +534,15 @@ def piIso : (α →o ∀ i, π i) ≃o ∀ i, α →o π i where
     rfl
   map_rel_iff' := forall_swap
 #align order_hom.pi_iso OrderHom.piIso
+#align order_hom.pi_iso_apply OrderHom.piIso_apply
+#align order_hom.pi_iso_symm_apply OrderHom.piIso_symmApply
 
 /-- `Subtype.val` as a bundled monotone function.  -/
 @[simps (config := { fullyApplied := false })]
 def Subtype.val (p : α → Prop) : Subtype p →o α :=
   ⟨_root_.Subtype.val, fun _ _ h => h⟩
 #align order_hom.subtype.val OrderHom.Subtype.val
+#align order_hom.subtype.val_coe OrderHom.Subtype.val_coe
 
 /-- There is a unique monotone map from a subsingleton to itself. -/
 instance unique [Subsingleton α] : Unique (α →o α) where
@@ -543,6 +563,8 @@ protected def dual : (α →o β) ≃ (αᵒᵈ →o βᵒᵈ) where
   left_inv _ := ext _ _ rfl
   right_inv _ := ext _ _ rfl
 #align order_hom.dual OrderHom.dual
+#align order_hom.dual_apply_coe OrderHom.dual_apply_coe
+#align order_hom.dual_symm_apply_coe OrderHom.dual_symm_apply_coe
 
 -- Porting note: We used to be able to write `(OrderHom.id : α →o α).dual` here rather than
 -- `OrderHom.dual (OrderHom.id : α →o α)`.
@@ -580,12 +602,14 @@ def dualIso (α β : Type _) [Preorder α] [Preorder β] : (α →o β) ≃o (α
 protected def withBotMap (f : α →o β) : WithBot α →o WithBot β :=
   ⟨WithBot.map f, f.mono.withBot_map⟩
 #align order_hom.with_bot_map OrderHom.withBotMap
+#align order_hom.with_bot_map_coe OrderHom.withBotMap_coe
 
 /-- Lift an order homomorphism `f : α →o β` to an order homomorphism `WithTop α →o WithTop β`. -/
 @[simps (config := { fullyApplied := false })]
 protected def withTopMap (f : α →o β) : WithTop α →o WithTop β :=
   ⟨WithTop.map f, f.mono.withTop_map⟩
 #align order_hom.with_top_map OrderHom.withTopMap
+#align order_hom.with_top_map_coe OrderHom.withTopMap_coe
 
 end OrderHom
 
@@ -668,12 +692,14 @@ protected def withBotMap (f : α ↪o β) : WithBot α ↪o WithBot β :=
     toFun := WithBot.map f,
     map_rel_iff' := @fun a b => WithBot.map_le_iff f f.map_rel_iff a b }
 #align order_embedding.with_bot_map OrderEmbedding.withBotMap
+#align order_embedding.with_bot_map_apply OrderEmbedding.withBotMap_apply
 
 /-- A version of `WithTop.map` for order embeddings. -/
 @[simps (config := { fullyApplied := false })]
 protected def withTopMap (f : α ↪o β) : WithTop α ↪o WithTop β :=
   { f.dual.withBotMap.dual with toFun := WithTop.map f }
 #align order_embedding.with_top_map OrderEmbedding.withTopMap
+#align order_embedding.with_top_map_apply OrderEmbedding.withTopMap_apply
 
 /-- To define an order embedding from a partial order to a preorder it suffices to give a function
 together with a proof that it satisfies `f a ≤ f b ↔ a ≤ b`.
@@ -705,6 +731,7 @@ theorem coe_ofStrictMono {α β} [LinearOrder α] [Preorder β] {f : α → β}
 def subtype (p : α → Prop) : Subtype p ↪o α :=
   ⟨Function.Embedding.subtype p, Iff.rfl⟩
 #align order_embedding.subtype OrderEmbedding.subtype
+#align order_embedding.subtype_apply OrderEmbedding.subtype_apply
 
 /-- Convert an `OrderEmbedding` to a `OrderHom`. -/
 @[simps (config := { fullyApplied := false })]
@@ -712,6 +739,7 @@ def toOrderHom {X Y : Type _} [Preorder X] [Preorder Y] (f : X ↪o Y) : X →o
   toFun := f
   monotone' := f.monotone
 #align order_embedding.to_order_hom OrderEmbedding.toOrderHom
+#align order_embedding.to_order_hom_coe OrderEmbedding.toOrderHom_coe
 
 end OrderEmbedding
 
@@ -730,6 +758,7 @@ def toOrderHom : α →o β where
   toFun := f
   monotone' := StrictMono.monotone fun _ _ => f.map_rel
 #align rel_hom.to_order_hom RelHom.toOrderHom
+#align rel_hom.to_order_hom_coe RelHom.toOrderHom_coe
 
 end RelHom
 
@@ -1070,6 +1099,8 @@ def funUnique (α β : Type _) [Unique α] [Preorder β] : (α → β) ≃o β w
   toEquiv := Equiv.funUnique α β
   map_rel_iff' := by simp [Pi.le_def, Unique.forall_iff]
 #align order_iso.fun_unique OrderIso.funUnique
+#align order_iso.fun_unique_apply OrderIso.funUnique_apply
+#align order_iso.fun_unique_to_equiv OrderIso.funUnique_toEquiv
 
 @[simp]
 theorem funUnique_symm_apply {α β : Type _} [Unique α] [Preorder β] :
@@ -1118,6 +1149,8 @@ def orderIsoOfRightInverse (g : β → α) (hg : Function.RightInverse g f) : α
     left_inv := fun _ => h_mono.injective <| hg _,
     right_inv := hg }
 #align strict_mono.order_iso_of_right_inverse StrictMono.orderIsoOfRightInverse
+#align strict_mono.order_iso_of_right_inverse_apply StrictMono.orderIsoOfRightInverse_apply
+#align strict_mono.order_iso_of_right_inverse_symm_apply StrictMono.orderIsoOfRightInverse_symmApply
 
 end StrictMono
 
@@ -1283,6 +1316,7 @@ def withTopCongr (e : α ≃o β) : WithTop α ≃o WithTop β :=
   { e.toOrderEmbedding.withTopMap with
     toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_top_congr OrderIso.withTopCongr
+#align order_iso.with_top_congr_apply OrderIso.withTopCongr_apply
 
 @[simp]
 theorem withTopCongr_refl : (OrderIso.refl α).withTopCongr = OrderIso.refl _ :=
@@ -1305,6 +1339,7 @@ theorem withTopCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
 def withBotCongr (e : α ≃o β) : WithBot α ≃o WithBot β :=
   { e.toOrderEmbedding.withBotMap with toEquiv := e.toEquiv.optionCongr }
 #align order_iso.with_bot_congr OrderIso.withBotCongr
+#align order_iso.with_bot_congr_apply OrderIso.withBotCongr_apply
 
 @[simp]
 theorem withBotCongr_refl : (OrderIso.refl α).withBotCongr = OrderIso.refl _ :=
chore: fix casing errors per naming scheme (#1670)
Diff
@@ -57,7 +57,7 @@ because the more bundled version usually does not work with dot notation.
 * `OrderHom.pi`: combine a family of monotone maps `f i : α →o π i` into a monotone map
   `α →o Π i, π i`;
 * `OrderHom.piIso`: order isomorphism between `α →o Π i, π i` and `Π i, α →o π i`;
-* `OrderHom.subtype.val`: embedding `subtype.val : subtype p → α` as a bundled monotone map;
+* `OrderHom.subtype.val`: embedding `Subtype.val : Subtype p → α` as a bundled monotone map;
 * `OrderHom.dual`: reinterpret a monotone map `α →o β` as a monotone map `αᵒᵈ →o βᵒᵈ`;
 * `OrderHom.dualIso`: order isomorphism between `α →o β` and `(αᵒᵈ →o βᵒᵈ)ᵒᵈ`;
 * `OrderHom.compl`: order isomorphism `α ≃o αᵒᵈ` given by taking complements in a
@@ -1300,7 +1300,7 @@ theorem withTopCongr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
   RelIso.toEquiv_injective <| e₁.toEquiv.optionCongr_trans e₂.toEquiv
 #align order_iso.with_top_congr_trans OrderIso.withTopCongr_trans
 
-/-- A version of `equiv.optionCongr` for `WithBot`. -/
+/-- A version of `Equiv.optionCongr` for `WithBot`. -/
 @[simps apply]
 def withBotCongr (e : α ≃o β) : WithBot α ≃o WithBot β :=
   { e.toOrderEmbedding.withBotMap with toEquiv := e.toEquiv.optionCongr }
feat: port Order.OmegaCompletePartialOrder (#1168)

Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -260,6 +260,13 @@ theorem ext (f g : α →o β) (h : (f : α → β) = g) : f = g :=
   FunLike.coe_injective h
 #align order_hom.ext OrderHom.ext
 
+#noalign order_hom.coe_eq
+
+/-- One can lift an unbundled monotone function to a bundled one. -/
+instance : CanLift (α → β) (α →o β) (↑) Monotone where
+  prf f h := ⟨⟨f, h⟩, rfl⟩
+#align order_hom.monotone.can_lift OrderHom.instCanLiftForAllOrderHomToFunMonotone
+
 /-- Copy of an `OrderHom` with a new `toFun` equal to the old one. Useful to fix definitional
 equalities. -/
 protected def copy (f : α →o β) (f' : α → β) (h : f' = f) : α →o β :=
chore: the style linter shouldn't complain about long #align lines (#1643)
Diff
@@ -596,9 +596,7 @@ theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [Partia
     {f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)} {x : α} :
     RelEmbedding.orderEmbeddingOfLTEmbedding f x = f x :=
   rfl
-#align
-  rel_embedding.order_embedding_of_lt_embedding_apply
-  RelEmbedding.orderEmbeddingOfLTEmbedding_apply
+#align rel_embedding.order_embedding_of_lt_embedding_apply RelEmbedding.orderEmbeddingOfLTEmbedding_apply
 
 namespace OrderEmbedding
 
chore: remove iff_self from simp only after lean4#1933 (#1406)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -204,13 +204,13 @@ theorem map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
 @[simp]
 theorem map_inv_lt_iff (f : F) {a : α} {b : β} : EquivLike.inv f b < a ↔ b < f a := by
   rw [← map_lt_map_iff f]
-  simp only [EquivLike.apply_inv_apply, iff_self]
+  simp only [EquivLike.apply_inv_apply]
 #align map_inv_lt_iff map_inv_lt_iff
 
 @[simp]
 theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b := by
   rw [← map_lt_map_iff f]
-  simp only [EquivLike.apply_inv_apply, iff_self]
+  simp only [EquivLike.apply_inv_apply]
 #align lt_map_inv_iff lt_map_inv_iff
 
 end OrderIsoClass
chore: fix more casing errors per naming scheme (#1232)

I've avoided anything under Tactic or test.

In correcting the names, I found Option.isNone_iff_eq_none duplicated between Std and Mathlib, so the Mathlib one has been removed.

Co-authored-by: Reid Barton <rwbarton@gmail.com>

Diff
@@ -583,22 +583,22 @@ protected def withTopMap (f : α →o β) : WithTop α →o WithTop β :=
 end OrderHom
 
 /-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
-def RelEmbedding.orderEmbeddingOfLtEmbedding [PartialOrder α] [PartialOrder β]
+def RelEmbedding.orderEmbeddingOfLTEmbedding [PartialOrder α] [PartialOrder β]
     (f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)) : α ↪o β :=
   { f with
     map_rel_iff' := by
       intros
       simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] }
-#align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLtEmbedding
+#align rel_embedding.order_embedding_of_lt_embedding RelEmbedding.orderEmbeddingOfLTEmbedding
 
 @[simp]
-theorem RelEmbedding.orderEmbeddingOfLtEmbedding_apply [PartialOrder α] [PartialOrder β]
+theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply [PartialOrder α] [PartialOrder β]
     {f : ((· < ·) : α → α → Prop) ↪r ((· < ·) : β → β → Prop)} {x : α} :
-    RelEmbedding.orderEmbeddingOfLtEmbedding f x = f x :=
+    RelEmbedding.orderEmbeddingOfLTEmbedding f x = f x :=
   rfl
 #align
   rel_embedding.order_embedding_of_lt_embedding_apply
-  RelEmbedding.orderEmbeddingOfLtEmbedding_apply
+  RelEmbedding.orderEmbeddingOfLTEmbedding_apply
 
 namespace OrderEmbedding
 
chore: fix casing per naming scheme (#1183)

Fix a lot of wrong casing mostly in the docstrings but also sometimes in def/theorem names. E.g. fin 2 --> Fin 2, add_monoid_hom --> AddMonoidHom

Remove \n from to_additive docstrings that were inserted by mathport.

Move files and directories with Gcd and Smul to GCD and SMul

Diff
@@ -50,7 +50,7 @@ because the more bundled version usually does not work with dot notation.
 * `OrderHom.fst`: projection `prod.fst : α × β → α` as a bundled monotone map;
 * `OrderHom.snd`: projection `prod.snd : α × β → β` as a bundled monotone map;
 * `OrderHom.prodMap`: `prod.map f g` as a bundled monotone map;
-* `Pi.evalOrderHom`: evaluation of a function at a point `function.eval i` as a bundled
+* `Pi.evalOrderHom`: evaluation of a function at a point `Function.eval i` as a bundled
   monotone map;
 * `OrderHom.coeFnHom`: coercion to function as a bundled monotone map;
 * `OrderHom.apply`: application of a `OrderHom` at a point as a bundled monotone map;
@@ -1234,7 +1234,7 @@ end WithBot
 namespace WithTop
 
 /-- Taking the dual then adding `⊤` is the same as adding `⊥` then taking the dual.
-This is the order iso form of `WithTop.ofDual`, as proven by `coe_to_dualBotEquiv_eq`. -/
+This is the order iso form of `WithTop.ofDual`, as proven by `coe_toDualBotEquiv_eq`. -/
 protected def toDualBotEquiv [LE α] : WithTop αᵒᵈ ≃o (WithBot α)ᵒᵈ :=
   OrderIso.refl _
 #align with_top.to_dual_bot_equiv WithTop.toDualBotEquiv
feat: better coercions from hom classes to hom types (#1150)

Discussed here

Diff
@@ -131,8 +131,16 @@ export OrderIsoClass (map_le_map_iff)
 
 attribute [simp] map_le_map_iff
 
+/-- Turn an element of a type `F` satisfying `OrderIsoClass F α β` into an actual
+`OrderIso`. This is declared as the default coercion from `F` to `α ≃o β`. -/
+@[coe]
+def OrderIsoClass.toOrderIso {_ : LE α} {_ : LE β} [OrderIsoClass F α β] (f : F) : α ≃o β :=
+{ EquivLike.toEquiv f with map_rel_iff' := map_le_map_iff f }
+
+/-- Any type satisfying `OrderIsoClass` can be cast into `OrderIso` via
+`OrderIsoClass.toOrderIso`. -/
 instance {_ : LE α} {_ : LE β} [OrderIsoClass F α β] : CoeTC F (α ≃o β) :=
-  ⟨fun f => ⟨f, map_le_map_iff f⟩⟩
+  ⟨OrderIsoClass.toOrderIso⟩
 
 -- See note [lower instance priority]
 instance (priority := 100) OrderIsoClass.toOrderHomClass {_ : LE α} {_ : LE β}
@@ -151,8 +159,17 @@ protected theorem monotone (f : F) : Monotone f := fun _ _ => map_rel f
 protected theorem mono (f : F) : Monotone f := fun _ _ => map_rel f
 #align order_hom_class.mono OrderHomClass.mono
 
+/-- Turn an element of a type `F` satisfying `OrderHomClass F α β` into an actual
+`OrderHomClass`. This is declared as the default coercion from `F` to `α →o β`. -/
+@[coe]
+def toOrderHom (f : F) : α →o β where
+  toFun := f
+  monotone' := OrderHomClass.monotone f
+
+/-- Any type satisfying `OrderHomClass` can be cast into `OrderHom` via
+`OrderHomClass.toOrderHom`. -/
 instance : CoeTC F (α →o β) :=
-  ⟨fun f => { toFun := f, monotone' := OrderHomClass.mono _ }⟩
+  ⟨toOrderHom⟩
 
 end OrderHomClass
 
chore: add source headers to ported theory files (#1094)

The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md

Diff
@@ -2,6 +2,11 @@
 Copyright (c) 2020 Johan Commelin. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin
+
+! This file was ported from Lean 3 source module order.hom.basic
+! leanprover-community/mathlib commit 62a5626868683c104774de8d85b9855234ac807c
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
 -/
 import Mathlib.Logic.Equiv.Option
 import Mathlib.Order.RelIso.Basic

Dependencies 33

34 files ported (100.0%)
16404 lines ported (100.0%)

All dependencies are ported!