order.hom.lattice
⟷
Mathlib.Order.Hom.Lattice
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
@@ -968,3 +968,185 @@ bounded lattices. -/
(bounded_lattice_hom.dual.symm g).comp (bounded_lattice_hom.dual.symm f) := rfl
end bounded_lattice_hom
+
+/-! ### `with_top`, `with_bot` -/
+
+namespace sup_hom
+variables [semilattice_sup α] [semilattice_sup β] [semilattice_sup γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of a `sup_hom`. -/
+@[simps] protected def with_top (f : sup_hom α β) : sup_hom (with_top α) (with_top β) :=
+{ to_fun := option.map f,
+ map_sup' := λ a b, match a, b with
+ | ⊤, ⊤ := rfl
+ | ⊤, (b : α) := rfl
+ | (a : α), ⊤ := rfl
+ | (a : α), (b : α) := congr_arg _ (f.map_sup' _ _)
+ end }
+
+@[simp] lemma with_top_id : (sup_hom.id α).with_top = sup_hom.id _ :=
+fun_like.coe_injective option.map_id
+
+@[simp] lemma with_top_comp (f : sup_hom β γ) (g : sup_hom α β) :
+ (f.comp g).with_top = f.with_top.comp g.with_top :=
+fun_like.coe_injective (option.map_comp_map _ _).symm
+
+/-- Adjoins a `⊥` to the domain and codomain of a `sup_hom`. -/
+@[simps] protected def with_bot (f : sup_hom α β) : sup_bot_hom (with_bot α) (with_bot β) :=
+{ to_fun := option.map f,
+ map_sup' := λ a b, match a, b with
+ | ⊥, ⊥ := rfl
+ | ⊥, (b : α) := rfl
+ | (a : α), ⊥ := rfl
+ | (a : α), (b : α) := congr_arg _ (f.map_sup' _ _)
+ end,
+ map_bot' := rfl }
+
+@[simp] lemma with_bot_id : (sup_hom.id α).with_bot = sup_bot_hom.id _ :=
+fun_like.coe_injective option.map_id
+
+@[simp] lemma with_bot_comp (f : sup_hom β γ) (g : sup_hom α β) :
+ (f.comp g).with_bot = f.with_bot.comp g.with_bot :=
+fun_like.coe_injective (option.map_comp_map _ _).symm
+
+/-- Adjoins a `⊤` to the codomain of a `sup_hom`. -/
+@[simps] def with_top' [order_top β] (f : sup_hom α β) : sup_hom (with_top α) β :=
+{ to_fun := λ a, a.elim ⊤ f,
+ map_sup' := λ a b, match a, b with
+ | ⊤, ⊤ := top_sup_eq.symm
+ | ⊤, (b : α) := top_sup_eq.symm
+ | (a : α), ⊤ := sup_top_eq.symm
+ | (a : α), (b : α) := f.map_sup' _ _
+ end }
+
+/-- Adjoins a `⊥` to the domain of a `sup_hom`. -/
+@[simps] def with_bot' [order_bot β] (f : sup_hom α β) : sup_bot_hom (with_bot α) β :=
+{ to_fun := λ a, a.elim ⊥ f,
+ map_sup' := λ a b, match a, b with
+ | ⊥, ⊥ := bot_sup_eq.symm
+ | ⊥, (b : α) := bot_sup_eq.symm
+ | (a : α), ⊥ := sup_bot_eq.symm
+ | (a : α), (b : α) := f.map_sup' _ _
+ end,
+ map_bot' := rfl }
+
+end sup_hom
+
+namespace inf_hom
+variables [semilattice_inf α] [semilattice_inf β] [semilattice_inf γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of an `inf_hom`. -/
+@[simps] protected def with_top (f : inf_hom α β) : inf_top_hom (with_top α) (with_top β) :=
+{ to_fun := option.map f,
+ map_inf' := λ a b, match a, b with
+ | ⊤, ⊤ := rfl
+ | ⊤, (b : α) := rfl
+ | (a : α), ⊤ := rfl
+ | (a : α), (b : α) := congr_arg _ (f.map_inf' _ _)
+ end,
+ map_top' := rfl }
+
+@[simp] lemma with_top_id : (inf_hom.id α).with_top = inf_top_hom.id _ :=
+fun_like.coe_injective option.map_id
+
+@[simp] lemma with_top_comp (f : inf_hom β γ) (g : inf_hom α β) :
+ (f.comp g).with_top = f.with_top.comp g.with_top :=
+fun_like.coe_injective (option.map_comp_map _ _).symm
+
+/-- Adjoins a `⊥ to the domain and codomain of an `inf_hom`. -/
+@[simps] protected def with_bot (f : inf_hom α β) : inf_hom (with_bot α) (with_bot β) :=
+{ to_fun := option.map f,
+ map_inf' := λ a b, match a, b with
+ | ⊥, ⊥ := rfl
+ | ⊥, (b : α) := rfl
+ | (a : α), ⊥ := rfl
+ | (a : α), (b : α) := congr_arg _ (f.map_inf' _ _)
+ end }
+
+@[simp] lemma with_bot_id : (inf_hom.id α).with_bot = inf_hom.id _ :=
+fun_like.coe_injective option.map_id
+
+@[simp] lemma with_bot_comp (f : inf_hom β γ) (g : inf_hom α β) :
+ (f.comp g).with_bot = f.with_bot.comp g.with_bot :=
+fun_like.coe_injective (option.map_comp_map _ _).symm
+
+/-- Adjoins a `⊤` to the codomain of an `inf_hom`. -/
+@[simps] def with_top' [order_top β] (f : inf_hom α β) : inf_top_hom (with_top α) β :=
+{ to_fun := λ a, a.elim ⊤ f,
+ map_inf' := λ a b, match a, b with
+ | ⊤, ⊤ := top_inf_eq.symm
+ | ⊤, (b : α) := top_inf_eq.symm
+ | (a : α), ⊤ := inf_top_eq.symm
+ | (a : α), (b : α) := f.map_inf' _ _
+ end,
+ map_top' := rfl }
+
+/-- Adjoins a `⊥` to the codomain of an `inf_hom`. -/
+@[simps] def with_bot' [order_bot β] (f : inf_hom α β) : inf_hom (with_bot α) β :=
+{ to_fun := λ a, a.elim ⊥ f,
+ map_inf' := λ a b, match a, b with
+ | ⊥, ⊥ := bot_inf_eq.symm
+ | ⊥, (b : α) := bot_inf_eq.symm
+ | (a : α), ⊥ := inf_bot_eq.symm
+ | (a : α), (b : α) := f.map_inf' _ _
+ end }
+
+end inf_hom
+
+namespace lattice_hom
+variables [lattice α] [lattice β] [lattice γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of a `lattice_hom`. -/
+@[simps] protected def with_top (f : lattice_hom α β) : lattice_hom (with_top α) (with_top β) :=
+{ to_sup_hom := f.to_sup_hom.with_top, ..f.to_inf_hom.with_top }
+
+@[simp] lemma with_top_id : (lattice_hom.id α).with_top = lattice_hom.id _ :=
+fun_like.coe_injective option.map_id
+
+@[simp] lemma with_top_comp (f : lattice_hom β γ) (g : lattice_hom α β) :
+ (f.comp g).with_top = f.with_top.comp g.with_top :=
+fun_like.coe_injective (option.map_comp_map _ _).symm
+
+/-- Adjoins a `⊥` to the domain and codomain of a `lattice_hom`. -/
+@[simps] protected def with_bot (f : lattice_hom α β) : lattice_hom (with_bot α) (with_bot β) :=
+{ to_sup_hom := f.to_sup_hom.with_bot, ..f.to_inf_hom.with_bot }
+
+@[simp] lemma with_bot_id : (lattice_hom.id α).with_bot = lattice_hom.id _ :=
+fun_like.coe_injective option.map_id
+
+@[simp] lemma with_bot_comp (f : lattice_hom β γ) (g : lattice_hom α β) :
+ (f.comp g).with_bot = f.with_bot.comp g.with_bot :=
+fun_like.coe_injective (option.map_comp_map _ _).symm
+
+/-- Adjoins a `⊤` and `⊥` to the domain and codomain of a `lattice_hom`. -/
+@[simps] def with_top_with_bot (f : lattice_hom α β) :
+ bounded_lattice_hom (with_top $ with_bot α) (with_top $ with_bot β) :=
+⟨f.with_bot.with_top, rfl, rfl⟩
+
+@[simp] lemma with_top_with_bot_id :
+ (lattice_hom.id α).with_top_with_bot = bounded_lattice_hom.id _ :=
+fun_like.coe_injective $ begin
+ refine (congr_arg option.map _).trans option.map_id,
+ rw with_bot_id,
+ refl,
+end
+
+@[simp] lemma with_top_with_bot_comp (f : lattice_hom β γ) (g : lattice_hom α β) :
+ (f.comp g).with_top_with_bot = f.with_top_with_bot.comp g.with_top_with_bot :=
+fun_like.coe_injective $ (congr_arg option.map $ (option.map_comp_map _ _).symm).trans
+ (option.map_comp_map _ _).symm
+
+/-- Adjoins a `⊥` to the codomain of a `lattice_hom`. -/
+@[simps] def with_top' [order_top β] (f : lattice_hom α β) : lattice_hom (with_top α) β :=
+{ ..f.to_sup_hom.with_top', ..f.to_inf_hom.with_top' }
+
+/-- Adjoins a `⊥` to the domain and codomain of a `lattice_hom`. -/
+@[simps] def with_bot' [order_bot β] (f : lattice_hom α β) : lattice_hom (with_bot α) β :=
+{ ..f.to_sup_hom.with_bot', ..f.to_inf_hom.with_bot' }
+
+/-- Adjoins a `⊤` and `⊥` to the codomain of a `lattice_hom`. -/
+@[simps] def with_top_with_bot' [bounded_order β] (f : lattice_hom α β) :
+ bounded_lattice_hom (with_top $ with_bot α) β :=
+{ to_lattice_hom := f.with_bot'.with_top', map_top' := rfl, map_bot' := rfl }
+
+end lattice_hom
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
Move map_finset_sup
/map_finset_inf
from order.hom.lattice
to data.finset.lattice
. This breaks a few unqualified downstream uses of submodule.map_bot
.
@@ -3,7 +3,6 @@ Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
-import data.finset.lattice
import order.hom.bounded
import order.symm_diff
@@ -216,18 +215,6 @@ instance order_iso_class.to_bounded_lattice_hom_class [lattice α] [lattice β]
bounded_lattice_hom_class F α β :=
{ ..order_iso_class.to_lattice_hom_class, ..order_iso_class.to_bounded_order_hom_class }
-@[simp] lemma map_finset_sup [semilattice_sup α] [order_bot α] [semilattice_sup β] [order_bot β]
- [sup_bot_hom_class F α β] (f : F) (s : finset ι) (g : ι → α) :
- f (s.sup g) = s.sup (f ∘ g) :=
-finset.cons_induction_on s (map_bot f) $ λ i s _ h,
- by rw [finset.sup_cons, finset.sup_cons, map_sup, h]
-
-@[simp] lemma map_finset_inf [semilattice_inf α] [order_top α] [semilattice_inf β] [order_top β]
- [inf_top_hom_class F α β] (f : F) (s : finset ι) (g : ι → α) :
- f (s.inf g) = s.inf (f ∘ g) :=
-finset.cons_induction_on s (map_top f) $ λ i s _ h,
- by rw [finset.inf_cons, finset.inf_cons, map_inf, h]
-
section bounded_lattice
variables [lattice α] [bounded_order α] [lattice β] [bounded_order β]
[bounded_lattice_hom_class F α β] (f : F) {a b : α}
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -169,7 +169,7 @@ attribute [simp] map_top map_bot map_sup map_inf
instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [SemilatticeSup β]
[SupHomClass F α β] : OrderHomClass F α β :=
{ ‹SupHomClass F α β› with
- map_rel := fun f a b h => by rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h] }
+ mapRel := fun f a b h => by rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h] }
#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClass
-/
@@ -178,7 +178,7 @@ instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [Semi
instance (priority := 100) InfHomClass.toOrderHomClass [SemilatticeInf α] [SemilatticeInf β]
[InfHomClass F α β] : OrderHomClass F α β :=
{ ‹InfHomClass F α β› with
- map_rel := fun f a b h => by rw [← inf_eq_left, ← map_inf, inf_eq_left.2 h] }
+ mapRel := fun f a b h => by rw [← inf_eq_left, ← map_inf, inf_eq_left.2 h] }
#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClass
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -100,7 +100,7 @@ section
You should extend this class when you extend `sup_hom`. -/
class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] extends
- FunLike F α fun _ => β where
+ DFunLike F α fun _ => β where
map_sup (f : F) (a b : α) : f (a ⊔ b) = f a ⊔ f b
#align sup_hom_class SupHomClass
-/
@@ -110,7 +110,7 @@ class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] ex
You should extend this class when you extend `inf_hom`. -/
class InfHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] extends
- FunLike F α fun _ => β where
+ DFunLike F α fun _ => β where
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
#align inf_hom_class InfHomClass
-/
@@ -392,7 +392,7 @@ theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
#print SupHom.ext /-
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align sup_hom.ext SupHom.ext
-/
@@ -415,7 +415,7 @@ theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
#print SupHom.copy_eq /-
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align sup_hom.copy_eq SupHom.copy_eq
-/
@@ -495,7 +495,7 @@ theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
#print SupHom.cancel_right /-
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => SupHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
+ ⟨fun h => SupHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg _⟩
#align sup_hom.cancel_right SupHom.cancel_right
-/
@@ -539,7 +539,7 @@ instance : Sup (SupHom α β) :=
⟨f ⊔ g, fun a b => by rw [Pi.sup_apply, map_sup, map_sup]; exact sup_sup_sup_comm _ _ _ _⟩⟩
instance : SemilatticeSup (SupHom α β) :=
- FunLike.coe_injective.SemilatticeSup _ fun f g => rfl
+ DFunLike.coe_injective.SemilatticeSup _ fun f g => rfl
instance [Bot β] : Bot (SupHom α β) :=
⟨SupHom.const α ⊥⟩
@@ -632,7 +632,7 @@ theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
#print InfHom.ext /-
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align inf_hom.ext InfHom.ext
-/
@@ -655,7 +655,7 @@ theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
#print InfHom.copy_eq /-
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align inf_hom.copy_eq InfHom.copy_eq
-/
@@ -735,7 +735,7 @@ theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
#print InfHom.cancel_right /-
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => InfHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
+ ⟨fun h => InfHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg _⟩
#align inf_hom.cancel_right InfHom.cancel_right
-/
@@ -779,7 +779,7 @@ instance : Inf (InfHom α β) :=
⟨f ⊓ g, fun a b => by rw [Pi.inf_apply, map_inf, map_inf]; exact inf_inf_inf_comm _ _ _ _⟩⟩
instance : SemilatticeInf (InfHom α β) :=
- FunLike.coe_injective.SemilatticeInf _ fun f g => rfl
+ DFunLike.coe_injective.SemilatticeInf _ fun f g => rfl
instance [Bot β] : Bot (InfHom α β) :=
⟨InfHom.const α ⊥⟩
@@ -868,7 +868,7 @@ instance : SupBotHomClass (SupBotHom α β) α β
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly. -/
instance : CoeFun (SupBotHom α β) fun _ => α → β :=
- FunLike.hasCoeToFun
+ DFunLike.hasCoeToFun
#print SupBotHom.toFun_eq_coe /-
@[simp]
@@ -880,7 +880,7 @@ theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
#print SupBotHom.ext /-
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align sup_bot_hom.ext SupBotHom.ext
-/
@@ -901,7 +901,7 @@ theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
#print SupBotHom.copy_eq /-
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align sup_bot_hom.copy_eq SupBotHom.copy_eq
-/
@@ -980,7 +980,7 @@ theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
#print SupBotHom.cancel_right /-
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
+ ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg _⟩
#align sup_bot_hom.cancel_right SupBotHom.cancel_right
-/
@@ -999,7 +999,7 @@ instance : Sup (SupBotHom α β) :=
⟨fun f g => { f.toBotHom ⊔ g.toBotHom with toSupHom := f.toSupHom ⊔ g.toSupHom }⟩
instance : SemilatticeSup (SupBotHom α β) :=
- FunLike.coe_injective.SemilatticeSup _ fun f g => rfl
+ DFunLike.coe_injective.SemilatticeSup _ fun f g => rfl
instance : OrderBot (SupBotHom α β) where
bot := ⟨⊥, rfl⟩
@@ -1063,7 +1063,7 @@ instance : InfTopHomClass (InfTopHom α β) α β
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly. -/
instance : CoeFun (InfTopHom α β) fun _ => α → β :=
- FunLike.hasCoeToFun
+ DFunLike.hasCoeToFun
#print InfTopHom.toFun_eq_coe /-
@[simp]
@@ -1075,7 +1075,7 @@ theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
#print InfTopHom.ext /-
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align inf_top_hom.ext InfTopHom.ext
-/
@@ -1096,7 +1096,7 @@ theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
#print InfTopHom.copy_eq /-
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align inf_top_hom.copy_eq InfTopHom.copy_eq
-/
@@ -1175,7 +1175,7 @@ theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
#print InfTopHom.cancel_right /-
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
+ ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg _⟩
#align inf_top_hom.cancel_right InfTopHom.cancel_right
-/
@@ -1194,7 +1194,7 @@ instance : Inf (InfTopHom α β) :=
⟨fun f g => { f.toTopHom ⊓ g.toTopHom with toInfHom := f.toInfHom ⊓ g.toInfHom }⟩
instance : SemilatticeInf (InfTopHom α β) :=
- FunLike.coe_injective.SemilatticeInf _ fun f g => rfl
+ DFunLike.coe_injective.SemilatticeInf _ fun f g => rfl
instance : OrderTop (InfTopHom α β) where
top := ⟨⊤, rfl⟩
@@ -1266,7 +1266,7 @@ theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
#print LatticeHom.ext /-
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align lattice_hom.ext LatticeHom.ext
-/
@@ -1287,7 +1287,7 @@ theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.co
#print LatticeHom.copy_eq /-
theorem copy_eq (f : LatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align lattice_hom.copy_eq LatticeHom.copy_eq
-/
@@ -1383,7 +1383,7 @@ theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
#print LatticeHom.cancel_right /-
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => LatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
+ ⟨fun h => LatticeHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg _⟩
#align lattice_hom.cancel_right LatticeHom.cancel_right
-/
@@ -1496,7 +1496,7 @@ theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :
#print BoundedLatticeHom.ext /-
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align bounded_lattice_hom.ext BoundedLatticeHom.ext
-/
@@ -1517,7 +1517,7 @@ theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
#print BoundedLatticeHom.copy_eq /-
theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eq
-/
@@ -1621,7 +1621,7 @@ theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f
#print BoundedLatticeHom.cancel_right /-
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => BoundedLatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
+ ⟨fun h => BoundedLatticeHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg _⟩
#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_right
-/
@@ -1950,7 +1950,7 @@ protected def withTop (f : SupHom α β) : SupHom (WithTop α) (WithTop β)
#print SupHom.withTop_id /-
@[simp]
theorem withTop_id : (SupHom.id α).WithTop = SupHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align sup_hom.with_top_id SupHom.withTop_id
-/
@@ -1958,7 +1958,7 @@ theorem withTop_id : (SupHom.id α).WithTop = SupHom.id _ :=
@[simp]
theorem withTop_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).WithTop = f.WithTop.comp g.WithTop :=
- FunLike.coe_injective (Option.map_comp_map _ _).symm
+ DFunLike.coe_injective (Option.map_comp_map _ _).symm
#align sup_hom.with_top_comp SupHom.withTop_comp
-/
@@ -1981,7 +1981,7 @@ protected def withBot (f : SupHom α β) : SupBotHom (WithBot α) (WithBot β)
#print SupHom.withBot_id /-
@[simp]
theorem withBot_id : (SupHom.id α).WithBot = SupBotHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align sup_hom.with_bot_id SupHom.withBot_id
-/
@@ -1989,7 +1989,7 @@ theorem withBot_id : (SupHom.id α).WithBot = SupBotHom.id _ :=
@[simp]
theorem withBot_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).WithBot = f.WithBot.comp g.WithBot :=
- FunLike.coe_injective (Option.map_comp_map _ _).symm
+ DFunLike.coe_injective (Option.map_comp_map _ _).symm
#align sup_hom.with_bot_comp SupHom.withBot_comp
-/
@@ -2049,7 +2049,7 @@ protected def withTop (f : InfHom α β) : InfTopHom (WithTop α) (WithTop β)
#print InfHom.withTop_id /-
@[simp]
theorem withTop_id : (InfHom.id α).WithTop = InfTopHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align inf_hom.with_top_id InfHom.withTop_id
-/
@@ -2057,7 +2057,7 @@ theorem withTop_id : (InfHom.id α).WithTop = InfTopHom.id _ :=
@[simp]
theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).WithTop = f.WithTop.comp g.WithTop :=
- FunLike.coe_injective (Option.map_comp_map _ _).symm
+ DFunLike.coe_injective (Option.map_comp_map _ _).symm
#align inf_hom.with_top_comp InfHom.withTop_comp
-/
@@ -2079,7 +2079,7 @@ protected def withBot (f : InfHom α β) : InfHom (WithBot α) (WithBot β)
#print InfHom.withBot_id /-
@[simp]
theorem withBot_id : (InfHom.id α).WithBot = InfHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align inf_hom.with_bot_id InfHom.withBot_id
-/
@@ -2087,7 +2087,7 @@ theorem withBot_id : (InfHom.id α).WithBot = InfHom.id _ :=
@[simp]
theorem withBot_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).WithBot = f.WithBot.comp g.WithBot :=
- FunLike.coe_injective (Option.map_comp_map _ _).symm
+ DFunLike.coe_injective (Option.map_comp_map _ _).symm
#align inf_hom.with_bot_comp InfHom.withBot_comp
-/
@@ -2139,7 +2139,7 @@ protected def withTop (f : LatticeHom α β) : LatticeHom (WithTop α) (WithTop
#print LatticeHom.withTop_id /-
@[simp]
theorem withTop_id : (LatticeHom.id α).WithTop = LatticeHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align lattice_hom.with_top_id LatticeHom.withTop_id
-/
@@ -2147,7 +2147,7 @@ theorem withTop_id : (LatticeHom.id α).WithTop = LatticeHom.id _ :=
@[simp]
theorem withTop_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).WithTop = f.WithTop.comp g.WithTop :=
- FunLike.coe_injective (Option.map_comp_map _ _).symm
+ DFunLike.coe_injective (Option.map_comp_map _ _).symm
#align lattice_hom.with_top_comp LatticeHom.withTop_comp
-/
@@ -2162,7 +2162,7 @@ protected def withBot (f : LatticeHom α β) : LatticeHom (WithBot α) (WithBot
#print LatticeHom.withBot_id /-
@[simp]
theorem withBot_id : (LatticeHom.id α).WithBot = LatticeHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align lattice_hom.with_bot_id LatticeHom.withBot_id
-/
@@ -2170,7 +2170,7 @@ theorem withBot_id : (LatticeHom.id α).WithBot = LatticeHom.id _ :=
@[simp]
theorem withBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).WithBot = f.WithBot.comp g.WithBot :=
- FunLike.coe_injective (Option.map_comp_map _ _).symm
+ DFunLike.coe_injective (Option.map_comp_map _ _).symm
#align lattice_hom.with_bot_comp LatticeHom.withBot_comp
-/
@@ -2186,7 +2186,7 @@ def withTopWithBot (f : LatticeHom α β) :
#print LatticeHom.withTopWithBot_id /-
@[simp]
theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHom.id _ :=
- FunLike.coe_injective <|
+ DFunLike.coe_injective <|
by
refine' (congr_arg Option.map _).trans Option.map_id
rw [with_bot_id]
@@ -2198,7 +2198,7 @@ theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHo
@[simp]
theorem withTopWithBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withTopWithBot = f.withTopWithBot.comp g.withTopWithBot :=
- FunLike.coe_injective <|
+ DFunLike.coe_injective <|
(congr_arg Option.map <| (Option.map_comp_map _ _).symm).trans (Option.map_comp_map _ _).symm
#align lattice_hom.with_top_with_bot_comp LatticeHom.withTopWithBot_comp
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
-import Mathbin.Order.Hom.Bounded
-import Mathbin.Order.SymmDiff
+import Order.Hom.Bounded
+import Order.SymmDiff
#align_import order.hom.lattice from "leanprover-community/mathlib"@"7581030920af3dcb241d1df0e36f6ec8289dd6be"
mathlib commit https://github.com/leanprover-community/mathlib/commit/63721b2c3eba6c325ecf8ae8cca27155a4f6306f
@@ -325,11 +325,11 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
#align map_sdiff' map_sdiff'
-/
-#print map_symm_diff' /-
+#print map_symmDiff' /-
/-- Special case of `map_symm_diff` for boolean algebras. -/
-theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
+theorem map_symmDiff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff']
-#align map_symm_diff' map_symm_diff'
+#align map_symm_diff' map_symmDiff'
-/
end BooleanAlgebra
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.hom.lattice
-! leanprover-community/mathlib commit 7581030920af3dcb241d1df0e36f6ec8289dd6be
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Order.Hom.Bounded
import Mathbin.Order.SymmDiff
+#align_import order.hom.lattice from "leanprover-community/mathlib"@"7581030920af3dcb241d1df0e36f6ec8289dd6be"
+
/-!
# Lattice homomorphisms
mathlib commit https://github.com/leanprover-community/mathlib/commit/8efcf8022aac8e01df8d302dcebdbc25d6a886c8
@@ -1935,6 +1935,7 @@ namespace SupHom
variable [SemilatticeSup α] [SemilatticeSup β] [SemilatticeSup γ]
+#print SupHom.withTop /-
/-- Adjoins a `⊤` to the domain and codomain of a `sup_hom`. -/
@[simps]
protected def withTop (f : SupHom α β) : SupHom (WithTop α) (WithTop β)
@@ -1947,18 +1948,24 @@ protected def withTop (f : SupHom α β) : SupHom (WithTop α) (WithTop β)
| (a : α), ⊤ => rfl
| (a : α), (b : α) => congr_arg _ (f.map_sup' _ _)
#align sup_hom.with_top SupHom.withTop
+-/
+#print SupHom.withTop_id /-
@[simp]
theorem withTop_id : (SupHom.id α).WithTop = SupHom.id _ :=
FunLike.coe_injective Option.map_id
#align sup_hom.with_top_id SupHom.withTop_id
+-/
+#print SupHom.withTop_comp /-
@[simp]
theorem withTop_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).WithTop = f.WithTop.comp g.WithTop :=
FunLike.coe_injective (Option.map_comp_map _ _).symm
#align sup_hom.with_top_comp SupHom.withTop_comp
+-/
+#print SupHom.withBot /-
/-- Adjoins a `⊥` to the domain and codomain of a `sup_hom`. -/
@[simps]
protected def withBot (f : SupHom α β) : SupBotHom (WithBot α) (WithBot β)
@@ -1972,18 +1979,24 @@ protected def withBot (f : SupHom α β) : SupBotHom (WithBot α) (WithBot β)
| (a : α), (b : α) => congr_arg _ (f.map_sup' _ _)
map_bot' := rfl
#align sup_hom.with_bot SupHom.withBot
+-/
+#print SupHom.withBot_id /-
@[simp]
theorem withBot_id : (SupHom.id α).WithBot = SupBotHom.id _ :=
FunLike.coe_injective Option.map_id
#align sup_hom.with_bot_id SupHom.withBot_id
+-/
+#print SupHom.withBot_comp /-
@[simp]
theorem withBot_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).WithBot = f.WithBot.comp g.WithBot :=
FunLike.coe_injective (Option.map_comp_map _ _).symm
#align sup_hom.with_bot_comp SupHom.withBot_comp
+-/
+#print SupHom.withTop' /-
/-- Adjoins a `⊤` to the codomain of a `sup_hom`. -/
@[simps]
def withTop' [OrderTop β] (f : SupHom α β) : SupHom (WithTop α) β
@@ -1996,7 +2009,9 @@ def withTop' [OrderTop β] (f : SupHom α β) : SupHom (WithTop α) β
| (a : α), ⊤ => sup_top_eq.symm
| (a : α), (b : α) => f.map_sup' _ _
#align sup_hom.with_top' SupHom.withTop'
+-/
+#print SupHom.withBot' /-
/-- Adjoins a `⊥` to the domain of a `sup_hom`. -/
@[simps]
def withBot' [OrderBot β] (f : SupHom α β) : SupBotHom (WithBot α) β
@@ -2010,6 +2025,7 @@ def withBot' [OrderBot β] (f : SupHom α β) : SupBotHom (WithBot α) β
| (a : α), (b : α) => f.map_sup' _ _
map_bot' := rfl
#align sup_hom.with_bot' SupHom.withBot'
+-/
end SupHom
@@ -2017,6 +2033,7 @@ namespace InfHom
variable [SemilatticeInf α] [SemilatticeInf β] [SemilatticeInf γ]
+#print InfHom.withTop /-
/-- Adjoins a `⊤` to the domain and codomain of an `inf_hom`. -/
@[simps]
protected def withTop (f : InfHom α β) : InfTopHom (WithTop α) (WithTop β)
@@ -2030,18 +2047,24 @@ protected def withTop (f : InfHom α β) : InfTopHom (WithTop α) (WithTop β)
| (a : α), (b : α) => congr_arg _ (f.map_inf' _ _)
map_top' := rfl
#align inf_hom.with_top InfHom.withTop
+-/
+#print InfHom.withTop_id /-
@[simp]
theorem withTop_id : (InfHom.id α).WithTop = InfTopHom.id _ :=
FunLike.coe_injective Option.map_id
#align inf_hom.with_top_id InfHom.withTop_id
+-/
+#print InfHom.withTop_comp /-
@[simp]
theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).WithTop = f.WithTop.comp g.WithTop :=
FunLike.coe_injective (Option.map_comp_map _ _).symm
#align inf_hom.with_top_comp InfHom.withTop_comp
+-/
+#print InfHom.withBot /-
/-- Adjoins a `⊥ to the domain and codomain of an `inf_hom`. -/
@[simps]
protected def withBot (f : InfHom α β) : InfHom (WithBot α) (WithBot β)
@@ -2054,18 +2077,24 @@ protected def withBot (f : InfHom α β) : InfHom (WithBot α) (WithBot β)
| (a : α), ⊥ => rfl
| (a : α), (b : α) => congr_arg _ (f.map_inf' _ _)
#align inf_hom.with_bot InfHom.withBot
+-/
+#print InfHom.withBot_id /-
@[simp]
theorem withBot_id : (InfHom.id α).WithBot = InfHom.id _ :=
FunLike.coe_injective Option.map_id
#align inf_hom.with_bot_id InfHom.withBot_id
+-/
+#print InfHom.withBot_comp /-
@[simp]
theorem withBot_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).WithBot = f.WithBot.comp g.WithBot :=
FunLike.coe_injective (Option.map_comp_map _ _).symm
#align inf_hom.with_bot_comp InfHom.withBot_comp
+-/
+#print InfHom.withTop' /-
/-- Adjoins a `⊤` to the codomain of an `inf_hom`. -/
@[simps]
def withTop' [OrderTop β] (f : InfHom α β) : InfTopHom (WithTop α) β
@@ -2079,7 +2108,9 @@ def withTop' [OrderTop β] (f : InfHom α β) : InfTopHom (WithTop α) β
| (a : α), (b : α) => f.map_inf' _ _
map_top' := rfl
#align inf_hom.with_top' InfHom.withTop'
+-/
+#print InfHom.withBot' /-
/-- Adjoins a `⊥` to the codomain of an `inf_hom`. -/
@[simps]
def withBot' [OrderBot β] (f : InfHom α β) : InfHom (WithBot α) β
@@ -2092,6 +2123,7 @@ def withBot' [OrderBot β] (f : InfHom α β) : InfHom (WithBot α) β
| (a : α), ⊥ => inf_bot_eq.symm
| (a : α), (b : α) => f.map_inf' _ _
#align inf_hom.with_bot' InfHom.withBot'
+-/
end InfHom
@@ -2099,47 +2131,62 @@ namespace LatticeHom
variable [Lattice α] [Lattice β] [Lattice γ]
+#print LatticeHom.withTop /-
/-- Adjoins a `⊤` to the domain and codomain of a `lattice_hom`. -/
@[simps]
protected def withTop (f : LatticeHom α β) : LatticeHom (WithTop α) (WithTop β) :=
{ f.toInfHom.WithTop with toSupHom := f.toSupHom.WithTop }
#align lattice_hom.with_top LatticeHom.withTop
+-/
+#print LatticeHom.withTop_id /-
@[simp]
theorem withTop_id : (LatticeHom.id α).WithTop = LatticeHom.id _ :=
FunLike.coe_injective Option.map_id
#align lattice_hom.with_top_id LatticeHom.withTop_id
+-/
+#print LatticeHom.withTop_comp /-
@[simp]
theorem withTop_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).WithTop = f.WithTop.comp g.WithTop :=
FunLike.coe_injective (Option.map_comp_map _ _).symm
#align lattice_hom.with_top_comp LatticeHom.withTop_comp
+-/
+#print LatticeHom.withBot /-
/-- Adjoins a `⊥` to the domain and codomain of a `lattice_hom`. -/
@[simps]
protected def withBot (f : LatticeHom α β) : LatticeHom (WithBot α) (WithBot β) :=
{ f.toInfHom.WithBot with toSupHom := f.toSupHom.WithBot }
#align lattice_hom.with_bot LatticeHom.withBot
+-/
+#print LatticeHom.withBot_id /-
@[simp]
theorem withBot_id : (LatticeHom.id α).WithBot = LatticeHom.id _ :=
FunLike.coe_injective Option.map_id
#align lattice_hom.with_bot_id LatticeHom.withBot_id
+-/
+#print LatticeHom.withBot_comp /-
@[simp]
theorem withBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).WithBot = f.WithBot.comp g.WithBot :=
FunLike.coe_injective (Option.map_comp_map _ _).symm
#align lattice_hom.with_bot_comp LatticeHom.withBot_comp
+-/
+#print LatticeHom.withTopWithBot /-
/-- Adjoins a `⊤` and `⊥` to the domain and codomain of a `lattice_hom`. -/
@[simps]
def withTopWithBot (f : LatticeHom α β) :
BoundedLatticeHom (WithTop <| WithBot α) (WithTop <| WithBot β) :=
⟨f.WithBot.WithTop, rfl, rfl⟩
#align lattice_hom.with_top_with_bot LatticeHom.withTopWithBot
+-/
+#print LatticeHom.withTopWithBot_id /-
@[simp]
theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHom.id _ :=
FunLike.coe_injective <|
@@ -2148,26 +2195,34 @@ theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHo
rw [with_bot_id]
rfl
#align lattice_hom.with_top_with_bot_id LatticeHom.withTopWithBot_id
+-/
+#print LatticeHom.withTopWithBot_comp /-
@[simp]
theorem withTopWithBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withTopWithBot = f.withTopWithBot.comp g.withTopWithBot :=
FunLike.coe_injective <|
(congr_arg Option.map <| (Option.map_comp_map _ _).symm).trans (Option.map_comp_map _ _).symm
#align lattice_hom.with_top_with_bot_comp LatticeHom.withTopWithBot_comp
+-/
+#print LatticeHom.withTop' /-
/-- Adjoins a `⊥` to the codomain of a `lattice_hom`. -/
@[simps]
def withTop' [OrderTop β] (f : LatticeHom α β) : LatticeHom (WithTop α) β :=
{ f.toSupHom.withTop', f.toInfHom.withTop' with }
#align lattice_hom.with_top' LatticeHom.withTop'
+-/
+#print LatticeHom.withBot' /-
/-- Adjoins a `⊥` to the domain and codomain of a `lattice_hom`. -/
@[simps]
def withBot' [OrderBot β] (f : LatticeHom α β) : LatticeHom (WithBot α) β :=
{ f.toSupHom.withBot', f.toInfHom.withBot' with }
#align lattice_hom.with_bot' LatticeHom.withBot'
+-/
+#print LatticeHom.withTopWithBot' /-
/-- Adjoins a `⊤` and `⊥` to the codomain of a `lattice_hom`. -/
@[simps]
def withTopWithBot' [BoundedOrder β] (f : LatticeHom α β) :
@@ -2177,6 +2232,7 @@ def withTopWithBot' [BoundedOrder β] (f : LatticeHom α β) :
map_top' := rfl
map_bot' := rfl
#align lattice_hom.with_top_with_bot' LatticeHom.withTopWithBot'
+-/
end LatticeHom
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -167,19 +167,23 @@ export InfHomClass (map_inf)
attribute [simp] map_top map_bot map_sup map_inf
+#print SupHomClass.toOrderHomClass /-
-- See note [lower instance priority]
instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [SemilatticeSup β]
[SupHomClass F α β] : OrderHomClass F α β :=
{ ‹SupHomClass F α β› with
map_rel := fun f a b h => by rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h] }
#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClass
+-/
+#print InfHomClass.toOrderHomClass /-
-- See note [lower instance priority]
instance (priority := 100) InfHomClass.toOrderHomClass [SemilatticeInf α] [SemilatticeInf β]
[InfHomClass F α β] : OrderHomClass F α β :=
{ ‹InfHomClass F α β› with
map_rel := fun f a b h => by rw [← inf_eq_left, ← map_inf, inf_eq_left.2 h] }
#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClass
+-/
#print SupBotHomClass.toBotHomClass /-
-- See note [lower instance priority]
@@ -197,23 +201,29 @@ instance (priority := 100) InfTopHomClass.toTopHomClass [Inf α] [Inf β] [Top
#align inf_top_hom_class.to_top_hom_class InfTopHomClass.toTopHomClass
-/
+#print LatticeHomClass.toInfHomClass /-
-- See note [lower instance priority]
instance (priority := 100) LatticeHomClass.toInfHomClass [Lattice α] [Lattice β]
[LatticeHomClass F α β] : InfHomClass F α β :=
{ ‹LatticeHomClass F α β› with }
#align lattice_hom_class.to_inf_hom_class LatticeHomClass.toInfHomClass
+-/
+#print BoundedLatticeHomClass.toSupBotHomClass /-
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] : SupBotHomClass F α β :=
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_sup_bot_hom_class BoundedLatticeHomClass.toSupBotHomClass
+-/
+#print BoundedLatticeHomClass.toInfTopHomClass /-
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] : InfTopHomClass F α β :=
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClass
+-/
#print BoundedLatticeHomClass.toBoundedOrderHomClass /-
-- See note [lower instance priority]
@@ -223,6 +233,7 @@ instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattic
#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
-/
+#print OrderIsoClass.toSupHomClass /-
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
[OrderIsoClass F α β] : SupHomClass F α β :=
@@ -230,7 +241,9 @@ instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [Semi
map_sup := fun f a b =>
eq_of_forall_ge_iff fun c => by simp only [← le_map_inv_iff, sup_le_iff] }
#align order_iso_class.to_sup_hom_class OrderIsoClass.toSupHomClass
+-/
+#print OrderIsoClass.toInfHomClass /-
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [SemilatticeInf β]
[OrderIsoClass F α β] : InfHomClass F α β :=
@@ -238,18 +251,23 @@ instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [Semi
map_inf := fun f a b =>
eq_of_forall_le_iff fun c => by simp only [← map_inv_le_iff, le_inf_iff] }
#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClass
+-/
+#print OrderIsoClass.toSupBotHomClass /-
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [OrderBot α]
[SemilatticeSup β] [OrderBot β] [OrderIsoClass F α β] : SupBotHomClass F α β :=
{ OrderIsoClass.toSupHomClass, OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_sup_bot_hom_class OrderIsoClass.toSupBotHomClass
+-/
+#print OrderIsoClass.toInfTopHomClass /-
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfTopHomClass [SemilatticeInf α] [OrderTop α]
[SemilatticeInf β] [OrderTop β] [OrderIsoClass F α β] : InfTopHomClass F α β :=
{ OrderIsoClass.toInfHomClass, OrderIsoClass.toTopHomClass with }
#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClass
+-/
#print OrderIsoClass.toLatticeHomClass /-
-- See note [lower instance priority]
@@ -272,19 +290,23 @@ section BoundedLattice
variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [BoundedLatticeHomClass F α β]
(f : F) {a b : α}
-include β
-
+#print Disjoint.map /-
theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot]
#align disjoint.map Disjoint.map
+-/
+#print Codisjoint.map /-
theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
rw [codisjoint_iff, ← map_sup, h.eq_top, map_top]
#align codisjoint.map Codisjoint.map
+-/
+#print IsCompl.map /-
theorem IsCompl.map (h : IsCompl a b) : IsCompl (f a) (f b) :=
⟨h.1.map _, h.2.map _⟩
#align is_compl.map IsCompl.map
+-/
end BoundedLattice
@@ -292,8 +314,6 @@ section BooleanAlgebra
variable [BooleanAlgebra α] [BooleanAlgebra β] [BoundedLatticeHomClass F α β] (f : F)
-include β
-
#print map_compl' /-
/-- Special case of `map_compl` for boolean algebras. -/
theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
@@ -301,15 +321,19 @@ theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
#align map_compl' map_compl'
-/
+#print map_sdiff' /-
/-- Special case of `map_sdiff` for boolean algebras. -/
theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
rw [sdiff_eq, sdiff_eq, map_inf, map_compl']
#align map_sdiff' map_sdiff'
+-/
+#print map_symm_diff' /-
/-- Special case of `map_symm_diff` for boolean algebras. -/
theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff']
#align map_symm_diff' map_symm_diff'
+-/
end BooleanAlgebra
@@ -361,15 +385,19 @@ directly. -/
instance : CoeFun (SupHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
+#print SupHom.toFun_eq_coe /-
@[simp]
theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
rfl
#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coe
+-/
+#print SupHom.ext /-
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align sup_hom.ext SupHom.ext
+-/
#print SupHom.copy /-
/-- Copy of a `sup_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
@@ -381,14 +409,18 @@ protected def copy (f : SupHom α β) (f' : α → β) (h : f' = f) : SupHom α
#align sup_hom.copy SupHom.copy
-/
+#print SupHom.coe_copy /-
@[simp]
theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align sup_hom.coe_copy SupHom.coe_copy
+-/
+#print SupHom.copy_eq /-
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align sup_hom.copy_eq SupHom.copy_eq
+-/
variable (α)
@@ -427,56 +459,74 @@ def comp (f : SupHom β γ) (g : SupHom α β) : SupHom α γ
#align sup_hom.comp SupHom.comp
-/
+#print SupHom.coe_comp /-
@[simp]
theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align sup_hom.coe_comp SupHom.coe_comp
+-/
+#print SupHom.comp_apply /-
@[simp]
theorem comp_apply (f : SupHom β γ) (g : SupHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align sup_hom.comp_apply SupHom.comp_apply
+-/
+#print SupHom.comp_assoc /-
@[simp]
theorem comp_assoc (f : SupHom γ δ) (g : SupHom β γ) (h : SupHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align sup_hom.comp_assoc SupHom.comp_assoc
+-/
+#print SupHom.comp_id /-
@[simp]
theorem comp_id (f : SupHom α β) : f.comp (SupHom.id α) = f :=
SupHom.ext fun a => rfl
#align sup_hom.comp_id SupHom.comp_id
+-/
+#print SupHom.id_comp /-
@[simp]
theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
SupHom.ext fun a => rfl
#align sup_hom.id_comp SupHom.id_comp
+-/
+#print SupHom.cancel_right /-
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => SupHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align sup_hom.cancel_right SupHom.cancel_right
+-/
+#print SupHom.cancel_left /-
theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => SupHom.ext fun a => hg <| by rw [← SupHom.comp_apply, h, SupHom.comp_apply],
congr_arg _⟩
#align sup_hom.cancel_left SupHom.cancel_left
+-/
end Sup
variable (α) [SemilatticeSup β]
+#print SupHom.const /-
/-- The constant function as a `sup_hom`. -/
def const (b : β) : SupHom α β :=
⟨fun _ => b, fun _ _ => sup_idem.symm⟩
#align sup_hom.const SupHom.const
+-/
+#print SupHom.coe_const /-
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
rfl
#align sup_hom.coe_const SupHom.coe_const
+-/
#print SupHom.const_apply /-
@[simp]
@@ -509,35 +559,47 @@ instance [OrderTop β] : OrderTop (SupHom α β) :=
instance [BoundedOrder β] : BoundedOrder (SupHom α β) :=
BoundedOrder.lift (coeFn : _ → α → β) (fun _ _ => id) rfl rfl
+#print SupHom.coe_sup /-
@[simp]
theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
rfl
#align sup_hom.coe_sup SupHom.coe_sup
+-/
+#print SupHom.coe_bot /-
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
rfl
#align sup_hom.coe_bot SupHom.coe_bot
+-/
+#print SupHom.coe_top /-
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
rfl
#align sup_hom.coe_top SupHom.coe_top
+-/
+#print SupHom.sup_apply /-
@[simp]
theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align sup_hom.sup_apply SupHom.sup_apply
+-/
+#print SupHom.bot_apply /-
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
rfl
#align sup_hom.bot_apply SupHom.bot_apply
+-/
+#print SupHom.top_apply /-
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : SupHom α β) a = ⊤ :=
rfl
#align sup_hom.top_apply SupHom.top_apply
+-/
end SupHom
@@ -563,15 +625,19 @@ directly. -/
instance : CoeFun (InfHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
+#print InfHom.toFun_eq_coe /-
@[simp]
theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
rfl
#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coe
+-/
+#print InfHom.ext /-
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align inf_hom.ext InfHom.ext
+-/
#print InfHom.copy /-
/-- Copy of an `inf_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
@@ -583,14 +649,18 @@ protected def copy (f : InfHom α β) (f' : α → β) (h : f' = f) : InfHom α
#align inf_hom.copy InfHom.copy
-/
+#print InfHom.coe_copy /-
@[simp]
theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align inf_hom.coe_copy InfHom.coe_copy
+-/
+#print InfHom.copy_eq /-
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align inf_hom.copy_eq InfHom.copy_eq
+-/
variable (α)
@@ -629,56 +699,74 @@ def comp (f : InfHom β γ) (g : InfHom α β) : InfHom α γ
#align inf_hom.comp InfHom.comp
-/
+#print InfHom.coe_comp /-
@[simp]
theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align inf_hom.coe_comp InfHom.coe_comp
+-/
+#print InfHom.comp_apply /-
@[simp]
theorem comp_apply (f : InfHom β γ) (g : InfHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align inf_hom.comp_apply InfHom.comp_apply
+-/
+#print InfHom.comp_assoc /-
@[simp]
theorem comp_assoc (f : InfHom γ δ) (g : InfHom β γ) (h : InfHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align inf_hom.comp_assoc InfHom.comp_assoc
+-/
+#print InfHom.comp_id /-
@[simp]
theorem comp_id (f : InfHom α β) : f.comp (InfHom.id α) = f :=
InfHom.ext fun a => rfl
#align inf_hom.comp_id InfHom.comp_id
+-/
+#print InfHom.id_comp /-
@[simp]
theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
InfHom.ext fun a => rfl
#align inf_hom.id_comp InfHom.id_comp
+-/
+#print InfHom.cancel_right /-
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => InfHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align inf_hom.cancel_right InfHom.cancel_right
+-/
+#print InfHom.cancel_left /-
theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => InfHom.ext fun a => hg <| by rw [← InfHom.comp_apply, h, InfHom.comp_apply],
congr_arg _⟩
#align inf_hom.cancel_left InfHom.cancel_left
+-/
end Inf
variable (α) [SemilatticeInf β]
+#print InfHom.const /-
/-- The constant function as an `inf_hom`. -/
def const (b : β) : InfHom α β :=
⟨fun _ => b, fun _ _ => inf_idem.symm⟩
#align inf_hom.const InfHom.const
+-/
+#print InfHom.coe_const /-
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
rfl
#align inf_hom.coe_const InfHom.coe_const
+-/
#print InfHom.const_apply /-
@[simp]
@@ -711,35 +799,47 @@ instance [OrderTop β] : OrderTop (InfHom α β) :=
instance [BoundedOrder β] : BoundedOrder (InfHom α β) :=
BoundedOrder.lift (coeFn : _ → α → β) (fun _ _ => id) rfl rfl
+#print InfHom.coe_inf /-
@[simp]
theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
rfl
#align inf_hom.coe_inf InfHom.coe_inf
+-/
+#print InfHom.coe_bot /-
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
rfl
#align inf_hom.coe_bot InfHom.coe_bot
+-/
+#print InfHom.coe_top /-
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
rfl
#align inf_hom.coe_top InfHom.coe_top
+-/
+#print InfHom.inf_apply /-
@[simp]
theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align inf_hom.inf_apply InfHom.inf_apply
+-/
+#print InfHom.bot_apply /-
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
rfl
#align inf_hom.bot_apply InfHom.bot_apply
+-/
+#print InfHom.top_apply /-
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : InfHom α β) a = ⊤ :=
rfl
#align inf_hom.top_apply InfHom.top_apply
+-/
end InfHom
@@ -773,30 +873,40 @@ directly. -/
instance : CoeFun (SupBotHom α β) fun _ => α → β :=
FunLike.hasCoeToFun
+#print SupBotHom.toFun_eq_coe /-
@[simp]
theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
rfl
#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coe
+-/
+#print SupBotHom.ext /-
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align sup_bot_hom.ext SupBotHom.ext
+-/
+#print SupBotHom.copy /-
/-- Copy of a `sup_bot_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : SupBotHom α β :=
{ f.toBotHom.copy f' h with toSupHom := f.toSupHom.copy f' h }
#align sup_bot_hom.copy SupBotHom.copy
+-/
+#print SupBotHom.coe_copy /-
@[simp]
theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align sup_bot_hom.coe_copy SupBotHom.coe_copy
+-/
+#print SupBotHom.copy_eq /-
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align sup_bot_hom.copy_eq SupBotHom.copy_eq
+-/
variable (α)
@@ -811,17 +921,21 @@ protected def id : SupBotHom α α :=
instance : Inhabited (SupBotHom α α) :=
⟨SupBotHom.id α⟩
+#print SupBotHom.coe_id /-
@[simp]
theorem coe_id : ⇑(SupBotHom.id α) = id :=
rfl
#align sup_bot_hom.coe_id SupBotHom.coe_id
+-/
variable {α}
+#print SupBotHom.id_apply /-
@[simp]
theorem id_apply (a : α) : SupBotHom.id α a = a :=
rfl
#align sup_bot_hom.id_apply SupBotHom.id_apply
+-/
#print SupBotHom.comp /-
/-- Composition of `sup_bot_hom`s as a `sup_bot_hom`. -/
@@ -830,41 +944,55 @@ def comp (f : SupBotHom β γ) (g : SupBotHom α β) : SupBotHom α γ :=
#align sup_bot_hom.comp SupBotHom.comp
-/
+#print SupBotHom.coe_comp /-
@[simp]
theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align sup_bot_hom.coe_comp SupBotHom.coe_comp
+-/
+#print SupBotHom.comp_apply /-
@[simp]
theorem comp_apply (f : SupBotHom β γ) (g : SupBotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align sup_bot_hom.comp_apply SupBotHom.comp_apply
+-/
+#print SupBotHom.comp_assoc /-
@[simp]
theorem comp_assoc (f : SupBotHom γ δ) (g : SupBotHom β γ) (h : SupBotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align sup_bot_hom.comp_assoc SupBotHom.comp_assoc
+-/
+#print SupBotHom.comp_id /-
@[simp]
theorem comp_id (f : SupBotHom α β) : f.comp (SupBotHom.id α) = f :=
ext fun a => rfl
#align sup_bot_hom.comp_id SupBotHom.comp_id
+-/
+#print SupBotHom.id_comp /-
@[simp]
theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
ext fun a => rfl
#align sup_bot_hom.id_comp SupBotHom.id_comp
+-/
+#print SupBotHom.cancel_right /-
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align sup_bot_hom.cancel_right SupBotHom.cancel_right
+-/
+#print SupBotHom.cancel_left /-
theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => SupBotHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align sup_bot_hom.cancel_left SupBotHom.cancel_left
+-/
end Sup
@@ -880,25 +1008,33 @@ instance : OrderBot (SupBotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le f := bot_le
+#print SupBotHom.coe_sup /-
@[simp]
theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
rfl
#align sup_bot_hom.coe_sup SupBotHom.coe_sup
+-/
+#print SupBotHom.coe_bot /-
@[simp]
theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
rfl
#align sup_bot_hom.coe_bot SupBotHom.coe_bot
+-/
+#print SupBotHom.sup_apply /-
@[simp]
theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align sup_bot_hom.sup_apply SupBotHom.sup_apply
+-/
+#print SupBotHom.bot_apply /-
@[simp]
theorem bot_apply (a : α) : (⊥ : SupBotHom α β) a = ⊥ :=
rfl
#align sup_bot_hom.bot_apply SupBotHom.bot_apply
+-/
end SupBotHom
@@ -932,30 +1068,40 @@ directly. -/
instance : CoeFun (InfTopHom α β) fun _ => α → β :=
FunLike.hasCoeToFun
+#print InfTopHom.toFun_eq_coe /-
@[simp]
theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
rfl
#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coe
+-/
+#print InfTopHom.ext /-
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align inf_top_hom.ext InfTopHom.ext
+-/
+#print InfTopHom.copy /-
/-- Copy of an `inf_top_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : InfTopHom α β :=
{ f.toTopHom.copy f' h with toInfHom := f.toInfHom.copy f' h }
#align inf_top_hom.copy InfTopHom.copy
+-/
+#print InfTopHom.coe_copy /-
@[simp]
theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align inf_top_hom.coe_copy InfTopHom.coe_copy
+-/
+#print InfTopHom.copy_eq /-
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align inf_top_hom.copy_eq InfTopHom.copy_eq
+-/
variable (α)
@@ -970,17 +1116,21 @@ protected def id : InfTopHom α α :=
instance : Inhabited (InfTopHom α α) :=
⟨InfTopHom.id α⟩
+#print InfTopHom.coe_id /-
@[simp]
theorem coe_id : ⇑(InfTopHom.id α) = id :=
rfl
#align inf_top_hom.coe_id InfTopHom.coe_id
+-/
variable {α}
+#print InfTopHom.id_apply /-
@[simp]
theorem id_apply (a : α) : InfTopHom.id α a = a :=
rfl
#align inf_top_hom.id_apply InfTopHom.id_apply
+-/
#print InfTopHom.comp /-
/-- Composition of `inf_top_hom`s as an `inf_top_hom`. -/
@@ -989,41 +1139,55 @@ def comp (f : InfTopHom β γ) (g : InfTopHom α β) : InfTopHom α γ :=
#align inf_top_hom.comp InfTopHom.comp
-/
+#print InfTopHom.coe_comp /-
@[simp]
theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align inf_top_hom.coe_comp InfTopHom.coe_comp
+-/
+#print InfTopHom.comp_apply /-
@[simp]
theorem comp_apply (f : InfTopHom β γ) (g : InfTopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align inf_top_hom.comp_apply InfTopHom.comp_apply
+-/
+#print InfTopHom.comp_assoc /-
@[simp]
theorem comp_assoc (f : InfTopHom γ δ) (g : InfTopHom β γ) (h : InfTopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align inf_top_hom.comp_assoc InfTopHom.comp_assoc
+-/
+#print InfTopHom.comp_id /-
@[simp]
theorem comp_id (f : InfTopHom α β) : f.comp (InfTopHom.id α) = f :=
ext fun a => rfl
#align inf_top_hom.comp_id InfTopHom.comp_id
+-/
+#print InfTopHom.id_comp /-
@[simp]
theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
ext fun a => rfl
#align inf_top_hom.id_comp InfTopHom.id_comp
+-/
+#print InfTopHom.cancel_right /-
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align inf_top_hom.cancel_right InfTopHom.cancel_right
+-/
+#print InfTopHom.cancel_left /-
theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => InfTopHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align inf_top_hom.cancel_left InfTopHom.cancel_left
+-/
end Inf
@@ -1039,25 +1203,33 @@ instance : OrderTop (InfTopHom α β) where
top := ⟨⊤, rfl⟩
le_top f := le_top
+#print InfTopHom.coe_inf /-
@[simp]
theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
rfl
#align inf_top_hom.coe_inf InfTopHom.coe_inf
+-/
+#print InfTopHom.coe_top /-
@[simp]
theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
rfl
#align inf_top_hom.coe_top InfTopHom.coe_top
+-/
+#print InfTopHom.inf_apply /-
@[simp]
theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align inf_top_hom.inf_apply InfTopHom.inf_apply
+-/
+#print InfTopHom.top_apply /-
@[simp]
theorem top_apply (a : α) : (⊤ : InfTopHom α β) a = ⊤ :=
rfl
#align inf_top_hom.top_apply InfTopHom.top_apply
+-/
end InfTopHom
@@ -1068,10 +1240,12 @@ namespace LatticeHom
variable [Lattice α] [Lattice β] [Lattice γ] [Lattice δ]
+#print LatticeHom.toInfHom /-
/-- Reinterpret a `lattice_hom` as an `inf_hom`. -/
def toInfHom (f : LatticeHom α β) : InfHom α β :=
{ f with }
#align lattice_hom.to_inf_hom LatticeHom.toInfHom
+-/
instance : LatticeHomClass (LatticeHom α β) α β
where
@@ -1085,30 +1259,40 @@ directly. -/
instance : CoeFun (LatticeHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
+#print LatticeHom.toFun_eq_coe /-
@[simp]
theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
rfl
#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coe
+-/
+#print LatticeHom.ext /-
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align lattice_hom.ext LatticeHom.ext
+-/
+#print LatticeHom.copy /-
/-- Copy of a `lattice_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : LatticeHom α β :=
{ f.toSupHom.copy f' h, f.toInfHom.copy f' h with }
#align lattice_hom.copy LatticeHom.copy
+-/
+#print LatticeHom.coe_copy /-
@[simp]
theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align lattice_hom.coe_copy LatticeHom.coe_copy
+-/
+#print LatticeHom.copy_eq /-
theorem copy_eq (f : LatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align lattice_hom.copy_eq LatticeHom.copy_eq
+-/
variable (α)
@@ -1124,17 +1308,21 @@ protected def id : LatticeHom α α where
instance : Inhabited (LatticeHom α α) :=
⟨LatticeHom.id α⟩
+#print LatticeHom.coe_id /-
@[simp]
theorem coe_id : ⇑(LatticeHom.id α) = id :=
rfl
#align lattice_hom.coe_id LatticeHom.coe_id
+-/
variable {α}
+#print LatticeHom.id_apply /-
@[simp]
theorem id_apply (a : α) : LatticeHom.id α a = a :=
rfl
#align lattice_hom.id_apply LatticeHom.id_apply
+-/
#print LatticeHom.comp /-
/-- Composition of `lattice_hom`s as a `lattice_hom`. -/
@@ -1143,54 +1331,72 @@ def comp (f : LatticeHom β γ) (g : LatticeHom α β) : LatticeHom α γ :=
#align lattice_hom.comp LatticeHom.comp
-/
+#print LatticeHom.coe_comp /-
@[simp]
theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align lattice_hom.coe_comp LatticeHom.coe_comp
+-/
+#print LatticeHom.comp_apply /-
@[simp]
theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align lattice_hom.comp_apply LatticeHom.comp_apply
+-/
+#print LatticeHom.coe_comp_sup_hom /-
@[simp]
theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g : SupHom α γ) = (f : SupHom β γ).comp g :=
rfl
#align lattice_hom.coe_comp_sup_hom LatticeHom.coe_comp_sup_hom
+-/
+#print LatticeHom.coe_comp_inf_hom /-
@[simp]
theorem coe_comp_inf_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g : InfHom α γ) = (f : InfHom β γ).comp g :=
rfl
#align lattice_hom.coe_comp_inf_hom LatticeHom.coe_comp_inf_hom
+-/
+#print LatticeHom.comp_assoc /-
@[simp]
theorem comp_assoc (f : LatticeHom γ δ) (g : LatticeHom β γ) (h : LatticeHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align lattice_hom.comp_assoc LatticeHom.comp_assoc
+-/
+#print LatticeHom.comp_id /-
@[simp]
theorem comp_id (f : LatticeHom α β) : f.comp (LatticeHom.id α) = f :=
LatticeHom.ext fun a => rfl
#align lattice_hom.comp_id LatticeHom.comp_id
+-/
+#print LatticeHom.id_comp /-
@[simp]
theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
LatticeHom.ext fun a => rfl
#align lattice_hom.id_comp LatticeHom.id_comp
+-/
+#print LatticeHom.cancel_right /-
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => LatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align lattice_hom.cancel_right LatticeHom.cancel_right
+-/
+#print LatticeHom.cancel_left /-
theorem cancel_left {g : LatticeHom β γ} {f₁ f₂ : LatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => LatticeHom.ext fun a => hg <| by rw [← LatticeHom.comp_apply, h, LatticeHom.comp_apply],
congr_arg _⟩
#align lattice_hom.cancel_left LatticeHom.cancel_left
+-/
end LatticeHom
@@ -1224,15 +1430,19 @@ def toLatticeHom (f : F) : LatticeHom α β :=
#align order_hom_class.to_lattice_hom OrderHomClass.toLatticeHom
-/
+#print OrderHomClass.coe_to_lattice_hom /-
@[simp]
theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
rfl
#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_hom
+-/
+#print OrderHomClass.to_lattice_hom_apply /-
@[simp]
theorem to_lattice_hom_apply (f : F) (a : α) : toLatticeHom α β f a = f a :=
rfl
#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_apply
+-/
end OrderHomClass
@@ -1244,15 +1454,19 @@ namespace BoundedLatticeHom
variable [Lattice α] [Lattice β] [Lattice γ] [Lattice δ] [BoundedOrder α] [BoundedOrder β]
[BoundedOrder γ] [BoundedOrder δ]
+#print BoundedLatticeHom.toSupBotHom /-
/-- Reinterpret a `bounded_lattice_hom` as a `sup_bot_hom`. -/
def toSupBotHom (f : BoundedLatticeHom α β) : SupBotHom α β :=
{ f with }
#align bounded_lattice_hom.to_sup_bot_hom BoundedLatticeHom.toSupBotHom
+-/
+#print BoundedLatticeHom.toInfTopHom /-
/-- Reinterpret a `bounded_lattice_hom` as an `inf_top_hom`. -/
def toInfTopHom (f : BoundedLatticeHom α β) : InfTopHom α β :=
{ f with }
#align bounded_lattice_hom.to_inf_top_hom BoundedLatticeHom.toInfTopHom
+-/
#print BoundedLatticeHom.toBoundedOrderHom /-
/-- Reinterpret a `bounded_lattice_hom` as a `bounded_order_hom`. -/
@@ -1275,30 +1489,40 @@ directly. -/
instance : CoeFun (BoundedLatticeHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
+#print BoundedLatticeHom.toFun_eq_coe /-
@[simp]
theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :=
rfl
#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coe
+-/
+#print BoundedLatticeHom.ext /-
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bounded_lattice_hom.ext BoundedLatticeHom.ext
+-/
+#print BoundedLatticeHom.copy /-
/-- Copy of a `bounded_lattice_hom` with a new `to_fun` equal to the old one. Useful to fix
definitional equalities. -/
protected def copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : BoundedLatticeHom α β :=
{ f.toLatticeHom.copy f' h, f.toBoundedOrderHom.copy f' h with }
#align bounded_lattice_hom.copy BoundedLatticeHom.copy
+-/
+#print BoundedLatticeHom.coe_copy /-
@[simp]
theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copy
+-/
+#print BoundedLatticeHom.copy_eq /-
theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eq
+-/
variable (α)
@@ -1312,17 +1536,21 @@ protected def id : BoundedLatticeHom α α :=
instance : Inhabited (BoundedLatticeHom α α) :=
⟨BoundedLatticeHom.id α⟩
+#print BoundedLatticeHom.coe_id /-
@[simp]
theorem coe_id : ⇑(BoundedLatticeHom.id α) = id :=
rfl
#align bounded_lattice_hom.coe_id BoundedLatticeHom.coe_id
+-/
variable {α}
+#print BoundedLatticeHom.id_apply /-
@[simp]
theorem id_apply (a : α) : BoundedLatticeHom.id α a = a :=
rfl
#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_apply
+-/
#print BoundedLatticeHom.comp /-
/-- Composition of `bounded_lattice_hom`s as a `bounded_lattice_hom`. -/
@@ -1331,61 +1559,81 @@ def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLa
#align bounded_lattice_hom.comp BoundedLatticeHom.comp
-/
+#print BoundedLatticeHom.coe_comp /-
@[simp]
theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : α → γ) = f ∘ g :=
rfl
#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_comp
+-/
+#print BoundedLatticeHom.comp_apply /-
@[simp]
theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (a : α) :
(f.comp g) a = f (g a) :=
rfl
#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_apply
+-/
+#print BoundedLatticeHom.coe_comp_lattice_hom /-
@[simp]
theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : LatticeHom α γ) = (f : LatticeHom β γ).comp g :=
rfl
#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_hom
+-/
+#print BoundedLatticeHom.coe_comp_sup_hom /-
@[simp]
theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : SupHom α γ) = (f : SupHom β γ).comp g :=
rfl
#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_hom
+-/
+#print BoundedLatticeHom.coe_comp_inf_hom /-
@[simp]
theorem coe_comp_inf_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : InfHom α γ) = (f : InfHom β γ).comp g :=
rfl
#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_hom
+-/
+#print BoundedLatticeHom.comp_assoc /-
@[simp]
theorem comp_assoc (f : BoundedLatticeHom γ δ) (g : BoundedLatticeHom β γ)
(h : BoundedLatticeHom α β) : (f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bounded_lattice_hom.comp_assoc BoundedLatticeHom.comp_assoc
+-/
+#print BoundedLatticeHom.comp_id /-
@[simp]
theorem comp_id (f : BoundedLatticeHom α β) : f.comp (BoundedLatticeHom.id α) = f :=
BoundedLatticeHom.ext fun a => rfl
#align bounded_lattice_hom.comp_id BoundedLatticeHom.comp_id
+-/
+#print BoundedLatticeHom.id_comp /-
@[simp]
theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f = f :=
BoundedLatticeHom.ext fun a => rfl
#align bounded_lattice_hom.id_comp BoundedLatticeHom.id_comp
+-/
+#print BoundedLatticeHom.cancel_right /-
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BoundedLatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_right
+-/
+#print BoundedLatticeHom.cancel_left /-
theorem cancel_left {g : BoundedLatticeHom β γ} {f₁ f₂ : BoundedLatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align bounded_lattice_hom.cancel_left BoundedLatticeHom.cancel_left
+-/
end BoundedLatticeHom
@@ -1415,10 +1663,12 @@ theorem dual_id : (SupHom.id α).dual = InfHom.id _ :=
#align sup_hom.dual_id SupHom.dual_id
-/
+#print SupHom.dual_comp /-
@[simp]
theorem dual_comp (g : SupHom β γ) (f : SupHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
#align sup_hom.dual_comp SupHom.dual_comp
+-/
#print SupHom.symm_dual_id /-
@[simp]
@@ -1427,11 +1677,13 @@ theorem symm_dual_id : SupHom.dual.symm (InfHom.id _) = SupHom.id α :=
#align sup_hom.symm_dual_id SupHom.symm_dual_id
-/
+#print SupHom.symm_dual_comp /-
@[simp]
theorem symm_dual_comp (g : InfHom βᵒᵈ γᵒᵈ) (f : InfHom αᵒᵈ βᵒᵈ) :
SupHom.dual.symm (g.comp f) = (SupHom.dual.symm g).comp (SupHom.dual.symm f) :=
rfl
#align sup_hom.symm_dual_comp SupHom.symm_dual_comp
+-/
end SupHom
@@ -1458,10 +1710,12 @@ theorem dual_id : (InfHom.id α).dual = SupHom.id _ :=
#align inf_hom.dual_id InfHom.dual_id
-/
+#print InfHom.dual_comp /-
@[simp]
theorem dual_comp (g : InfHom β γ) (f : InfHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
#align inf_hom.dual_comp InfHom.dual_comp
+-/
#print InfHom.symm_dual_id /-
@[simp]
@@ -1470,11 +1724,13 @@ theorem symm_dual_id : InfHom.dual.symm (SupHom.id _) = InfHom.id α :=
#align inf_hom.symm_dual_id InfHom.symm_dual_id
-/
+#print InfHom.symm_dual_comp /-
@[simp]
theorem symm_dual_comp (g : SupHom βᵒᵈ γᵒᵈ) (f : SupHom αᵒᵈ βᵒᵈ) :
InfHom.dual.symm (g.comp f) = (InfHom.dual.symm g).comp (InfHom.dual.symm f) :=
rfl
#align inf_hom.symm_dual_comp InfHom.symm_dual_comp
+-/
end InfHom
@@ -1501,10 +1757,12 @@ theorem dual_id : (SupBotHom.id α).dual = InfTopHom.id _ :=
#align sup_bot_hom.dual_id SupBotHom.dual_id
-/
+#print SupBotHom.dual_comp /-
@[simp]
theorem dual_comp (g : SupBotHom β γ) (f : SupBotHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
#align sup_bot_hom.dual_comp SupBotHom.dual_comp
+-/
#print SupBotHom.symm_dual_id /-
@[simp]
@@ -1513,11 +1771,13 @@ theorem symm_dual_id : SupBotHom.dual.symm (InfTopHom.id _) = SupBotHom.id α :=
#align sup_bot_hom.symm_dual_id SupBotHom.symm_dual_id
-/
+#print SupBotHom.symm_dual_comp /-
@[simp]
theorem symm_dual_comp (g : InfTopHom βᵒᵈ γᵒᵈ) (f : InfTopHom αᵒᵈ βᵒᵈ) :
SupBotHom.dual.symm (g.comp f) = (SupBotHom.dual.symm g).comp (SupBotHom.dual.symm f) :=
rfl
#align sup_bot_hom.symm_dual_comp SupBotHom.symm_dual_comp
+-/
end SupBotHom
@@ -1545,10 +1805,12 @@ theorem dual_id : (InfTopHom.id α).dual = SupBotHom.id _ :=
#align inf_top_hom.dual_id InfTopHom.dual_id
-/
+#print InfTopHom.dual_comp /-
@[simp]
theorem dual_comp (g : InfTopHom β γ) (f : InfTopHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
#align inf_top_hom.dual_comp InfTopHom.dual_comp
+-/
#print InfTopHom.symm_dual_id /-
@[simp]
@@ -1557,11 +1819,13 @@ theorem symm_dual_id : InfTopHom.dual.symm (SupBotHom.id _) = InfTopHom.id α :=
#align inf_top_hom.symm_dual_id InfTopHom.symm_dual_id
-/
+#print InfTopHom.symm_dual_comp /-
@[simp]
theorem symm_dual_comp (g : SupBotHom βᵒᵈ γᵒᵈ) (f : SupBotHom αᵒᵈ βᵒᵈ) :
InfTopHom.dual.symm (g.comp f) = (InfTopHom.dual.symm g).comp (InfTopHom.dual.symm f) :=
rfl
#align inf_top_hom.symm_dual_comp InfTopHom.symm_dual_comp
+-/
end InfTopHom
@@ -1588,11 +1852,13 @@ theorem dual_id : (LatticeHom.id α).dual = LatticeHom.id _ :=
#align lattice_hom.dual_id LatticeHom.dual_id
-/
+#print LatticeHom.dual_comp /-
@[simp]
theorem dual_comp (g : LatticeHom β γ) (f : LatticeHom α β) :
(g.comp f).dual = g.dual.comp f.dual :=
rfl
#align lattice_hom.dual_comp LatticeHom.dual_comp
+-/
#print LatticeHom.symm_dual_id /-
@[simp]
@@ -1601,11 +1867,13 @@ theorem symm_dual_id : LatticeHom.dual.symm (LatticeHom.id _) = LatticeHom.id α
#align lattice_hom.symm_dual_id LatticeHom.symm_dual_id
-/
+#print LatticeHom.symm_dual_comp /-
@[simp]
theorem symm_dual_comp (g : LatticeHom βᵒᵈ γᵒᵈ) (f : LatticeHom αᵒᵈ βᵒᵈ) :
LatticeHom.dual.symm (g.comp f) = (LatticeHom.dual.symm g).comp (LatticeHom.dual.symm f) :=
rfl
#align lattice_hom.symm_dual_comp LatticeHom.symm_dual_comp
+-/
end LatticeHom
@@ -1633,11 +1901,13 @@ theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_id
-/
+#print BoundedLatticeHom.dual_comp /-
@[simp]
theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
(g.comp f).dual = g.dual.comp f.dual :=
rfl
#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_comp
+-/
#print BoundedLatticeHom.symm_dual_id /-
@[simp]
@@ -1647,12 +1917,14 @@ theorem symm_dual_id :
#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_id
-/
+#print BoundedLatticeHom.symm_dual_comp /-
@[simp]
theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLatticeHom αᵒᵈ βᵒᵈ) :
BoundedLatticeHom.dual.symm (g.comp f) =
(BoundedLatticeHom.dual.symm g).comp (BoundedLatticeHom.dual.symm f) :=
rfl
#align bounded_lattice_hom.symm_dual_comp BoundedLatticeHom.symm_dual_comp
+-/
end BoundedLatticeHom
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -90,7 +90,7 @@ structure LatticeHom (α β : Type _) [Lattice α] [Lattice β] extends SupHom
#print BoundedLatticeHom /-
/-- The type of bounded lattice homomorphisms from `α` to `β`. -/
structure BoundedLatticeHom (α β : Type _) [Lattice α] [Lattice β] [BoundedOrder α]
- [BoundedOrder β] extends LatticeHom α β where
+ [BoundedOrder β] extends LatticeHom α β where
map_top' : to_fun ⊤ = ⊤
map_bot' : to_fun ⊥ = ⊥
#align bounded_lattice_hom BoundedLatticeHom
@@ -103,7 +103,7 @@ section
You should extend this class when you extend `sup_hom`. -/
class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] extends
- FunLike F α fun _ => β where
+ FunLike F α fun _ => β where
map_sup (f : F) (a b : α) : f (a ⊔ b) = f a ⊔ f b
#align sup_hom_class SupHomClass
-/
@@ -113,7 +113,7 @@ class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] ex
You should extend this class when you extend `inf_hom`. -/
class InfHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] extends
- FunLike F α fun _ => β where
+ FunLike F α fun _ => β where
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
#align inf_hom_class InfHomClass
-/
@@ -123,7 +123,7 @@ class InfHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] ex
You should extend this class when you extend `sup_bot_hom`. -/
class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] [Bot α] [Bot β] extends
- SupHomClass F α β where
+ SupHomClass F α β where
map_bot (f : F) : f ⊥ = ⊥
#align sup_bot_hom_class SupBotHomClass
-/
@@ -133,7 +133,7 @@ class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β]
You should extend this class when you extend `sup_bot_hom`. -/
class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] [Top α] [Top β] extends
- InfHomClass F α β where
+ InfHomClass F α β where
map_top (f : F) : f ⊤ = ⊤
#align inf_top_hom_class InfTopHomClass
-/
@@ -143,7 +143,7 @@ class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β]
You should extend this class when you extend `lattice_hom`. -/
class LatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [Lattice β] extends
- SupHomClass F α β where
+ SupHomClass F α β where
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
#align lattice_hom_class LatticeHomClass
-/
@@ -153,7 +153,7 @@ class LatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [La
You should extend this class when you extend `bounded_lattice_hom`. -/
class BoundedLatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [Lattice β]
- [BoundedOrder α] [BoundedOrder β] extends LatticeHomClass F α β where
+ [BoundedOrder α] [BoundedOrder β] extends LatticeHomClass F α β where
map_top (f : F) : f ⊤ = ⊤
map_bot (f : F) : f ⊥ = ⊥
#align bounded_lattice_hom_class BoundedLatticeHomClass
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -87,12 +87,14 @@ structure LatticeHom (α β : Type _) [Lattice α] [Lattice β] extends SupHom
#align lattice_hom LatticeHom
-/
+#print BoundedLatticeHom /-
/-- The type of bounded lattice homomorphisms from `α` to `β`. -/
structure BoundedLatticeHom (α β : Type _) [Lattice α] [Lattice β] [BoundedOrder α]
[BoundedOrder β] extends LatticeHom α β where
map_top' : to_fun ⊤ = ⊤
map_bot' : to_fun ⊥ = ⊥
#align bounded_lattice_hom BoundedLatticeHom
+-/
section
@@ -146,6 +148,7 @@ class LatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [La
#align lattice_hom_class LatticeHomClass
-/
+#print BoundedLatticeHomClass /-
/-- `bounded_lattice_hom_class F α β` states that `F` is a type of bounded lattice morphisms.
You should extend this class when you extend `bounded_lattice_hom`. -/
@@ -154,6 +157,7 @@ class BoundedLatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice
map_top (f : F) : f ⊤ = ⊤
map_bot (f : F) : f ⊥ = ⊥
#align bounded_lattice_hom_class BoundedLatticeHomClass
+-/
end
@@ -211,11 +215,13 @@ instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass [Lattice α]
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClass
+#print BoundedLatticeHomClass.toBoundedOrderHomClass /-
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
+-/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
@@ -245,17 +251,21 @@ instance (priority := 100) OrderIsoClass.toInfTopHomClass [SemilatticeInf α] [O
{ OrderIsoClass.toInfHomClass, OrderIsoClass.toTopHomClass with }
#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClass
+#print OrderIsoClass.toLatticeHomClass /-
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toLatticeHomClass [Lattice α] [Lattice β]
[OrderIsoClass F α β] : LatticeHomClass F α β :=
{ OrderIsoClass.toSupHomClass, OrderIsoClass.toInfHomClass with }
#align order_iso_class.to_lattice_hom_class OrderIsoClass.toLatticeHomClass
+-/
+#print OrderIsoClass.toBoundedLatticeHomClass /-
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [OrderIsoClass F α β] : BoundedLatticeHomClass F α β :=
{ OrderIsoClass.toLatticeHomClass, OrderIsoClass.toBoundedOrderHomClass with }
#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClass
+-/
section BoundedLattice
@@ -1188,6 +1198,7 @@ namespace OrderHomClass
variable (α β) [LinearOrder α] [Lattice β] [OrderHomClass F α β]
+#print OrderHomClass.toLatticeHomClass /-
/-- An order homomorphism from a linear order is a lattice homomorphism. -/
@[reducible]
def toLatticeHomClass : LatticeHomClass F α β :=
@@ -1203,12 +1214,15 @@ def toLatticeHomClass : LatticeHomClass F α β :=
· rw [inf_eq_left.2 h, inf_eq_left.2 (OrderHomClass.mono f h : f a ≤ f b)]
· rw [inf_eq_right.2 h, inf_eq_right.2 (OrderHomClass.mono f h : f b ≤ f a)] }
#align order_hom_class.to_lattice_hom_class OrderHomClass.toLatticeHomClass
+-/
+#print OrderHomClass.toLatticeHom /-
/-- Reinterpret an order homomorphism to a linear order as a `lattice_hom`. -/
def toLatticeHom (f : F) : LatticeHom α β :=
haveI : LatticeHomClass F α β := OrderHomClass.toLatticeHomClass α β
f
#align order_hom_class.to_lattice_hom OrderHomClass.toLatticeHom
+-/
@[simp]
theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
@@ -1240,10 +1254,12 @@ def toInfTopHom (f : BoundedLatticeHom α β) : InfTopHom α β :=
{ f with }
#align bounded_lattice_hom.to_inf_top_hom BoundedLatticeHom.toInfTopHom
+#print BoundedLatticeHom.toBoundedOrderHom /-
/-- Reinterpret a `bounded_lattice_hom` as a `bounded_order_hom`. -/
def toBoundedOrderHom (f : BoundedLatticeHom α β) : BoundedOrderHom α β :=
{ f, (f.toLatticeHom : α →o β) with }
#align bounded_lattice_hom.to_bounded_order_hom BoundedLatticeHom.toBoundedOrderHom
+-/
instance : BoundedLatticeHomClass (BoundedLatticeHom α β) α β
where
@@ -1286,10 +1302,12 @@ theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.
variable (α)
+#print BoundedLatticeHom.id /-
/-- `id` as a `bounded_lattice_hom`. -/
protected def id : BoundedLatticeHom α α :=
{ LatticeHom.id α, BoundedOrderHom.id α with }
#align bounded_lattice_hom.id BoundedLatticeHom.id
+-/
instance : Inhabited (BoundedLatticeHom α α) :=
⟨BoundedLatticeHom.id α⟩
@@ -1306,10 +1324,12 @@ theorem id_apply (a : α) : BoundedLatticeHom.id α a = a :=
rfl
#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_apply
+#print BoundedLatticeHom.comp /-
/-- Composition of `bounded_lattice_hom`s as a `bounded_lattice_hom`. -/
def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLatticeHom α γ :=
{ f.toLatticeHom.comp g.toLatticeHom, f.toBoundedOrderHom.comp g.toBoundedOrderHom with }
#align bounded_lattice_hom.comp BoundedLatticeHom.comp
+-/
@[simp]
theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -1593,6 +1613,7 @@ namespace BoundedLatticeHom
variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [Lattice γ] [BoundedOrder γ]
+#print BoundedLatticeHom.dual /-
/-- Reinterpret a bounded lattice homomorphism as a bounded lattice homomorphism between the dual
bounded lattices. -/
@[simps]
@@ -1603,11 +1624,14 @@ protected def dual : BoundedLatticeHom α β ≃ BoundedLatticeHom αᵒᵈ β
left_inv f := ext fun a => rfl
right_inv f := ext fun a => rfl
#align bounded_lattice_hom.dual BoundedLatticeHom.dual
+-/
+#print BoundedLatticeHom.dual_id /-
@[simp]
theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
rfl
#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_id
+-/
@[simp]
theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
@@ -1615,11 +1639,13 @@ theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
rfl
#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_comp
+#print BoundedLatticeHom.symm_dual_id /-
@[simp]
theorem symm_dual_id :
BoundedLatticeHom.dual.symm (BoundedLatticeHom.id _) = BoundedLatticeHom.id α :=
rfl
#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_id
+-/
@[simp]
theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLatticeHom αᵒᵈ βᵒᵈ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -87,12 +87,6 @@ structure LatticeHom (α β : Type _) [Lattice α] [Lattice β] extends SupHom
#align lattice_hom LatticeHom
-/
-/- warning: bounded_lattice_hom -> BoundedLatticeHom is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], Sort.{max (succ u1) (succ u2)}
-but is expected to have type
- forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], Sort.{max (succ u1) (succ u2)}
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom BoundedLatticeHomₓ'. -/
/-- The type of bounded lattice homomorphisms from `α` to `β`. -/
structure BoundedLatticeHom (α β : Type _) [Lattice α] [Lattice β] [BoundedOrder α]
[BoundedOrder β] extends LatticeHom α β where
@@ -152,12 +146,6 @@ class LatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [La
#align lattice_hom_class LatticeHomClass
-/
-/- warning: bounded_lattice_hom_class -> BoundedLatticeHomClass is a dubious translation:
-lean 3 declaration is
- Type.{u1} -> (forall (α : outParam.{succ (succ u2)} Type.{u2}) (β : outParam.{succ (succ u3)} Type.{u3}) [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], Sort.{max (succ u1) (succ u2) (succ u3)})
-but is expected to have type
- Type.{u1} -> (forall (α : outParam.{succ (succ u2)} Type.{u2}) (β : outParam.{succ (succ u3)} Type.{u3}) [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], Sort.{max (max (succ u1) (succ u2)) (succ u3)})
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class BoundedLatticeHomClassₓ'. -/
/-- `bounded_lattice_hom_class F α β` states that `F` is a type of bounded lattice morphisms.
You should extend this class when you extend `bounded_lattice_hom`. -/
@@ -175,12 +163,6 @@ export InfHomClass (map_inf)
attribute [simp] map_top map_bot map_sup map_inf
-/- warning: sup_hom_class.to_order_hom_class -> SupHomClass.toOrderHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [SemilatticeSup β]
[SupHomClass F α β] : OrderHomClass F α β :=
@@ -188,12 +170,6 @@ instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [Semi
map_rel := fun f a b h => by rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h] }
#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClass
-/- warning: inf_hom_class.to_order_hom_class -> InfHomClass.toOrderHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) InfHomClass.toOrderHomClass [SemilatticeInf α] [SemilatticeInf β]
[InfHomClass F α β] : OrderHomClass F α β :=
@@ -217,60 +193,30 @@ instance (priority := 100) InfTopHomClass.toTopHomClass [Inf α] [Inf β] [Top
#align inf_top_hom_class.to_top_hom_class InfTopHomClass.toTopHomClass
-/
-/- warning: lattice_hom_class.to_inf_hom_class -> LatticeHomClass.toInfHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2], InfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2)
-Case conversion may be inaccurate. Consider using '#align lattice_hom_class.to_inf_hom_class LatticeHomClass.toInfHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) LatticeHomClass.toInfHomClass [Lattice α] [Lattice β]
[LatticeHomClass F α β] : InfHomClass F α β :=
{ ‹LatticeHomClass F α β› with }
#align lattice_hom_class.to_inf_hom_class LatticeHomClass.toInfHomClass
-/- warning: bounded_lattice_hom_class.to_sup_bot_hom_class -> BoundedLatticeHomClass.toSupBotHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toHasBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toHasBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_sup_bot_hom_class BoundedLatticeHomClass.toSupBotHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] : SupBotHomClass F α β :=
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_sup_bot_hom_class BoundedLatticeHomClass.toSupBotHomClass
-/- warning: bounded_lattice_hom_class.to_inf_top_hom_class -> BoundedLatticeHomClass.toInfTopHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)) (OrderTop.toHasTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toHasTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] : InfTopHomClass F α β :=
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClass
-/- warning: bounded_lattice_hom_class.to_bounded_order_hom_class -> BoundedLatticeHomClass.toBoundedOrderHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], BoundedOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_3 _inst_4
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], BoundedOrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_3 _inst_4
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
-/- warning: order_iso_class.to_sup_hom_class -> OrderIsoClass.toSupHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)
-Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_hom_class OrderIsoClass.toSupHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
[OrderIsoClass F α β] : SupHomClass F α β :=
@@ -279,12 +225,6 @@ instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [Semi
eq_of_forall_ge_iff fun c => by simp only [← le_map_inv_iff, sup_le_iff] }
#align order_iso_class.to_sup_hom_class OrderIsoClass.toSupHomClass
-/- warning: order_iso_class.to_inf_hom_class -> OrderIsoClass.toInfHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)
-Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [SemilatticeInf β]
[OrderIsoClass F α β] : InfHomClass F α β :=
@@ -293,48 +233,24 @@ instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [Semi
eq_of_forall_le_iff fun c => by simp only [← map_inv_le_iff, le_inf_iff] }
#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClass
-/- warning: order_iso_class.to_sup_bot_hom_class -> OrderIsoClass.toSupBotHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toHasBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
-Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_bot_hom_class OrderIsoClass.toSupBotHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [OrderBot α]
[SemilatticeSup β] [OrderBot β] [OrderIsoClass F α β] : SupBotHomClass F α β :=
{ OrderIsoClass.toSupHomClass, OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_sup_bot_hom_class OrderIsoClass.toSupBotHomClass
-/- warning: order_iso_class.to_inf_top_hom_class -> OrderIsoClass.toInfTopHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toHasTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
-Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfTopHomClass [SemilatticeInf α] [OrderTop α]
[SemilatticeInf β] [OrderTop β] [OrderIsoClass F α β] : InfTopHomClass F α β :=
{ OrderIsoClass.toInfHomClass, OrderIsoClass.toTopHomClass with }
#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClass
-/- warning: order_iso_class.to_lattice_hom_class -> OrderIsoClass.toLatticeHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2
-Case conversion may be inaccurate. Consider using '#align order_iso_class.to_lattice_hom_class OrderIsoClass.toLatticeHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toLatticeHomClass [Lattice α] [Lattice β]
[OrderIsoClass F α β] : LatticeHomClass F α β :=
{ OrderIsoClass.toSupHomClass, OrderIsoClass.toInfHomClass with }
#align order_iso_class.to_lattice_hom_class OrderIsoClass.toLatticeHomClass
-/- warning: order_iso_class.to_bounded_lattice_hom_class -> OrderIsoClass.toBoundedLatticeHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4
-Case conversion may be inaccurate. Consider using '#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [OrderIsoClass F α β] : BoundedLatticeHomClass F α β :=
@@ -348,32 +264,14 @@ variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [BoundedL
include β
-/- warning: disjoint.map -> Disjoint.map is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
-Case conversion may be inaccurate. Consider using '#align disjoint.map Disjoint.mapₓ'. -/
theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot]
#align disjoint.map Disjoint.map
-/- warning: codisjoint.map -> Codisjoint.map is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
-Case conversion may be inaccurate. Consider using '#align codisjoint.map Codisjoint.mapₓ'. -/
theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
rw [codisjoint_iff, ← map_sup, h.eq_top, map_top]
#align codisjoint.map Codisjoint.map
-/- warning: is_compl.map -> IsCompl.map is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 a b) -> (IsCompl.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) _inst_4 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
-Case conversion may be inaccurate. Consider using '#align is_compl.map IsCompl.mapₓ'. -/
theorem IsCompl.map (h : IsCompl a b) : IsCompl (f a) (f b) :=
⟨h.1.map _, h.2.map _⟩
#align is_compl.map IsCompl.map
@@ -393,17 +291,11 @@ theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
#align map_compl' map_compl'
-/
-/- warning: map_sdiff' -> map_sdiff' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align map_sdiff' map_sdiff'ₓ'. -/
/-- Special case of `map_sdiff` for boolean algebras. -/
theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
rw [sdiff_eq, sdiff_eq, map_inf, map_compl']
#align map_sdiff' map_sdiff'
-/- warning: map_symm_diff' -> map_symm_diff' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align map_symm_diff' map_symm_diff'ₓ'. -/
/-- Special case of `map_symm_diff` for boolean algebras. -/
theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff']
@@ -459,23 +351,11 @@ directly. -/
instance : CoeFun (SupHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
-/- warning: sup_hom.to_fun_eq_coe -> SupHom.toFun_eq_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
-Case conversion may be inaccurate. Consider using '#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
rfl
#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coe
-/- warning: sup_hom.ext -> SupHom.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2} {g : SupHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
-Case conversion may be inaccurate. Consider using '#align sup_hom.ext SupHom.extₓ'. -/
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -491,23 +371,11 @@ protected def copy (f : SupHom α β) (f' : α → β) (h : f' = f) : SupHom α
#align sup_hom.copy SupHom.copy
-/
-/- warning: sup_hom.coe_copy -> SupHom.coe_copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align sup_hom.coe_copy SupHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align sup_hom.coe_copy SupHom.coe_copy
-/- warning: sup_hom.copy_eq -> SupHom.copy_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
-Case conversion may be inaccurate. Consider using '#align sup_hom.copy_eq SupHom.copy_eqₓ'. -/
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align sup_hom.copy_eq SupHom.copy_eq
@@ -549,79 +417,37 @@ def comp (f : SupHom β γ) (g : SupHom α β) : SupHom α γ
#align sup_hom.comp SupHom.comp
-/
-/- warning: sup_hom.coe_comp -> SupHom.coe_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
-Case conversion may be inaccurate. Consider using '#align sup_hom.coe_comp SupHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align sup_hom.coe_comp SupHom.coe_comp
-/- warning: sup_hom.comp_apply -> SupHom.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
-Case conversion may be inaccurate. Consider using '#align sup_hom.comp_apply SupHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupHom β γ) (g : SupHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align sup_hom.comp_apply SupHom.comp_apply
-/- warning: sup_hom.comp_assoc -> SupHom.comp_assoc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] [_inst_4 : Sup.{u4} δ] (f : SupHom.{u3, u4} γ δ _inst_3 _inst_4) (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (h : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (SupHom.{u1, u4} α δ _inst_1 _inst_4) (SupHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (SupHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (SupHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u4} γ] [_inst_4 : Sup.{u3} δ] (f : SupHom.{u4, u3} γ δ _inst_3 _inst_4) (g : SupHom.{u2, u4} β γ _inst_2 _inst_3) (h : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α δ _inst_1 _inst_4) (SupHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (SupHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (SupHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (SupHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
-Case conversion may be inaccurate. Consider using '#align sup_hom.comp_assoc SupHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : SupHom γ δ) (g : SupHom β γ) (h : SupHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align sup_hom.comp_assoc SupHom.comp_assoc
-/- warning: sup_hom.comp_id -> SupHom.comp_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (SupHom.id.{u1} α _inst_1)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (SupHom.id.{u2} α _inst_1)) f
-Case conversion may be inaccurate. Consider using '#align sup_hom.comp_id SupHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : SupHom α β) : f.comp (SupHom.id α) = f :=
SupHom.ext fun a => rfl
#align sup_hom.comp_id SupHom.comp_id
-/- warning: sup_hom.id_comp -> SupHom.id_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (SupHom.id.{u2} β _inst_2) f) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (SupHom.id.{u1} β _inst_2) f) f
-Case conversion may be inaccurate. Consider using '#align sup_hom.id_comp SupHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
SupHom.ext fun a => rfl
#align sup_hom.id_comp SupHom.id_comp
-/- warning: sup_hom.cancel_right -> SupHom.cancel_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g₁ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
-Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_right SupHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => SupHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align sup_hom.cancel_right SupHom.cancel_right
-/- warning: sup_hom.cancel_left -> SupHom.cancel_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
-Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_left SupHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => SupHom.ext fun a => hg <| by rw [← SupHom.comp_apply, h, SupHom.comp_apply],
@@ -632,23 +458,11 @@ end Sup
variable (α) [SemilatticeSup β]
-/- warning: sup_hom.const -> SupHom.const is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], β -> (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2))
-but is expected to have type
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], β -> (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2))
-Case conversion may be inaccurate. Consider using '#align sup_hom.const SupHom.constₓ'. -/
/-- The constant function as a `sup_hom`. -/
def const (b : β) : SupHom α β :=
⟨fun _ => b, fun _ _ => sup_idem.symm⟩
#align sup_hom.const SupHom.const
-/- warning: sup_hom.coe_const -> SupHom.coe_const is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
-but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
-Case conversion may be inaccurate. Consider using '#align sup_hom.coe_const SupHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
rfl
@@ -685,67 +499,31 @@ instance [OrderTop β] : OrderTop (SupHom α β) :=
instance [BoundedOrder β] : BoundedOrder (SupHom α β) :=
BoundedOrder.lift (coeFn : _ → α → β) (fun _ _ => id) rfl rfl
-/- warning: sup_hom.coe_sup -> SupHom.coe_sup is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
-Case conversion may be inaccurate. Consider using '#align sup_hom.coe_sup SupHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
rfl
#align sup_hom.coe_sup SupHom.coe_sup
-/- warning: sup_hom.coe_bot -> SupHom.coe_bot is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
-Case conversion may be inaccurate. Consider using '#align sup_hom.coe_bot SupHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
rfl
#align sup_hom.coe_bot SupHom.coe_bot
-/- warning: sup_hom.coe_top -> SupHom.coe_top is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
-Case conversion may be inaccurate. Consider using '#align sup_hom.coe_top SupHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
rfl
#align sup_hom.coe_top SupHom.coe_top
-/- warning: sup_hom.sup_apply -> SupHom.sup_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g a))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align sup_hom.sup_apply SupHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align sup_hom.sup_apply SupHom.sup_apply
-/- warning: sup_hom.bot_apply -> SupHom.bot_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) _inst_3)
-Case conversion may be inaccurate. Consider using '#align sup_hom.bot_apply SupHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
rfl
#align sup_hom.bot_apply SupHom.bot_apply
-/- warning: sup_hom.top_apply -> SupHom.top_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) _inst_3)
-Case conversion may be inaccurate. Consider using '#align sup_hom.top_apply SupHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : SupHom α β) a = ⊤ :=
rfl
@@ -775,23 +553,11 @@ directly. -/
instance : CoeFun (InfHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
-/- warning: inf_hom.to_fun_eq_coe -> InfHom.toFun_eq_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
-Case conversion may be inaccurate. Consider using '#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
rfl
#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coe
-/- warning: inf_hom.ext -> InfHom.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2} {g : InfHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
-Case conversion may be inaccurate. Consider using '#align inf_hom.ext InfHom.extₓ'. -/
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -807,23 +573,11 @@ protected def copy (f : InfHom α β) (f' : α → β) (h : f' = f) : InfHom α
#align inf_hom.copy InfHom.copy
-/
-/- warning: inf_hom.coe_copy -> InfHom.coe_copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align inf_hom.coe_copy InfHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align inf_hom.coe_copy InfHom.coe_copy
-/- warning: inf_hom.copy_eq -> InfHom.copy_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
-Case conversion may be inaccurate. Consider using '#align inf_hom.copy_eq InfHom.copy_eqₓ'. -/
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align inf_hom.copy_eq InfHom.copy_eq
@@ -865,79 +619,37 @@ def comp (f : InfHom β γ) (g : InfHom α β) : InfHom α γ
#align inf_hom.comp InfHom.comp
-/
-/- warning: inf_hom.coe_comp -> InfHom.coe_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
-Case conversion may be inaccurate. Consider using '#align inf_hom.coe_comp InfHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align inf_hom.coe_comp InfHom.coe_comp
-/- warning: inf_hom.comp_apply -> InfHom.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
-Case conversion may be inaccurate. Consider using '#align inf_hom.comp_apply InfHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfHom β γ) (g : InfHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align inf_hom.comp_apply InfHom.comp_apply
-/- warning: inf_hom.comp_assoc -> InfHom.comp_assoc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] [_inst_4 : Inf.{u4} δ] (f : InfHom.{u3, u4} γ δ _inst_3 _inst_4) (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (h : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (InfHom.{u1, u4} α δ _inst_1 _inst_4) (InfHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (InfHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (InfHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u4} γ] [_inst_4 : Inf.{u3} δ] (f : InfHom.{u4, u3} γ δ _inst_3 _inst_4) (g : InfHom.{u2, u4} β γ _inst_2 _inst_3) (h : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α δ _inst_1 _inst_4) (InfHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (InfHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (InfHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (InfHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
-Case conversion may be inaccurate. Consider using '#align inf_hom.comp_assoc InfHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : InfHom γ δ) (g : InfHom β γ) (h : InfHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align inf_hom.comp_assoc InfHom.comp_assoc
-/- warning: inf_hom.comp_id -> InfHom.comp_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (InfHom.id.{u1} α _inst_1)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (InfHom.id.{u2} α _inst_1)) f
-Case conversion may be inaccurate. Consider using '#align inf_hom.comp_id InfHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : InfHom α β) : f.comp (InfHom.id α) = f :=
InfHom.ext fun a => rfl
#align inf_hom.comp_id InfHom.comp_id
-/- warning: inf_hom.id_comp -> InfHom.id_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (InfHom.id.{u2} β _inst_2) f) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (InfHom.id.{u1} β _inst_2) f) f
-Case conversion may be inaccurate. Consider using '#align inf_hom.id_comp InfHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
InfHom.ext fun a => rfl
#align inf_hom.id_comp InfHom.id_comp
-/- warning: inf_hom.cancel_right -> InfHom.cancel_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g₁ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
-Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_right InfHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => InfHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align inf_hom.cancel_right InfHom.cancel_right
-/- warning: inf_hom.cancel_left -> InfHom.cancel_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
-Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_left InfHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => InfHom.ext fun a => hg <| by rw [← InfHom.comp_apply, h, InfHom.comp_apply],
@@ -948,23 +660,11 @@ end Inf
variable (α) [SemilatticeInf β]
-/- warning: inf_hom.const -> InfHom.const is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], β -> (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2))
-but is expected to have type
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], β -> (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2))
-Case conversion may be inaccurate. Consider using '#align inf_hom.const InfHom.constₓ'. -/
/-- The constant function as an `inf_hom`. -/
def const (b : β) : InfHom α β :=
⟨fun _ => b, fun _ _ => inf_idem.symm⟩
#align inf_hom.const InfHom.const
-/- warning: inf_hom.coe_const -> InfHom.coe_const is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
-but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
-Case conversion may be inaccurate. Consider using '#align inf_hom.coe_const InfHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
rfl
@@ -1001,67 +701,31 @@ instance [OrderTop β] : OrderTop (InfHom α β) :=
instance [BoundedOrder β] : BoundedOrder (InfHom α β) :=
BoundedOrder.lift (coeFn : _ → α → β) (fun _ _ => id) rfl rfl
-/- warning: inf_hom.coe_inf -> InfHom.coe_inf is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
-Case conversion may be inaccurate. Consider using '#align inf_hom.coe_inf InfHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
rfl
#align inf_hom.coe_inf InfHom.coe_inf
-/- warning: inf_hom.coe_bot -> InfHom.coe_bot is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
-Case conversion may be inaccurate. Consider using '#align inf_hom.coe_bot InfHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
rfl
#align inf_hom.coe_bot InfHom.coe_bot
-/- warning: inf_hom.coe_top -> InfHom.coe_top is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
-Case conversion may be inaccurate. Consider using '#align inf_hom.coe_top InfHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
rfl
#align inf_hom.coe_top InfHom.coe_top
-/- warning: inf_hom.inf_apply -> InfHom.inf_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g a))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
-Case conversion may be inaccurate. Consider using '#align inf_hom.inf_apply InfHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align inf_hom.inf_apply InfHom.inf_apply
-/- warning: inf_hom.bot_apply -> InfHom.bot_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) _inst_3)
-Case conversion may be inaccurate. Consider using '#align inf_hom.bot_apply InfHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
rfl
#align inf_hom.bot_apply InfHom.bot_apply
-/- warning: inf_hom.top_apply -> InfHom.top_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) _inst_3)
-Case conversion may be inaccurate. Consider using '#align inf_hom.top_apply InfHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : InfHom α β) a = ⊤ :=
rfl
@@ -1099,57 +763,27 @@ directly. -/
instance : CoeFun (SupBotHom α β) fun _ => α → β :=
FunLike.hasCoeToFun
-/- warning: sup_bot_hom.to_fun_eq_coe -> SupBotHom.toFun_eq_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
rfl
#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coe
-/- warning: sup_bot_hom.ext -> SupBotHom.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.ext SupBotHom.extₓ'. -/
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align sup_bot_hom.ext SupBotHom.ext
-/- warning: sup_bot_hom.copy -> SupBotHom.copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy SupBotHom.copyₓ'. -/
/-- Copy of a `sup_bot_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : SupBotHom α β :=
{ f.toBotHom.copy f' h with toSupHom := f.toSupHom.copy f' h }
#align sup_bot_hom.copy SupBotHom.copy
-/- warning: sup_bot_hom.coe_copy -> SupBotHom.coe_copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_copy SupBotHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align sup_bot_hom.coe_copy SupBotHom.coe_copy
-/- warning: sup_bot_hom.copy_eq -> SupBotHom.copy_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy_eq SupBotHom.copy_eqₓ'. -/
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align sup_bot_hom.copy_eq SupBotHom.copy_eq
@@ -1167,12 +801,6 @@ protected def id : SupBotHom α α :=
instance : Inhabited (SupBotHom α α) :=
⟨SupBotHom.id α⟩
-/- warning: sup_bot_hom.coe_id -> SupBotHom.coe_id is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_id SupBotHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(SupBotHom.id α) = id :=
rfl
@@ -1180,12 +808,6 @@ theorem coe_id : ⇑(SupBotHom.id α) = id :=
variable {α}
-/- warning: sup_bot_hom.id_apply -> SupBotHom.id_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.id_apply SupBotHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : SupBotHom.id α a = a :=
rfl
@@ -1198,79 +820,37 @@ def comp (f : SupBotHom β γ) (g : SupBotHom α β) : SupBotHom α γ :=
#align sup_bot_hom.comp SupBotHom.comp
-/
-/- warning: sup_bot_hom.coe_comp -> SupBotHom.coe_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_comp SupBotHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align sup_bot_hom.coe_comp SupBotHom.coe_comp
-/- warning: sup_bot_hom.comp_apply -> SupBotHom.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_apply SupBotHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupBotHom β γ) (g : SupBotHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align sup_bot_hom.comp_apply SupBotHom.comp_apply
-/- warning: sup_bot_hom.comp_assoc -> SupBotHom.comp_assoc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] [_inst_7 : Sup.{u4} δ] [_inst_8 : Bot.{u4} δ] (f : SupBotHom.{u3, u4} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u4)} (SupBotHom.{u1, u4} α δ _inst_1 _inst_7 _inst_2 _inst_8) (SupBotHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (SupBotHom.comp.{u2, u3, u4} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (SupBotHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u4} γ] [_inst_6 : Bot.{u4} γ] [_inst_7 : Sup.{u3} δ] [_inst_8 : Bot.{u3} δ] (f : SupBotHom.{u4, u3} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : SupBotHom.{u2, u4} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α δ _inst_1 _inst_7 _inst_2 _inst_8) (SupBotHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (SupBotHom.comp.{u2, u4, u3} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (SupBotHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (SupBotHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_assoc SupBotHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : SupBotHom γ δ) (g : SupBotHom β γ) (h : SupBotHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align sup_bot_hom.comp_assoc SupBotHom.comp_assoc
-/- warning: sup_bot_hom.comp_id -> SupBotHom.comp_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u1, u1, u2} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (SupBotHom.id.{u1} α _inst_1 _inst_2)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u2, u2, u1} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (SupBotHom.id.{u2} α _inst_1 _inst_2)) f
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_id SupBotHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : SupBotHom α β) : f.comp (SupBotHom.id α) = f :=
ext fun a => rfl
#align sup_bot_hom.comp_id SupBotHom.comp_id
-/- warning: sup_bot_hom.id_comp -> SupBotHom.id_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (SupBotHom.id.{u2} β _inst_3 _inst_4) f) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (SupBotHom.id.{u1} β _inst_3 _inst_4) f) f
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.id_comp SupBotHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
ext fun a => rfl
#align sup_bot_hom.id_comp SupBotHom.id_comp
-/- warning: sup_bot_hom.cancel_right -> SupBotHom.cancel_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g₁ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_right SupBotHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align sup_bot_hom.cancel_right SupBotHom.cancel_right
-/- warning: sup_bot_hom.cancel_left -> SupBotHom.cancel_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_left SupBotHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => SupBotHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
@@ -1290,45 +870,21 @@ instance : OrderBot (SupBotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le f := bot_le
-/- warning: sup_bot_hom.coe_sup -> SupBotHom.coe_sup is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_sup SupBotHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
rfl
#align sup_bot_hom.coe_sup SupBotHom.coe_sup
-/- warning: sup_bot_hom.coe_bot -> SupBotHom.coe_bot is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) _inst_3))) _inst_4)))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_bot SupBotHom.coe_botₓ'. -/
@[simp]
theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
rfl
#align sup_bot_hom.coe_bot SupBotHom.coe_bot
-/- warning: sup_bot_hom.sup_apply -> SupBotHom.sup_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.sup_apply SupBotHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align sup_bot_hom.sup_apply SupBotHom.sup_apply
-/- warning: sup_bot_hom.bot_apply -> SupBotHom.bot_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) _inst_3))) _inst_4))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.bot_apply SupBotHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply (a : α) : (⊥ : SupBotHom α β) a = ⊥ :=
rfl
@@ -1366,57 +922,27 @@ directly. -/
instance : CoeFun (InfTopHom α β) fun _ => α → β :=
FunLike.hasCoeToFun
-/- warning: inf_top_hom.to_fun_eq_coe -> InfTopHom.toFun_eq_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
rfl
#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coe
-/- warning: inf_top_hom.ext -> InfTopHom.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.ext InfTopHom.extₓ'. -/
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align inf_top_hom.ext InfTopHom.ext
-/- warning: inf_top_hom.copy -> InfTopHom.copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy InfTopHom.copyₓ'. -/
/-- Copy of an `inf_top_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : InfTopHom α β :=
{ f.toTopHom.copy f' h with toInfHom := f.toInfHom.copy f' h }
#align inf_top_hom.copy InfTopHom.copy
-/- warning: inf_top_hom.coe_copy -> InfTopHom.coe_copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_copy InfTopHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align inf_top_hom.coe_copy InfTopHom.coe_copy
-/- warning: inf_top_hom.copy_eq -> InfTopHom.copy_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy_eq InfTopHom.copy_eqₓ'. -/
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align inf_top_hom.copy_eq InfTopHom.copy_eq
@@ -1434,12 +960,6 @@ protected def id : InfTopHom α α :=
instance : Inhabited (InfTopHom α α) :=
⟨InfTopHom.id α⟩
-/- warning: inf_top_hom.coe_id -> InfTopHom.coe_id is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_id InfTopHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(InfTopHom.id α) = id :=
rfl
@@ -1447,12 +967,6 @@ theorem coe_id : ⇑(InfTopHom.id α) = id :=
variable {α}
-/- warning: inf_top_hom.id_apply -> InfTopHom.id_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.id_apply InfTopHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : InfTopHom.id α a = a :=
rfl
@@ -1465,79 +979,37 @@ def comp (f : InfTopHom β γ) (g : InfTopHom α β) : InfTopHom α γ :=
#align inf_top_hom.comp InfTopHom.comp
-/
-/- warning: inf_top_hom.coe_comp -> InfTopHom.coe_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_comp InfTopHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align inf_top_hom.coe_comp InfTopHom.coe_comp
-/- warning: inf_top_hom.comp_apply -> InfTopHom.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_apply InfTopHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfTopHom β γ) (g : InfTopHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align inf_top_hom.comp_apply InfTopHom.comp_apply
-/- warning: inf_top_hom.comp_assoc -> InfTopHom.comp_assoc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] [_inst_7 : Inf.{u4} δ] [_inst_8 : Top.{u4} δ] (f : InfTopHom.{u3, u4} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u4)} (InfTopHom.{u1, u4} α δ _inst_1 _inst_7 _inst_2 _inst_8) (InfTopHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (InfTopHom.comp.{u2, u3, u4} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (InfTopHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u4} γ] [_inst_6 : Top.{u4} γ] [_inst_7 : Inf.{u3} δ] [_inst_8 : Top.{u3} δ] (f : InfTopHom.{u4, u3} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : InfTopHom.{u2, u4} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α δ _inst_1 _inst_7 _inst_2 _inst_8) (InfTopHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (InfTopHom.comp.{u2, u4, u3} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (InfTopHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (InfTopHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_assoc InfTopHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : InfTopHom γ δ) (g : InfTopHom β γ) (h : InfTopHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align inf_top_hom.comp_assoc InfTopHom.comp_assoc
-/- warning: inf_top_hom.comp_id -> InfTopHom.comp_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u1, u1, u2} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (InfTopHom.id.{u1} α _inst_1 _inst_2)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u2, u2, u1} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (InfTopHom.id.{u2} α _inst_1 _inst_2)) f
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_id InfTopHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : InfTopHom α β) : f.comp (InfTopHom.id α) = f :=
ext fun a => rfl
#align inf_top_hom.comp_id InfTopHom.comp_id
-/- warning: inf_top_hom.id_comp -> InfTopHom.id_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (InfTopHom.id.{u2} β _inst_3 _inst_4) f) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (InfTopHom.id.{u1} β _inst_3 _inst_4) f) f
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.id_comp InfTopHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
ext fun a => rfl
#align inf_top_hom.id_comp InfTopHom.id_comp
-/- warning: inf_top_hom.cancel_right -> InfTopHom.cancel_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g₁ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_right InfTopHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align inf_top_hom.cancel_right InfTopHom.cancel_right
-/- warning: inf_top_hom.cancel_left -> InfTopHom.cancel_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_left InfTopHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => InfTopHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
@@ -1557,45 +1029,21 @@ instance : OrderTop (InfTopHom α β) where
top := ⟨⊤, rfl⟩
le_top f := le_top
-/- warning: inf_top_hom.coe_inf -> InfTopHom.coe_inf is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_inf InfTopHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
rfl
#align inf_top_hom.coe_inf InfTopHom.coe_inf
-/- warning: inf_top_hom.coe_top -> InfTopHom.coe_top is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) _inst_3))) _inst_4)))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_top InfTopHom.coe_topₓ'. -/
@[simp]
theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
rfl
#align inf_top_hom.coe_top InfTopHom.coe_top
-/- warning: inf_top_hom.inf_apply -> InfTopHom.inf_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.inf_apply InfTopHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align inf_top_hom.inf_apply InfTopHom.inf_apply
-/- warning: inf_top_hom.top_apply -> InfTopHom.top_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) _inst_3))) _inst_4))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.top_apply InfTopHom.top_applyₓ'. -/
@[simp]
theorem top_apply (a : α) : (⊤ : InfTopHom α β) a = ⊤ :=
rfl
@@ -1610,12 +1058,6 @@ namespace LatticeHom
variable [Lattice α] [Lattice β] [Lattice γ] [Lattice δ]
-/- warning: lattice_hom.to_inf_hom -> LatticeHom.toInfHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β], (LatticeHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β], (LatticeHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.to_inf_hom LatticeHom.toInfHomₓ'. -/
/-- Reinterpret a `lattice_hom` as an `inf_hom`. -/
def toInfHom (f : LatticeHom α β) : InfHom α β :=
{ f with }
@@ -1633,57 +1075,27 @@ directly. -/
instance : CoeFun (LatticeHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
-/- warning: lattice_hom.to_fun_eq_coe -> LatticeHom.toFun_eq_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
-Case conversion may be inaccurate. Consider using '#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
rfl
#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coe
-/- warning: lattice_hom.ext -> LatticeHom.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {g : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2} {g : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) f g)
-Case conversion may be inaccurate. Consider using '#align lattice_hom.ext LatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align lattice_hom.ext LatticeHom.ext
-/- warning: lattice_hom.copy -> LatticeHom.copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align lattice_hom.copy LatticeHom.copyₓ'. -/
/-- Copy of a `lattice_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : LatticeHom α β :=
{ f.toSupHom.copy f' h, f.toInfHom.copy f' h with }
#align lattice_hom.copy LatticeHom.copy
-/- warning: lattice_hom.coe_copy -> LatticeHom.coe_copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_copy LatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align lattice_hom.coe_copy LatticeHom.coe_copy
-/- warning: lattice_hom.copy_eq -> LatticeHom.copy_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
-Case conversion may be inaccurate. Consider using '#align lattice_hom.copy_eq LatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : LatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align lattice_hom.copy_eq LatticeHom.copy_eq
@@ -1702,12 +1114,6 @@ protected def id : LatticeHom α α where
instance : Inhabited (LatticeHom α α) :=
⟨LatticeHom.id α⟩
-/- warning: lattice_hom.coe_id -> LatticeHom.coe_id is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_id LatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(LatticeHom.id α) = id :=
rfl
@@ -1715,12 +1121,6 @@ theorem coe_id : ⇑(LatticeHom.id α) = id :=
variable {α}
-/- warning: lattice_hom.id_apply -> LatticeHom.id_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
-Case conversion may be inaccurate. Consider using '#align lattice_hom.id_apply LatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : LatticeHom.id α a = a :=
rfl
@@ -1733,103 +1133,49 @@ def comp (f : LatticeHom β γ) (g : LatticeHom α β) : LatticeHom α γ :=
#align lattice_hom.comp LatticeHom.comp
-/
-/- warning: lattice_hom.coe_comp -> LatticeHom.coe_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp LatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α → γ) = f ∘ g :=
rfl
#align lattice_hom.coe_comp LatticeHom.coe_comp
-/- warning: lattice_hom.comp_apply -> LatticeHom.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g a))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.comp_apply LatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.comp g) a = f (g a) :=
rfl
#align lattice_hom.comp_apply LatticeHom.comp_apply
-/- warning: lattice_hom.coe_comp_sup_hom -> LatticeHom.coe_comp_sup_hom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.latticeHomClass.{u1, u3} α γ _inst_1 _inst_3))))) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.latticeHomClass.{u2, u3} β γ _inst_2 _inst_3))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.latticeHomClass.{u1, u2} α β _inst_1 _inst_2))))) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp_sup_hom LatticeHom.coe_comp_sup_homₓ'. -/
@[simp]
theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g : SupHom α γ) = (f : SupHom β γ).comp g :=
rfl
#align lattice_hom.coe_comp_sup_hom LatticeHom.coe_comp_sup_hom
-/- warning: lattice_hom.coe_comp_inf_hom -> LatticeHom.coe_comp_inf_hom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.latticeHomClass.{u1, u3} α γ _inst_1 _inst_3))))) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.latticeHomClass.{u2, u3} β γ _inst_2 _inst_3))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.latticeHomClass.{u1, u2} α β _inst_1 _inst_2))))) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp_inf_hom LatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g : InfHom α γ) = (f : InfHom β γ).comp g :=
rfl
#align lattice_hom.coe_comp_inf_hom LatticeHom.coe_comp_inf_hom
-/- warning: lattice_hom.comp_assoc -> LatticeHom.comp_assoc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_4 : Lattice.{u4} δ] (f : LatticeHom.{u3, u4} γ δ _inst_3 _inst_4) (g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (h : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (LatticeHom.{u1, u4} α δ _inst_1 _inst_4) (LatticeHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (LatticeHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (LatticeHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u4} γ] [_inst_4 : Lattice.{u3} δ] (f : LatticeHom.{u4, u3} γ δ _inst_3 _inst_4) (g : LatticeHom.{u2, u4} β γ _inst_2 _inst_3) (h : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α δ _inst_1 _inst_4) (LatticeHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (LatticeHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (LatticeHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (LatticeHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.comp_assoc LatticeHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : LatticeHom γ δ) (g : LatticeHom β γ) (h : LatticeHom α β) :
(f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align lattice_hom.comp_assoc LatticeHom.comp_assoc
-/- warning: lattice_hom.comp_id -> LatticeHom.comp_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (LatticeHom.id.{u1} α _inst_1)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (LatticeHom.id.{u2} α _inst_1)) f
-Case conversion may be inaccurate. Consider using '#align lattice_hom.comp_id LatticeHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : LatticeHom α β) : f.comp (LatticeHom.id α) = f :=
LatticeHom.ext fun a => rfl
#align lattice_hom.comp_id LatticeHom.comp_id
-/- warning: lattice_hom.id_comp -> LatticeHom.id_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (LatticeHom.id.{u2} β _inst_2) f) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (LatticeHom.id.{u1} β _inst_2) f) f
-Case conversion may be inaccurate. Consider using '#align lattice_hom.id_comp LatticeHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
LatticeHom.ext fun a => rfl
#align lattice_hom.id_comp LatticeHom.id_comp
-/- warning: lattice_hom.cancel_right -> LatticeHom.cancel_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g₁ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g₁ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_right LatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => LatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align lattice_hom.cancel_right LatticeHom.cancel_right
-/- warning: lattice_hom.cancel_left -> LatticeHom.cancel_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_left LatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : LatticeHom β γ} {f₁ f₂ : LatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => LatticeHom.ext fun a => hg <| by rw [← LatticeHom.comp_apply, h, LatticeHom.comp_apply],
@@ -1842,12 +1188,6 @@ namespace OrderHomClass
variable (α β) [LinearOrder α] [Lattice β] [OrderHomClass F α β]
-/- warning: order_hom_class.to_lattice_hom_class -> OrderHomClass.toLatticeHomClass is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2
-but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2
-Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_class OrderHomClass.toLatticeHomClassₓ'. -/
/-- An order homomorphism from a linear order is a lattice homomorphism. -/
@[reducible]
def toLatticeHomClass : LatticeHomClass F α β :=
@@ -1864,35 +1204,17 @@ def toLatticeHomClass : LatticeHomClass F α β :=
· rw [inf_eq_right.2 h, inf_eq_right.2 (OrderHomClass.mono f h : f b ≤ f a)] }
#align order_hom_class.to_lattice_hom_class OrderHomClass.toLatticeHomClass
-/- warning: order_hom_class.to_lattice_hom -> OrderHomClass.toLatticeHom is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], F -> (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2)
-but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], F -> (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2)
-Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom OrderHomClass.toLatticeHomₓ'. -/
/-- Reinterpret an order homomorphism to a linear order as a `lattice_hom`. -/
def toLatticeHom (f : F) : LatticeHom α β :=
haveI : LatticeHomClass F α β := OrderHomClass.toLatticeHomClass α β
f
#align order_hom_class.to_lattice_hom OrderHomClass.toLatticeHom
-/- warning: order_hom_class.coe_to_lattice_hom -> OrderHomClass.coe_to_lattice_hom is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F), Eq.{max (succ u2) (succ u3)} (α -> β) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f)) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f)
-but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
-Case conversion may be inaccurate. Consider using '#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_homₓ'. -/
@[simp]
theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
rfl
#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_hom
-/- warning: order_hom_class.to_lattice_hom_apply -> OrderHomClass.to_lattice_hom_apply is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f a)
-but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
-Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_applyₓ'. -/
@[simp]
theorem to_lattice_hom_apply (f : F) (a : α) : toLatticeHom α β f a = f a :=
rfl
@@ -1908,34 +1230,16 @@ namespace BoundedLatticeHom
variable [Lattice α] [Lattice β] [Lattice γ] [Lattice δ] [BoundedOrder α] [BoundedOrder β]
[BoundedOrder γ] [BoundedOrder δ]
-/- warning: bounded_lattice_hom.to_sup_bot_hom -> BoundedLatticeHom.toSupBotHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_sup_bot_hom BoundedLatticeHom.toSupBotHomₓ'. -/
/-- Reinterpret a `bounded_lattice_hom` as a `sup_bot_hom`. -/
def toSupBotHom (f : BoundedLatticeHom α β) : SupBotHom α β :=
{ f with }
#align bounded_lattice_hom.to_sup_bot_hom BoundedLatticeHom.toSupBotHom
-/- warning: bounded_lattice_hom.to_inf_top_hom -> BoundedLatticeHom.toInfTopHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_inf_top_hom BoundedLatticeHom.toInfTopHomₓ'. -/
/-- Reinterpret a `bounded_lattice_hom` as an `inf_top_hom`. -/
def toInfTopHom (f : BoundedLatticeHom α β) : InfTopHom α β :=
{ f with }
#align bounded_lattice_hom.to_inf_top_hom BoundedLatticeHom.toInfTopHom
-/- warning: bounded_lattice_hom.to_bounded_order_hom -> BoundedLatticeHom.toBoundedOrderHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedOrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_5 _inst_6)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedOrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_5 _inst_6)
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_bounded_order_hom BoundedLatticeHom.toBoundedOrderHomₓ'. -/
/-- Reinterpret a `bounded_lattice_hom` as a `bounded_order_hom`. -/
def toBoundedOrderHom (f : BoundedLatticeHom α β) : BoundedOrderHom α β :=
{ f, (f.toLatticeHom : α →o β) with }
@@ -1955,66 +1259,33 @@ directly. -/
instance : CoeFun (BoundedLatticeHom α β) fun _ => α → β :=
⟨fun f => f.toFun⟩
-/- warning: bounded_lattice_hom.to_fun_eq_coe -> BoundedLatticeHom.toFun_eq_coe is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :=
rfl
#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coe
-/- warning: bounded_lattice_hom.ext -> BoundedLatticeHom.ext is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.ext BoundedLatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bounded_lattice_hom.ext BoundedLatticeHom.ext
-/- warning: bounded_lattice_hom.copy -> BoundedLatticeHom.copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy BoundedLatticeHom.copyₓ'. -/
/-- Copy of a `bounded_lattice_hom` with a new `to_fun` equal to the old one. Useful to fix
definitional equalities. -/
protected def copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : BoundedLatticeHom α β :=
{ f.toLatticeHom.copy f' h, f.toBoundedOrderHom.copy f' h with }
#align bounded_lattice_hom.copy BoundedLatticeHom.copy
-/- warning: bounded_lattice_hom.coe_copy -> BoundedLatticeHom.coe_copy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
rfl
#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copy
-/- warning: bounded_lattice_hom.copy_eq -> BoundedLatticeHom.copy_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eq
variable (α)
-/- warning: bounded_lattice_hom.id -> BoundedLatticeHom.id is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id BoundedLatticeHom.idₓ'. -/
/-- `id` as a `bounded_lattice_hom`. -/
protected def id : BoundedLatticeHom α α :=
{ LatticeHom.id α, BoundedOrderHom.id α with }
@@ -2023,12 +1294,6 @@ protected def id : BoundedLatticeHom α α :=
instance : Inhabited (BoundedLatticeHom α α) :=
⟨BoundedLatticeHom.id α⟩
-/- warning: bounded_lattice_hom.coe_id -> BoundedLatticeHom.coe_id is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_id BoundedLatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(BoundedLatticeHom.id α) = id :=
rfl
@@ -2036,118 +1301,67 @@ theorem coe_id : ⇑(BoundedLatticeHom.id α) = id :=
variable {α}
-/- warning: bounded_lattice_hom.id_apply -> BoundedLatticeHom.id_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : BoundedLatticeHom.id α a = a :=
rfl
#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_apply
-/- warning: bounded_lattice_hom.comp -> BoundedLatticeHom.comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))], (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))], (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp BoundedLatticeHom.compₓ'. -/
/-- Composition of `bounded_lattice_hom`s as a `bounded_lattice_hom`. -/
def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLatticeHom α γ :=
{ f.toLatticeHom.comp g.toLatticeHom, f.toBoundedOrderHom.comp g.toBoundedOrderHom with }
#align bounded_lattice_hom.comp BoundedLatticeHom.comp
-/- warning: bounded_lattice_hom.coe_comp -> BoundedLatticeHom.coe_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : α → γ) = f ∘ g :=
rfl
#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_comp
-/- warning: bounded_lattice_hom.comp_apply -> BoundedLatticeHom.comp_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (a : α) :
(f.comp g) a = f (g a) :=
rfl
#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_apply
-/- warning: bounded_lattice_hom.coe_comp_lattice_hom -> BoundedLatticeHom.coe_comp_lattice_hom is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_homₓ'. -/
@[simp]
theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : LatticeHom α γ) = (f : LatticeHom β γ).comp g :=
rfl
#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_hom
-/- warning: bounded_lattice_hom.coe_comp_sup_hom -> BoundedLatticeHom.coe_comp_sup_hom is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_homₓ'. -/
@[simp]
theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : SupHom α γ) = (f : SupHom β γ).comp g :=
rfl
#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_hom
-/- warning: bounded_lattice_hom.coe_comp_inf_hom -> BoundedLatticeHom.coe_comp_inf_hom is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(f.comp g : InfHom α γ) = (f : InfHom β γ).comp g :=
rfl
#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_hom
-/- warning: bounded_lattice_hom.comp_assoc -> BoundedLatticeHom.comp_assoc is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_4 : Lattice.{u4} δ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] [_inst_8 : BoundedOrder.{u4} δ (Preorder.toHasLe.{u4} δ (PartialOrder.toPreorder.{u4} δ (SemilatticeInf.toPartialOrder.{u4} δ (Lattice.toSemilatticeInf.{u4} δ _inst_4))))] (f : BoundedLatticeHom.{u3, u4} γ δ _inst_3 _inst_4 _inst_7 _inst_8) (g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (h : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u4)} (BoundedLatticeHom.{u1, u4} α δ _inst_1 _inst_4 _inst_5 _inst_8) (BoundedLatticeHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 _inst_5 _inst_6 _inst_8 (BoundedLatticeHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 _inst_6 _inst_7 _inst_8 f g) h) (BoundedLatticeHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 _inst_5 _inst_7 _inst_8 f (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g h))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u4} γ] [_inst_4 : Lattice.{u3} δ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u4} γ (Preorder.toLE.{u4} γ (PartialOrder.toPreorder.{u4} γ (SemilatticeInf.toPartialOrder.{u4} γ (Lattice.toSemilatticeInf.{u4} γ _inst_3))))] [_inst_8 : BoundedOrder.{u3} δ (Preorder.toLE.{u3} δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ _inst_4))))] (f : BoundedLatticeHom.{u4, u3} γ δ _inst_3 _inst_4 _inst_7 _inst_8) (g : BoundedLatticeHom.{u2, u4} β γ _inst_2 _inst_3 _inst_6 _inst_7) (h : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α δ _inst_1 _inst_4 _inst_5 _inst_8) (BoundedLatticeHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 _inst_5 _inst_6 _inst_8 (BoundedLatticeHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 _inst_6 _inst_7 _inst_8 f g) h) (BoundedLatticeHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 _inst_5 _inst_7 _inst_8 f (BoundedLatticeHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g h))
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_assoc BoundedLatticeHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : BoundedLatticeHom γ δ) (g : BoundedLatticeHom β γ)
(h : BoundedLatticeHom α β) : (f.comp g).comp h = f.comp (g.comp h) :=
rfl
#align bounded_lattice_hom.comp_assoc BoundedLatticeHom.comp_assoc
-/- warning: bounded_lattice_hom.comp_id -> BoundedLatticeHom.comp_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 _inst_5 _inst_5 _inst_6 f (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 _inst_5 _inst_5 _inst_6 f (BoundedLatticeHom.id.{u2} α _inst_1 _inst_5)) f
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_id BoundedLatticeHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : BoundedLatticeHom α β) : f.comp (BoundedLatticeHom.id α) = f :=
BoundedLatticeHom.ext fun a => rfl
#align bounded_lattice_hom.comp_id BoundedLatticeHom.comp_id
-/- warning: bounded_lattice_hom.id_comp -> BoundedLatticeHom.id_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 _inst_5 _inst_6 _inst_6 (BoundedLatticeHom.id.{u2} β _inst_2 _inst_6) f) f
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 _inst_5 _inst_6 _inst_6 (BoundedLatticeHom.id.{u1} β _inst_2 _inst_6) f) f
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id_comp BoundedLatticeHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f = f :=
BoundedLatticeHom.ext fun a => rfl
#align bounded_lattice_hom.id_comp BoundedLatticeHom.id_comp
-/- warning: bounded_lattice_hom.cancel_right -> BoundedLatticeHom.cancel_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BoundedLatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, congr_arg _⟩
#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_right
-/- warning: bounded_lattice_hom.cancel_left -> BoundedLatticeHom.cancel_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_left BoundedLatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : BoundedLatticeHom β γ} {f₁ f₂ : BoundedLatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
@@ -2181,12 +1395,6 @@ theorem dual_id : (SupHom.id α).dual = InfHom.id _ :=
#align sup_hom.dual_id SupHom.dual_id
-/
-/- warning: sup_hom.dual_comp -> SupHom.dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u1, u3} α γ _inst_1 _inst_3) -> (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u2, u3} β γ _inst_2 _inst_3) -> (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) => (SupHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : SupHom.{u3, u2} β γ _inst_2 _inst_3) (f : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u3, u2} β γ _inst_2 _inst_3) => InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u3} α β _inst_1 _inst_2) => InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
-Case conversion may be inaccurate. Consider using '#align sup_hom.dual_comp SupHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupHom β γ) (f : SupHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
@@ -2199,12 +1407,6 @@ theorem symm_dual_id : SupHom.dual.symm (InfHom.id _) = SupHom.id α :=
#align sup_hom.symm_dual_id SupHom.symm_dual_id
-/
-/- warning: sup_hom.symm_dual_comp -> SupHom.symm_dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (f : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) => (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) g f)) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) => (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) => (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) -> (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (f : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (fun (_x : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => SupHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
-Case conversion may be inaccurate. Consider using '#align sup_hom.symm_dual_comp SupHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfHom βᵒᵈ γᵒᵈ) (f : InfHom αᵒᵈ βᵒᵈ) :
SupHom.dual.symm (g.comp f) = (SupHom.dual.symm g).comp (SupHom.dual.symm f) :=
@@ -2236,12 +1438,6 @@ theorem dual_id : (InfHom.id α).dual = SupHom.id _ :=
#align inf_hom.dual_id InfHom.dual_id
-/
-/- warning: inf_hom.dual_comp -> InfHom.dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u1, u3} α γ _inst_1 _inst_3) -> (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u2, u3} β γ _inst_2 _inst_3) -> (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) => (InfHom.{u1, u2} α β _inst_1 _inst_2) -> (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : InfHom.{u3, u2} β γ _inst_2 _inst_3) (f : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u3, u2} β γ _inst_2 _inst_3) => SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u3} α β _inst_1 _inst_2) => SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
-Case conversion may be inaccurate. Consider using '#align inf_hom.dual_comp InfHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfHom β γ) (f : InfHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
@@ -2254,12 +1450,6 @@ theorem symm_dual_id : InfHom.dual.symm (SupHom.id _) = InfHom.id α :=
#align inf_hom.symm_dual_id InfHom.symm_dual_id
-/
-/- warning: inf_hom.symm_dual_comp -> InfHom.symm_dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (f : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) => (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) g f)) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) => (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) => (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) -> (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (f : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (fun (_x : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => InfHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
-Case conversion may be inaccurate. Consider using '#align inf_hom.symm_dual_comp InfHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupHom βᵒᵈ γᵒᵈ) (f : SupHom αᵒᵈ βᵒᵈ) :
InfHom.dual.symm (g.comp f) = (InfHom.dual.symm g).comp (InfHom.dual.symm f) :=
@@ -2291,12 +1481,6 @@ theorem dual_id : (SupBotHom.id α).dual = InfTopHom.id _ :=
#align sup_bot_hom.dual_id SupBotHom.dual_id
-/
-/- warning: sup_bot_hom.dual_comp -> SupBotHom.dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) => (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.dual_comp SupBotHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupBotHom β γ) (f : SupBotHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
@@ -2309,9 +1493,6 @@ theorem symm_dual_id : SupBotHom.dual.symm (InfTopHom.id _) = SupBotHom.id α :=
#align sup_bot_hom.symm_dual_id SupBotHom.symm_dual_id
-/
-/- warning: sup_bot_hom.symm_dual_comp -> SupBotHom.symm_dual_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align sup_bot_hom.symm_dual_comp SupBotHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfTopHom βᵒᵈ γᵒᵈ) (f : InfTopHom αᵒᵈ βᵒᵈ) :
SupBotHom.dual.symm (g.comp f) = (SupBotHom.dual.symm g).comp (SupBotHom.dual.symm f) :=
@@ -2344,12 +1525,6 @@ theorem dual_id : (InfTopHom.id α).dual = SupBotHom.id _ :=
#align inf_top_hom.dual_id InfTopHom.dual_id
-/
-/- warning: inf_top_hom.dual_comp -> InfTopHom.dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) => (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.dual_comp InfTopHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfTopHom β γ) (f : InfTopHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
rfl
@@ -2362,9 +1537,6 @@ theorem symm_dual_id : InfTopHom.dual.symm (SupBotHom.id _) = InfTopHom.id α :=
#align inf_top_hom.symm_dual_id InfTopHom.symm_dual_id
-/
-/- warning: inf_top_hom.symm_dual_comp -> InfTopHom.symm_dual_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align inf_top_hom.symm_dual_comp InfTopHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupBotHom βᵒᵈ γᵒᵈ) (f : SupBotHom αᵒᵈ βᵒᵈ) :
InfTopHom.dual.symm (g.comp f) = (InfTopHom.dual.symm g).comp (InfTopHom.dual.symm f) :=
@@ -2396,12 +1568,6 @@ theorem dual_id : (LatticeHom.id α).dual = LatticeHom.id _ :=
#align lattice_hom.dual_id LatticeHom.dual_id
-/
-/- warning: lattice_hom.dual_comp -> LatticeHom.dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) => (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) -> (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (LatticeHom.dual.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) => (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) -> (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (LatticeHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) => (LatticeHom.{u1, u2} α β _inst_1 _inst_2) -> (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (LatticeHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.dual_comp LatticeHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : LatticeHom β γ) (f : LatticeHom α β) :
(g.comp f).dual = g.dual.comp f.dual :=
@@ -2415,12 +1581,6 @@ theorem symm_dual_id : LatticeHom.dual.symm (LatticeHom.id _) = LatticeHom.id α
#align lattice_hom.symm_dual_id LatticeHom.symm_dual_id
-/
-/- warning: lattice_hom.symm_dual_comp -> LatticeHom.symm_dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (g : LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (f : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) => (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) -> (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3) g f)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) => (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) -> (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) => (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (f : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (fun (_x : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => LatticeHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
-Case conversion may be inaccurate. Consider using '#align lattice_hom.symm_dual_comp LatticeHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : LatticeHom βᵒᵈ γᵒᵈ) (f : LatticeHom αᵒᵈ βᵒᵈ) :
LatticeHom.dual.symm (g.comp f) = (LatticeHom.dual.symm g).comp (LatticeHom.dual.symm f) :=
@@ -2433,12 +1593,6 @@ namespace BoundedLatticeHom
variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [Lattice γ] [BoundedOrder γ]
-/- warning: bounded_lattice_hom.dual -> BoundedLatticeHom.dual is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))], Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))], Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual BoundedLatticeHom.dualₓ'. -/
/-- Reinterpret a bounded lattice homomorphism as a bounded lattice homomorphism between the dual
bounded lattices. -/
@[simps]
@@ -2450,41 +1604,23 @@ protected def dual : BoundedLatticeHom α β ≃ BoundedLatticeHom αᵒᵈ β
right_inv f := ext fun a => rfl
#align bounded_lattice_hom.dual BoundedLatticeHom.dual
-/- warning: bounded_lattice_hom.dual_id -> BoundedLatticeHom.dual_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (fun (_x : Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) => (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) -> (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Equiv.hasCoeToFun.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_idₓ'. -/
@[simp]
theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
rfl
#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_id
-/- warning: bounded_lattice_hom.dual_comp -> BoundedLatticeHom.dual_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
(g.comp f).dual = g.dual.comp f.dual :=
rfl
#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_comp
-/- warning: bounded_lattice_hom.symm_dual_id -> BoundedLatticeHom.symm_dual_id is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (fun (_x : Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) => (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) -> (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.symm.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (fun (_x : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.symm.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_idₓ'. -/
@[simp]
theorem symm_dual_id :
BoundedLatticeHom.dual.symm (BoundedLatticeHom.id _) = BoundedLatticeHom.id α :=
rfl
#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_id
-/- warning: bounded_lattice_hom.symm_dual_comp -> BoundedLatticeHom.symm_dual_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_comp BoundedLatticeHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLatticeHom αᵒᵈ βᵒᵈ) :
BoundedLatticeHom.dual.symm (g.comp f) =
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -665,9 +665,7 @@ variable {α}
instance : Sup (SupHom α β) :=
⟨fun f g =>
- ⟨f ⊔ g, fun a b => by
- rw [Pi.sup_apply, map_sup, map_sup]
- exact sup_sup_sup_comm _ _ _ _⟩⟩
+ ⟨f ⊔ g, fun a b => by rw [Pi.sup_apply, map_sup, map_sup]; exact sup_sup_sup_comm _ _ _ _⟩⟩
instance : SemilatticeSup (SupHom α β) :=
FunLike.coe_injective.SemilatticeSup _ fun f g => rfl
@@ -983,9 +981,7 @@ variable {α}
instance : Inf (InfHom α β) :=
⟨fun f g =>
- ⟨f ⊓ g, fun a b => by
- rw [Pi.inf_apply, map_inf, map_inf]
- exact inf_inf_inf_comm _ _ _ _⟩⟩
+ ⟨f ⊓ g, fun a b => by rw [Pi.inf_apply, map_inf, map_inf]; exact inf_inf_inf_comm _ _ _ _⟩⟩
instance : SemilatticeInf (InfHom α β) :=
FunLike.coe_injective.SemilatticeInf _ fun f g => rfl
@@ -1094,10 +1090,7 @@ def toBotHom (f : SupBotHom α β) : BotHom α β :=
instance : SupBotHomClass (SupBotHom α β) α β
where
coe f := f.toFun
- coe_injective' f g h := by
- obtain ⟨⟨_, _⟩, _⟩ := f
- obtain ⟨⟨_, _⟩, _⟩ := g
- congr
+ coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
map_sup f := f.map_sup'
map_bot f := f.map_bot'
@@ -1364,10 +1357,7 @@ def toTopHom (f : InfTopHom α β) : TopHom α β :=
instance : InfTopHomClass (InfTopHom α β) α β
where
coe f := f.toFun
- coe_injective' f g h := by
- obtain ⟨⟨_, _⟩, _⟩ := f
- obtain ⟨⟨_, _⟩, _⟩ := g
- congr
+ coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
map_inf f := f.map_inf'
map_top f := f.map_top'
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -394,10 +394,7 @@ theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
-/
/- warning: map_sdiff' -> map_sdiff' is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} β (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+<too large>
Case conversion may be inaccurate. Consider using '#align map_sdiff' map_sdiff'ₓ'. -/
/-- Special case of `map_sdiff` for boolean algebras. -/
theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
@@ -405,10 +402,7 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
#align map_sdiff' map_sdiff'
/- warning: map_symm_diff' -> map_symm_diff' is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (symmDiff.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (symmDiff.{u3} β (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
-but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (symmDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeSup.toSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (GeneralizedCoheytingAlgebra.toLattice.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (BiheytingAlgebra.toCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (BooleanAlgebra.toBiheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_2)))))) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+<too large>
Case conversion may be inaccurate. Consider using '#align map_symm_diff' map_symm_diff'ₓ'. -/
/-- Special case of `map_symm_diff` for boolean algebras. -/
theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
@@ -1983,10 +1977,7 @@ theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :
#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coe
/- warning: bounded_lattice_hom.ext -> BoundedLatticeHom.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a)) -> (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.ext BoundedLatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -2078,10 +2069,7 @@ def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLa
#align bounded_lattice_hom.comp BoundedLatticeHom.comp
/- warning: bounded_lattice_hom.coe_comp -> BoundedLatticeHom.coe_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} ((fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2090,10 +2078,7 @@ theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_comp
/- warning: bounded_lattice_hom.comp_apply -> BoundedLatticeHom.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (a : α) :
@@ -2102,10 +2087,7 @@ theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (
#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_apply
/- warning: bounded_lattice_hom.coe_comp_lattice_hom -> BoundedLatticeHom.coe_comp_lattice_hom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6))))) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_homₓ'. -/
@[simp]
theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2114,10 +2096,7 @@ theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHo
#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_hom
/- warning: bounded_lattice_hom.coe_comp_sup_hom -> BoundedLatticeHom.coe_comp_sup_hom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_homₓ'. -/
@[simp]
theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2126,10 +2105,7 @@ theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α
#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_hom
/- warning: bounded_lattice_hom.coe_comp_inf_hom -> BoundedLatticeHom.coe_comp_inf_hom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2172,10 +2148,7 @@ theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f
#align bounded_lattice_hom.id_comp BoundedLatticeHom.id_comp
/- warning: bounded_lattice_hom.cancel_right -> BoundedLatticeHom.cancel_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -2183,10 +2156,7 @@ theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHo
#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_right
/- warning: bounded_lattice_hom.cancel_left -> BoundedLatticeHom.cancel_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_left BoundedLatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : BoundedLatticeHom β γ} {f₁ f₂ : BoundedLatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -2350,10 +2320,7 @@ theorem symm_dual_id : SupBotHom.dual.symm (InfTopHom.id _) = SupBotHom.id α :=
-/
/- warning: sup_bot_hom.symm_dual_comp -> SupBotHom.symm_dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (f : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) g f)) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (f : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (fun (_x : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+<too large>
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.symm_dual_comp SupBotHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfTopHom βᵒᵈ γᵒᵈ) (f : InfTopHom αᵒᵈ βᵒᵈ) :
@@ -2406,10 +2373,7 @@ theorem symm_dual_id : InfTopHom.dual.symm (SupBotHom.id _) = InfTopHom.id α :=
-/
/- warning: inf_top_hom.symm_dual_comp -> InfTopHom.symm_dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (f : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) g f)) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (f : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (fun (_x : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+<too large>
Case conversion may be inaccurate. Consider using '#align inf_top_hom.symm_dual_comp InfTopHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupBotHom βᵒᵈ γᵒᵈ) (f : SupBotHom αᵒᵈ βᵒᵈ) :
@@ -2508,10 +2472,7 @@ theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_id
/- warning: bounded_lattice_hom.dual_comp -> BoundedLatticeHom.dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) => (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
@@ -2532,10 +2493,7 @@ theorem symm_dual_id :
#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_id
/- warning: bounded_lattice_hom.symm_dual_comp -> BoundedLatticeHom.symm_dual_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (fun (_x : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+<too large>
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_comp BoundedLatticeHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLatticeHom αᵒᵈ βᵒᵈ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -2225,7 +2225,7 @@ theorem dual_id : (SupHom.id α).dual = InfHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u1, u3} α γ _inst_1 _inst_3) -> (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u2, u3} β γ _inst_2 _inst_3) -> (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) => (SupHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : SupHom.{u3, u2} β γ _inst_2 _inst_3) (f : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u3, u2} β γ _inst_2 _inst_3) => InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u3} α β _inst_1 _inst_2) => InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : SupHom.{u3, u2} β γ _inst_2 _inst_3) (f : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u3, u2} β γ _inst_2 _inst_3) => InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u3} α β _inst_1 _inst_2) => InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align sup_hom.dual_comp SupHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupHom β γ) (f : SupHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2243,7 +2243,7 @@ theorem symm_dual_id : SupHom.dual.symm (InfHom.id _) = SupHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (f : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) => (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) g f)) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) => (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) => (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) -> (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (f : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (fun (_x : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => SupHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (f : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (fun (_x : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => SupHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align sup_hom.symm_dual_comp SupHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfHom βᵒᵈ γᵒᵈ) (f : InfHom αᵒᵈ βᵒᵈ) :
@@ -2280,7 +2280,7 @@ theorem dual_id : (InfHom.id α).dual = SupHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u1, u3} α γ _inst_1 _inst_3) -> (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u2, u3} β γ _inst_2 _inst_3) -> (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) => (InfHom.{u1, u2} α β _inst_1 _inst_2) -> (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : InfHom.{u3, u2} β γ _inst_2 _inst_3) (f : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u3, u2} β γ _inst_2 _inst_3) => SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u3} α β _inst_1 _inst_2) => SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : InfHom.{u3, u2} β γ _inst_2 _inst_3) (f : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u3, u2} β γ _inst_2 _inst_3) => SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfHom.{u1, u3} α β _inst_1 _inst_2) => SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align inf_hom.dual_comp InfHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfHom β γ) (f : InfHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2298,7 +2298,7 @@ theorem symm_dual_id : InfHom.dual.symm (SupHom.id _) = InfHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (f : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) => (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) g f)) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) => (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) => (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) -> (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (f : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (fun (_x : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => InfHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (f : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (fun (_x : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => InfHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align inf_hom.symm_dual_comp InfHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupHom βᵒᵈ γᵒᵈ) (f : SupHom αᵒᵈ βᵒᵈ) :
@@ -2335,7 +2335,7 @@ theorem dual_id : (SupBotHom.id α).dual = InfTopHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) => (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.dual_comp SupBotHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupBotHom β γ) (f : SupBotHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2353,7 +2353,7 @@ theorem symm_dual_id : SupBotHom.dual.symm (InfTopHom.id _) = SupBotHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (f : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) g f)) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (f : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (fun (_x : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (f : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (fun (_x : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.symm_dual_comp SupBotHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfTopHom βᵒᵈ γᵒᵈ) (f : InfTopHom αᵒᵈ βᵒᵈ) :
@@ -2391,7 +2391,7 @@ theorem dual_id : (InfTopHom.id α).dual = SupBotHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) => (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.dual_comp InfTopHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfTopHom β γ) (f : InfTopHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2409,7 +2409,7 @@ theorem symm_dual_id : InfTopHom.dual.symm (SupBotHom.id _) = InfTopHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (f : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) g f)) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (f : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (fun (_x : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (f : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (fun (_x : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.symm_dual_comp InfTopHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupBotHom βᵒᵈ γᵒᵈ) (f : SupBotHom αᵒᵈ βᵒᵈ) :
@@ -2446,7 +2446,7 @@ theorem dual_id : (LatticeHom.id α).dual = LatticeHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) => (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) -> (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (LatticeHom.dual.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) => (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) -> (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (LatticeHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) => (LatticeHom.{u1, u2} α β _inst_1 _inst_2) -> (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (LatticeHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align lattice_hom.dual_comp LatticeHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : LatticeHom β γ) (f : LatticeHom α β) :
@@ -2465,7 +2465,7 @@ theorem symm_dual_id : LatticeHom.dual.symm (LatticeHom.id _) = LatticeHom.id α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (g : LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (f : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) => (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) -> (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3) g f)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) => (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) -> (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) => (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (f : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (fun (_x : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => LatticeHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (f : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (fun (_x : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => LatticeHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align lattice_hom.symm_dual_comp LatticeHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : LatticeHom βᵒᵈ γᵒᵈ) (f : LatticeHom αᵒᵈ βᵒᵈ) :
@@ -2500,7 +2500,7 @@ protected def dual : BoundedLatticeHom α β ≃ BoundedLatticeHom αᵒᵈ β
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (fun (_x : Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) => (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) -> (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Equiv.hasCoeToFun.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_idₓ'. -/
@[simp]
theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
@@ -2511,7 +2511,7 @@ theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) => (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
@@ -2523,7 +2523,7 @@ theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (fun (_x : Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) => (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) -> (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.symm.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (fun (_x : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.symm.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (fun (_x : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.symm.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_idₓ'. -/
@[simp]
theorem symm_dual_id :
@@ -2535,7 +2535,7 @@ theorem symm_dual_id :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (fun (_x : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (fun (_x : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_comp BoundedLatticeHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLatticeHom αᵒᵈ βᵒᵈ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -87,14 +87,18 @@ structure LatticeHom (α β : Type _) [Lattice α] [Lattice β] extends SupHom
#align lattice_hom LatticeHom
-/
-#print BoundedLatticeHom /-
+/- warning: bounded_lattice_hom -> BoundedLatticeHom is a dubious translation:
+lean 3 declaration is
+ forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], Sort.{max (succ u1) (succ u2)}
+but is expected to have type
+ forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], Sort.{max (succ u1) (succ u2)}
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom BoundedLatticeHomₓ'. -/
/-- The type of bounded lattice homomorphisms from `α` to `β`. -/
structure BoundedLatticeHom (α β : Type _) [Lattice α] [Lattice β] [BoundedOrder α]
[BoundedOrder β] extends LatticeHom α β where
map_top' : to_fun ⊤ = ⊤
map_bot' : to_fun ⊥ = ⊥
#align bounded_lattice_hom BoundedLatticeHom
--/
section
@@ -148,7 +152,12 @@ class LatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [La
#align lattice_hom_class LatticeHomClass
-/
-#print BoundedLatticeHomClass /-
+/- warning: bounded_lattice_hom_class -> BoundedLatticeHomClass is a dubious translation:
+lean 3 declaration is
+ Type.{u1} -> (forall (α : outParam.{succ (succ u2)} Type.{u2}) (β : outParam.{succ (succ u3)} Type.{u3}) [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], Sort.{max (succ u1) (succ u2) (succ u3)})
+but is expected to have type
+ Type.{u1} -> (forall (α : outParam.{succ (succ u2)} Type.{u2}) (β : outParam.{succ (succ u3)} Type.{u3}) [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], Sort.{max (max (succ u1) (succ u2)) (succ u3)})
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class BoundedLatticeHomClassₓ'. -/
/-- `bounded_lattice_hom_class F α β` states that `F` is a type of bounded lattice morphisms.
You should extend this class when you extend `bounded_lattice_hom`. -/
@@ -157,7 +166,6 @@ class BoundedLatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice
map_top (f : F) : f ⊤ = ⊤
map_bot (f : F) : f ⊥ = ⊥
#align bounded_lattice_hom_class BoundedLatticeHomClass
--/
end
@@ -169,7 +177,7 @@ attribute [simp] map_top map_bot map_sup map_inf
/- warning: sup_hom_class.to_order_hom_class -> SupHomClass.toOrderHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
Case conversion may be inaccurate. Consider using '#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClassₓ'. -/
@@ -182,7 +190,7 @@ instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [Semi
/- warning: inf_hom_class.to_order_hom_class -> InfHomClass.toOrderHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
Case conversion may be inaccurate. Consider using '#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClassₓ'. -/
@@ -223,7 +231,7 @@ instance (priority := 100) LatticeHomClass.toInfHomClass [Lattice α] [Lattice
/- warning: bounded_lattice_hom_class.to_sup_bot_hom_class -> BoundedLatticeHomClass.toSupBotHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toHasBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toHasBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toHasBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toHasBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_sup_bot_hom_class BoundedLatticeHomClass.toSupBotHomClassₓ'. -/
@@ -235,7 +243,7 @@ instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α]
/- warning: bounded_lattice_hom_class.to_inf_top_hom_class -> BoundedLatticeHomClass.toInfTopHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)) (OrderTop.toHasTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toHasTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)) (OrderTop.toHasTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toHasTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClassₓ'. -/
@@ -245,17 +253,21 @@ instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass [Lattice α]
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClass
-#print BoundedLatticeHomClass.toBoundedOrderHomClass /-
+/- warning: bounded_lattice_hom_class.to_bounded_order_hom_class -> BoundedLatticeHomClass.toBoundedOrderHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], BoundedOrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_3 _inst_4
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], BoundedOrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_3 _inst_4
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] : BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
--/
/- warning: order_iso_class.to_sup_hom_class -> OrderIsoClass.toSupHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_hom_class OrderIsoClass.toSupHomClassₓ'. -/
@@ -269,7 +281,7 @@ instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [Semi
/- warning: order_iso_class.to_inf_hom_class -> OrderIsoClass.toInfHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClassₓ'. -/
@@ -283,7 +295,7 @@ instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [Semi
/- warning: order_iso_class.to_sup_bot_hom_class -> OrderIsoClass.toSupBotHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toHasBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toHasBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_bot_hom_class OrderIsoClass.toSupBotHomClassₓ'. -/
@@ -295,7 +307,7 @@ instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [O
/- warning: order_iso_class.to_inf_top_hom_class -> OrderIsoClass.toInfTopHomClass is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toHasTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toHasTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClassₓ'. -/
@@ -305,21 +317,29 @@ instance (priority := 100) OrderIsoClass.toInfTopHomClass [SemilatticeInf α] [O
{ OrderIsoClass.toInfHomClass, OrderIsoClass.toTopHomClass with }
#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClass
-#print OrderIsoClass.toLatticeHomClass /-
+/- warning: order_iso_class.to_lattice_hom_class -> OrderIsoClass.toLatticeHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2
+Case conversion may be inaccurate. Consider using '#align order_iso_class.to_lattice_hom_class OrderIsoClass.toLatticeHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toLatticeHomClass [Lattice α] [Lattice β]
[OrderIsoClass F α β] : LatticeHomClass F α β :=
{ OrderIsoClass.toSupHomClass, OrderIsoClass.toInfHomClass with }
#align order_iso_class.to_lattice_hom_class OrderIsoClass.toLatticeHomClass
--/
-#print OrderIsoClass.toBoundedLatticeHomClass /-
+/- warning: order_iso_class.to_bounded_lattice_hom_class -> OrderIsoClass.toBoundedLatticeHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4
+Case conversion may be inaccurate. Consider using '#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] [OrderIsoClass F α β] : BoundedLatticeHomClass F α β :=
{ OrderIsoClass.toLatticeHomClass, OrderIsoClass.toBoundedOrderHomClass with }
#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClass
--/
section BoundedLattice
@@ -330,7 +350,7 @@ include β
/- warning: disjoint.map -> Disjoint.map is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderBot.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align disjoint.map Disjoint.mapₓ'. -/
@@ -340,7 +360,7 @@ theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
/- warning: codisjoint.map -> Codisjoint.map is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderTop.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align codisjoint.map Codisjoint.mapₓ'. -/
@@ -350,7 +370,7 @@ theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
/- warning: is_compl.map -> IsCompl.map is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 a b) -> (IsCompl.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) _inst_4 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 a b) -> (IsCompl.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) _inst_4 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align is_compl.map IsCompl.mapₓ'. -/
@@ -1285,7 +1305,7 @@ instance : OrderBot (SupBotHom α β) where
/- warning: sup_bot_hom.coe_sup -> SupBotHom.coe_sup is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_sup SupBotHom.coe_supₓ'. -/
@@ -1296,7 +1316,7 @@ theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
/- warning: sup_bot_hom.coe_bot -> SupBotHom.coe_bot is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_bot SupBotHom.coe_botₓ'. -/
@@ -1307,7 +1327,7 @@ theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
/- warning: sup_bot_hom.sup_apply -> SupBotHom.sup_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.sup_apply SupBotHom.sup_applyₓ'. -/
@@ -1318,7 +1338,7 @@ theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :
/- warning: sup_bot_hom.bot_apply -> SupBotHom.bot_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.bot_apply SupBotHom.bot_applyₓ'. -/
@@ -1555,7 +1575,7 @@ instance : OrderTop (InfTopHom α β) where
/- warning: inf_top_hom.coe_inf -> InfTopHom.coe_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_inf InfTopHom.coe_infₓ'. -/
@@ -1566,7 +1586,7 @@ theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
/- warning: inf_top_hom.coe_top -> InfTopHom.coe_top is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_top InfTopHom.coe_topₓ'. -/
@@ -1577,7 +1597,7 @@ theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
/- warning: inf_top_hom.inf_apply -> InfTopHom.inf_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.inf_apply InfTopHom.inf_applyₓ'. -/
@@ -1588,7 +1608,7 @@ theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :
/- warning: inf_top_hom.top_apply -> InfTopHom.top_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toHasLe.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.top_apply InfTopHom.top_applyₓ'. -/
@@ -1838,7 +1858,12 @@ namespace OrderHomClass
variable (α β) [LinearOrder α] [Lattice β] [OrderHomClass F α β]
-#print OrderHomClass.toLatticeHomClass /-
+/- warning: order_hom_class.to_lattice_hom_class -> OrderHomClass.toLatticeHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2
+but is expected to have type
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], LatticeHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2
+Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_class OrderHomClass.toLatticeHomClassₓ'. -/
/-- An order homomorphism from a linear order is a lattice homomorphism. -/
@[reducible]
def toLatticeHomClass : LatticeHomClass F α β :=
@@ -1854,19 +1879,22 @@ def toLatticeHomClass : LatticeHomClass F α β :=
· rw [inf_eq_left.2 h, inf_eq_left.2 (OrderHomClass.mono f h : f a ≤ f b)]
· rw [inf_eq_right.2 h, inf_eq_right.2 (OrderHomClass.mono f h : f b ≤ f a)] }
#align order_hom_class.to_lattice_hom_class OrderHomClass.toLatticeHomClass
--/
-#print OrderHomClass.toLatticeHom /-
+/- warning: order_hom_class.to_lattice_hom -> OrderHomClass.toLatticeHom is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], F -> (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2)
+but is expected to have type
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))], F -> (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2)
+Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom OrderHomClass.toLatticeHomₓ'. -/
/-- Reinterpret an order homomorphism to a linear order as a `lattice_hom`. -/
def toLatticeHom (f : F) : LatticeHom α β :=
haveI : LatticeHomClass F α β := OrderHomClass.toLatticeHomClass α β
f
#align order_hom_class.to_lattice_hom OrderHomClass.toLatticeHom
--/
/- warning: order_hom_class.coe_to_lattice_hom -> OrderHomClass.coe_to_lattice_hom is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F), Eq.{max (succ u2) (succ u3)} (α -> β) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f)) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f)
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F), Eq.{max (succ u2) (succ u3)} (α -> β) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f)) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f)
but is expected to have type
forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
Case conversion may be inaccurate. Consider using '#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_homₓ'. -/
@@ -1877,7 +1905,7 @@ theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
/- warning: order_hom_class.to_lattice_hom_apply -> OrderHomClass.to_lattice_hom_apply is a dubious translation:
lean 3 declaration is
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f a)
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f a)
but is expected to have type
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_applyₓ'. -/
@@ -1898,7 +1926,7 @@ variable [Lattice α] [Lattice β] [Lattice γ] [Lattice δ] [BoundedOrder α] [
/- warning: bounded_lattice_hom.to_sup_bot_hom -> BoundedLatticeHom.toSupBotHom is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_sup_bot_hom BoundedLatticeHom.toSupBotHomₓ'. -/
@@ -1909,7 +1937,7 @@ def toSupBotHom (f : BoundedLatticeHom α β) : SupBotHom α β :=
/- warning: bounded_lattice_hom.to_inf_top_hom -> BoundedLatticeHom.toInfTopHom is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_inf_top_hom BoundedLatticeHom.toInfTopHomₓ'. -/
@@ -1918,12 +1946,16 @@ def toInfTopHom (f : BoundedLatticeHom α β) : InfTopHom α β :=
{ f with }
#align bounded_lattice_hom.to_inf_top_hom BoundedLatticeHom.toInfTopHom
-#print BoundedLatticeHom.toBoundedOrderHom /-
+/- warning: bounded_lattice_hom.to_bounded_order_hom -> BoundedLatticeHom.toBoundedOrderHom is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedOrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_5 _inst_6)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedOrderHom.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_5 _inst_6)
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_bounded_order_hom BoundedLatticeHom.toBoundedOrderHomₓ'. -/
/-- Reinterpret a `bounded_lattice_hom` as a `bounded_order_hom`. -/
def toBoundedOrderHom (f : BoundedLatticeHom α β) : BoundedOrderHom α β :=
{ f, (f.toLatticeHom : α →o β) with }
#align bounded_lattice_hom.to_bounded_order_hom BoundedLatticeHom.toBoundedOrderHom
--/
instance : BoundedLatticeHomClass (BoundedLatticeHom α β) α β
where
@@ -1941,7 +1973,7 @@ instance : CoeFun (BoundedLatticeHom α β) fun _ => α → β :=
/- warning: bounded_lattice_hom.to_fun_eq_coe -> BoundedLatticeHom.toFun_eq_coe is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coeₓ'. -/
@@ -1952,7 +1984,7 @@ theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :
/- warning: bounded_lattice_hom.ext -> BoundedLatticeHom.ext is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a)) -> (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a)) -> (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.ext BoundedLatticeHom.extₓ'. -/
@@ -1963,7 +1995,7 @@ theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
/- warning: bounded_lattice_hom.copy -> BoundedLatticeHom.copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy BoundedLatticeHom.copyₓ'. -/
@@ -1975,7 +2007,7 @@ protected def copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
/- warning: bounded_lattice_hom.coe_copy -> BoundedLatticeHom.coe_copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copyₓ'. -/
@@ -1986,7 +2018,7 @@ theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
/- warning: bounded_lattice_hom.copy_eq -> BoundedLatticeHom.copy_eq is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eqₓ'. -/
@@ -1996,19 +2028,23 @@ theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.
variable (α)
-#print BoundedLatticeHom.id /-
+/- warning: bounded_lattice_hom.id -> BoundedLatticeHom.id is a dubious translation:
+lean 3 declaration is
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5
+but is expected to have type
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id BoundedLatticeHom.idₓ'. -/
/-- `id` as a `bounded_lattice_hom`. -/
protected def id : BoundedLatticeHom α α :=
{ LatticeHom.id α, BoundedOrderHom.id α with }
#align bounded_lattice_hom.id BoundedLatticeHom.id
--/
instance : Inhabited (BoundedLatticeHom α α) :=
⟨BoundedLatticeHom.id α⟩
/- warning: bounded_lattice_hom.coe_id -> BoundedLatticeHom.coe_id is a dubious translation:
lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
but is expected to have type
forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_id BoundedLatticeHom.coe_idₓ'. -/
@@ -2021,7 +2057,7 @@ variable {α}
/- warning: bounded_lattice_hom.id_apply -> BoundedLatticeHom.id_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_applyₓ'. -/
@@ -2030,16 +2066,20 @@ theorem id_apply (a : α) : BoundedLatticeHom.id α a = a :=
rfl
#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_apply
-#print BoundedLatticeHom.comp /-
+/- warning: bounded_lattice_hom.comp -> BoundedLatticeHom.comp is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))], (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))], (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp BoundedLatticeHom.compₓ'. -/
/-- Composition of `bounded_lattice_hom`s as a `bounded_lattice_hom`. -/
def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLatticeHom α γ :=
{ f.toLatticeHom.comp g.toLatticeHom, f.toBoundedOrderHom.comp g.toBoundedOrderHom with }
#align bounded_lattice_hom.comp BoundedLatticeHom.comp
--/
/- warning: bounded_lattice_hom.coe_comp -> BoundedLatticeHom.coe_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} ((fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} ((fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_compₓ'. -/
@@ -2051,7 +2091,7 @@ theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
/- warning: bounded_lattice_hom.comp_apply -> BoundedLatticeHom.comp_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_applyₓ'. -/
@@ -2063,7 +2103,7 @@ theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (
/- warning: bounded_lattice_hom.coe_comp_lattice_hom -> BoundedLatticeHom.coe_comp_lattice_hom is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6))))) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6))))) g))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_homₓ'. -/
@@ -2075,7 +2115,7 @@ theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHo
/- warning: bounded_lattice_hom.coe_comp_sup_hom -> BoundedLatticeHom.coe_comp_sup_hom is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_homₓ'. -/
@@ -2087,7 +2127,7 @@ theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α
/- warning: bounded_lattice_hom.coe_comp_inf_hom -> BoundedLatticeHom.coe_comp_inf_hom is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_homₓ'. -/
@@ -2099,7 +2139,7 @@ theorem coe_comp_inf_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α
/- warning: bounded_lattice_hom.comp_assoc -> BoundedLatticeHom.comp_assoc is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_4 : Lattice.{u4} δ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] [_inst_8 : BoundedOrder.{u4} δ (Preorder.toLE.{u4} δ (PartialOrder.toPreorder.{u4} δ (SemilatticeInf.toPartialOrder.{u4} δ (Lattice.toSemilatticeInf.{u4} δ _inst_4))))] (f : BoundedLatticeHom.{u3, u4} γ δ _inst_3 _inst_4 _inst_7 _inst_8) (g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (h : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u4)} (BoundedLatticeHom.{u1, u4} α δ _inst_1 _inst_4 _inst_5 _inst_8) (BoundedLatticeHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 _inst_5 _inst_6 _inst_8 (BoundedLatticeHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 _inst_6 _inst_7 _inst_8 f g) h) (BoundedLatticeHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 _inst_5 _inst_7 _inst_8 f (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_4 : Lattice.{u4} δ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] [_inst_8 : BoundedOrder.{u4} δ (Preorder.toHasLe.{u4} δ (PartialOrder.toPreorder.{u4} δ (SemilatticeInf.toPartialOrder.{u4} δ (Lattice.toSemilatticeInf.{u4} δ _inst_4))))] (f : BoundedLatticeHom.{u3, u4} γ δ _inst_3 _inst_4 _inst_7 _inst_8) (g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (h : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u4)} (BoundedLatticeHom.{u1, u4} α δ _inst_1 _inst_4 _inst_5 _inst_8) (BoundedLatticeHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 _inst_5 _inst_6 _inst_8 (BoundedLatticeHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 _inst_6 _inst_7 _inst_8 f g) h) (BoundedLatticeHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 _inst_5 _inst_7 _inst_8 f (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g h))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u4} γ] [_inst_4 : Lattice.{u3} δ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u4} γ (Preorder.toLE.{u4} γ (PartialOrder.toPreorder.{u4} γ (SemilatticeInf.toPartialOrder.{u4} γ (Lattice.toSemilatticeInf.{u4} γ _inst_3))))] [_inst_8 : BoundedOrder.{u3} δ (Preorder.toLE.{u3} δ (PartialOrder.toPreorder.{u3} δ (SemilatticeInf.toPartialOrder.{u3} δ (Lattice.toSemilatticeInf.{u3} δ _inst_4))))] (f : BoundedLatticeHom.{u4, u3} γ δ _inst_3 _inst_4 _inst_7 _inst_8) (g : BoundedLatticeHom.{u2, u4} β γ _inst_2 _inst_3 _inst_6 _inst_7) (h : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α δ _inst_1 _inst_4 _inst_5 _inst_8) (BoundedLatticeHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 _inst_5 _inst_6 _inst_8 (BoundedLatticeHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 _inst_6 _inst_7 _inst_8 f g) h) (BoundedLatticeHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 _inst_5 _inst_7 _inst_8 f (BoundedLatticeHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g h))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_assoc BoundedLatticeHom.comp_assocₓ'. -/
@@ -2111,7 +2151,7 @@ theorem comp_assoc (f : BoundedLatticeHom γ δ) (g : BoundedLatticeHom β γ)
/- warning: bounded_lattice_hom.comp_id -> BoundedLatticeHom.comp_id is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 _inst_5 _inst_5 _inst_6 f (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 _inst_5 _inst_5 _inst_6 f (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) f
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 _inst_5 _inst_5 _inst_6 f (BoundedLatticeHom.id.{u2} α _inst_1 _inst_5)) f
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_id BoundedLatticeHom.comp_idₓ'. -/
@@ -2122,7 +2162,7 @@ theorem comp_id (f : BoundedLatticeHom α β) : f.comp (BoundedLatticeHom.id α)
/- warning: bounded_lattice_hom.id_comp -> BoundedLatticeHom.id_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 _inst_5 _inst_6 _inst_6 (BoundedLatticeHom.id.{u2} β _inst_2 _inst_6) f) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 _inst_5 _inst_6 _inst_6 (BoundedLatticeHom.id.{u2} β _inst_2 _inst_6) f) f
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 _inst_5 _inst_6 _inst_6 (BoundedLatticeHom.id.{u1} β _inst_2 _inst_6) f) f
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id_comp BoundedLatticeHom.id_compₓ'. -/
@@ -2133,7 +2173,7 @@ theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f
/- warning: bounded_lattice_hom.cancel_right -> BoundedLatticeHom.cancel_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_rightₓ'. -/
@@ -2144,7 +2184,7 @@ theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHo
/- warning: bounded_lattice_hom.cancel_left -> BoundedLatticeHom.cancel_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_left BoundedLatticeHom.cancel_leftₓ'. -/
@@ -2439,7 +2479,12 @@ namespace BoundedLatticeHom
variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [Lattice γ] [BoundedOrder γ]
-#print BoundedLatticeHom.dual /-
+/- warning: bounded_lattice_hom.dual -> BoundedLatticeHom.dual is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))], Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))], Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual BoundedLatticeHom.dualₓ'. -/
/-- Reinterpret a bounded lattice homomorphism as a bounded lattice homomorphism between the dual
bounded lattices. -/
@[simps]
@@ -2450,18 +2495,21 @@ protected def dual : BoundedLatticeHom α β ≃ BoundedLatticeHom αᵒᵈ β
left_inv f := ext fun a => rfl
right_inv f := ext fun a => rfl
#align bounded_lattice_hom.dual BoundedLatticeHom.dual
--/
-#print BoundedLatticeHom.dual_id /-
+/- warning: bounded_lattice_hom.dual_id -> BoundedLatticeHom.dual_id is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (fun (_x : Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) => (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) -> (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Equiv.hasCoeToFun.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_idₓ'. -/
@[simp]
theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
rfl
#align bounded_lattice_hom.dual_id BoundedLatticeHom.dual_id
--/
/- warning: bounded_lattice_hom.dual_comp -> BoundedLatticeHom.dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) => (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) => (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_compₓ'. -/
@@ -2471,17 +2519,21 @@ theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
rfl
#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_comp
-#print BoundedLatticeHom.symm_dual_id /-
+/- warning: bounded_lattice_hom.symm_dual_id -> BoundedLatticeHom.symm_dual_id is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (fun (_x : Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) => (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) -> (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.symm.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (fun (_x : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) => BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2)) (Equiv.symm.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (BoundedLatticeHom.{u1, u1} (OrderDual.{u1} α) (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)) (BoundedLatticeHom.dual.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2)) (BoundedLatticeHom.id.{u1} (OrderDual.{u1} α) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_2)
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_idₓ'. -/
@[simp]
theorem symm_dual_id :
BoundedLatticeHom.dual.symm (BoundedLatticeHom.id _) = BoundedLatticeHom.id α :=
rfl
#align bounded_lattice_hom.symm_dual_id BoundedLatticeHom.symm_dual_id
--/
/- warning: bounded_lattice_hom.symm_dual_comp -> BoundedLatticeHom.symm_dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (fun (_x : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_comp BoundedLatticeHom.symm_dual_compₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
! This file was ported from Lean 3 source module order.hom.lattice
-! leanprover-community/mathlib commit 9d684a893c52e1d6692a504a118bfccbae04feeb
+! leanprover-community/mathlib commit 7581030920af3dcb241d1df0e36f6ec8289dd6be
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -2494,3 +2494,255 @@ theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLat
end BoundedLatticeHom
+/-! ### `with_top`, `with_bot` -/
+
+
+namespace SupHom
+
+variable [SemilatticeSup α] [SemilatticeSup β] [SemilatticeSup γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of a `sup_hom`. -/
+@[simps]
+protected def withTop (f : SupHom α β) : SupHom (WithTop α) (WithTop β)
+ where
+ toFun := Option.map f
+ map_sup' a b :=
+ match a, b with
+ | ⊤, ⊤ => rfl
+ | ⊤, (b : α) => rfl
+ | (a : α), ⊤ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_sup' _ _)
+#align sup_hom.with_top SupHom.withTop
+
+@[simp]
+theorem withTop_id : (SupHom.id α).WithTop = SupHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align sup_hom.with_top_id SupHom.withTop_id
+
+@[simp]
+theorem withTop_comp (f : SupHom β γ) (g : SupHom α β) :
+ (f.comp g).WithTop = f.WithTop.comp g.WithTop :=
+ FunLike.coe_injective (Option.map_comp_map _ _).symm
+#align sup_hom.with_top_comp SupHom.withTop_comp
+
+/-- Adjoins a `⊥` to the domain and codomain of a `sup_hom`. -/
+@[simps]
+protected def withBot (f : SupHom α β) : SupBotHom (WithBot α) (WithBot β)
+ where
+ toFun := Option.map f
+ map_sup' a b :=
+ match a, b with
+ | ⊥, ⊥ => rfl
+ | ⊥, (b : α) => rfl
+ | (a : α), ⊥ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_sup' _ _)
+ map_bot' := rfl
+#align sup_hom.with_bot SupHom.withBot
+
+@[simp]
+theorem withBot_id : (SupHom.id α).WithBot = SupBotHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align sup_hom.with_bot_id SupHom.withBot_id
+
+@[simp]
+theorem withBot_comp (f : SupHom β γ) (g : SupHom α β) :
+ (f.comp g).WithBot = f.WithBot.comp g.WithBot :=
+ FunLike.coe_injective (Option.map_comp_map _ _).symm
+#align sup_hom.with_bot_comp SupHom.withBot_comp
+
+/-- Adjoins a `⊤` to the codomain of a `sup_hom`. -/
+@[simps]
+def withTop' [OrderTop β] (f : SupHom α β) : SupHom (WithTop α) β
+ where
+ toFun a := a.elim ⊤ f
+ map_sup' a b :=
+ match a, b with
+ | ⊤, ⊤ => top_sup_eq.symm
+ | ⊤, (b : α) => top_sup_eq.symm
+ | (a : α), ⊤ => sup_top_eq.symm
+ | (a : α), (b : α) => f.map_sup' _ _
+#align sup_hom.with_top' SupHom.withTop'
+
+/-- Adjoins a `⊥` to the domain of a `sup_hom`. -/
+@[simps]
+def withBot' [OrderBot β] (f : SupHom α β) : SupBotHom (WithBot α) β
+ where
+ toFun a := a.elim ⊥ f
+ map_sup' a b :=
+ match a, b with
+ | ⊥, ⊥ => bot_sup_eq.symm
+ | ⊥, (b : α) => bot_sup_eq.symm
+ | (a : α), ⊥ => sup_bot_eq.symm
+ | (a : α), (b : α) => f.map_sup' _ _
+ map_bot' := rfl
+#align sup_hom.with_bot' SupHom.withBot'
+
+end SupHom
+
+namespace InfHom
+
+variable [SemilatticeInf α] [SemilatticeInf β] [SemilatticeInf γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of an `inf_hom`. -/
+@[simps]
+protected def withTop (f : InfHom α β) : InfTopHom (WithTop α) (WithTop β)
+ where
+ toFun := Option.map f
+ map_inf' a b :=
+ match a, b with
+ | ⊤, ⊤ => rfl
+ | ⊤, (b : α) => rfl
+ | (a : α), ⊤ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_inf' _ _)
+ map_top' := rfl
+#align inf_hom.with_top InfHom.withTop
+
+@[simp]
+theorem withTop_id : (InfHom.id α).WithTop = InfTopHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align inf_hom.with_top_id InfHom.withTop_id
+
+@[simp]
+theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
+ (f.comp g).WithTop = f.WithTop.comp g.WithTop :=
+ FunLike.coe_injective (Option.map_comp_map _ _).symm
+#align inf_hom.with_top_comp InfHom.withTop_comp
+
+/-- Adjoins a `⊥ to the domain and codomain of an `inf_hom`. -/
+@[simps]
+protected def withBot (f : InfHom α β) : InfHom (WithBot α) (WithBot β)
+ where
+ toFun := Option.map f
+ map_inf' a b :=
+ match a, b with
+ | ⊥, ⊥ => rfl
+ | ⊥, (b : α) => rfl
+ | (a : α), ⊥ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_inf' _ _)
+#align inf_hom.with_bot InfHom.withBot
+
+@[simp]
+theorem withBot_id : (InfHom.id α).WithBot = InfHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align inf_hom.with_bot_id InfHom.withBot_id
+
+@[simp]
+theorem withBot_comp (f : InfHom β γ) (g : InfHom α β) :
+ (f.comp g).WithBot = f.WithBot.comp g.WithBot :=
+ FunLike.coe_injective (Option.map_comp_map _ _).symm
+#align inf_hom.with_bot_comp InfHom.withBot_comp
+
+/-- Adjoins a `⊤` to the codomain of an `inf_hom`. -/
+@[simps]
+def withTop' [OrderTop β] (f : InfHom α β) : InfTopHom (WithTop α) β
+ where
+ toFun a := a.elim ⊤ f
+ map_inf' a b :=
+ match a, b with
+ | ⊤, ⊤ => top_inf_eq.symm
+ | ⊤, (b : α) => top_inf_eq.symm
+ | (a : α), ⊤ => inf_top_eq.symm
+ | (a : α), (b : α) => f.map_inf' _ _
+ map_top' := rfl
+#align inf_hom.with_top' InfHom.withTop'
+
+/-- Adjoins a `⊥` to the codomain of an `inf_hom`. -/
+@[simps]
+def withBot' [OrderBot β] (f : InfHom α β) : InfHom (WithBot α) β
+ where
+ toFun a := a.elim ⊥ f
+ map_inf' a b :=
+ match a, b with
+ | ⊥, ⊥ => bot_inf_eq.symm
+ | ⊥, (b : α) => bot_inf_eq.symm
+ | (a : α), ⊥ => inf_bot_eq.symm
+ | (a : α), (b : α) => f.map_inf' _ _
+#align inf_hom.with_bot' InfHom.withBot'
+
+end InfHom
+
+namespace LatticeHom
+
+variable [Lattice α] [Lattice β] [Lattice γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of a `lattice_hom`. -/
+@[simps]
+protected def withTop (f : LatticeHom α β) : LatticeHom (WithTop α) (WithTop β) :=
+ { f.toInfHom.WithTop with toSupHom := f.toSupHom.WithTop }
+#align lattice_hom.with_top LatticeHom.withTop
+
+@[simp]
+theorem withTop_id : (LatticeHom.id α).WithTop = LatticeHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align lattice_hom.with_top_id LatticeHom.withTop_id
+
+@[simp]
+theorem withTop_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
+ (f.comp g).WithTop = f.WithTop.comp g.WithTop :=
+ FunLike.coe_injective (Option.map_comp_map _ _).symm
+#align lattice_hom.with_top_comp LatticeHom.withTop_comp
+
+/-- Adjoins a `⊥` to the domain and codomain of a `lattice_hom`. -/
+@[simps]
+protected def withBot (f : LatticeHom α β) : LatticeHom (WithBot α) (WithBot β) :=
+ { f.toInfHom.WithBot with toSupHom := f.toSupHom.WithBot }
+#align lattice_hom.with_bot LatticeHom.withBot
+
+@[simp]
+theorem withBot_id : (LatticeHom.id α).WithBot = LatticeHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align lattice_hom.with_bot_id LatticeHom.withBot_id
+
+@[simp]
+theorem withBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
+ (f.comp g).WithBot = f.WithBot.comp g.WithBot :=
+ FunLike.coe_injective (Option.map_comp_map _ _).symm
+#align lattice_hom.with_bot_comp LatticeHom.withBot_comp
+
+/-- Adjoins a `⊤` and `⊥` to the domain and codomain of a `lattice_hom`. -/
+@[simps]
+def withTopWithBot (f : LatticeHom α β) :
+ BoundedLatticeHom (WithTop <| WithBot α) (WithTop <| WithBot β) :=
+ ⟨f.WithBot.WithTop, rfl, rfl⟩
+#align lattice_hom.with_top_with_bot LatticeHom.withTopWithBot
+
+@[simp]
+theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHom.id _ :=
+ FunLike.coe_injective <|
+ by
+ refine' (congr_arg Option.map _).trans Option.map_id
+ rw [with_bot_id]
+ rfl
+#align lattice_hom.with_top_with_bot_id LatticeHom.withTopWithBot_id
+
+@[simp]
+theorem withTopWithBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
+ (f.comp g).withTopWithBot = f.withTopWithBot.comp g.withTopWithBot :=
+ FunLike.coe_injective <|
+ (congr_arg Option.map <| (Option.map_comp_map _ _).symm).trans (Option.map_comp_map _ _).symm
+#align lattice_hom.with_top_with_bot_comp LatticeHom.withTopWithBot_comp
+
+/-- Adjoins a `⊥` to the codomain of a `lattice_hom`. -/
+@[simps]
+def withTop' [OrderTop β] (f : LatticeHom α β) : LatticeHom (WithTop α) β :=
+ { f.toSupHom.withTop', f.toInfHom.withTop' with }
+#align lattice_hom.with_top' LatticeHom.withTop'
+
+/-- Adjoins a `⊥` to the domain and codomain of a `lattice_hom`. -/
+@[simps]
+def withBot' [OrderBot β] (f : LatticeHom α β) : LatticeHom (WithBot α) β :=
+ { f.toSupHom.withBot', f.toInfHom.withBot' with }
+#align lattice_hom.with_bot' LatticeHom.withBot'
+
+/-- Adjoins a `⊤` and `⊥` to the codomain of a `lattice_hom`. -/
+@[simps]
+def withTopWithBot' [BoundedOrder β] (f : LatticeHom α β) :
+ BoundedLatticeHom (WithTop <| WithBot α) β
+ where
+ toLatticeHom := f.withBot'.withTop'
+ map_top' := rfl
+ map_bot' := rfl
+#align lattice_hom.with_top_with_bot' LatticeHom.withTopWithBot'
+
+end LatticeHom
+
mathlib commit https://github.com/leanprover-community/mathlib/commit/8b8ba04e2f326f3f7cf24ad129beda58531ada61
@@ -449,7 +449,7 @@ instance : CoeFun (SupHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
@@ -460,7 +460,7 @@ theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2} {g : SupHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align sup_hom.ext SupHom.extₓ'. -/
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -481,7 +481,7 @@ protected def copy (f : SupHom α β) (f' : α → β) (h : f' = f) : SupHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_copy SupHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -492,7 +492,7 @@ theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_hom.copy_eq SupHom.copy_eqₓ'. -/
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -539,7 +539,7 @@ def comp (f : SupHom β γ) (g : SupHom α β) : SupHom α γ
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_comp SupHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -550,7 +550,7 @@ theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ)
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.comp_apply SupHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupHom β γ) (g : SupHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -595,7 +595,7 @@ theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g₁ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_right SupHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -606,7 +606,7 @@ theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surject
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_left SupHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -633,7 +633,7 @@ def const (b : β) : SupHom α β :=
lean 3 declaration is
forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_const SupHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -677,7 +677,7 @@ instance [BoundedOrder β] : BoundedOrder (SupHom α β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_sup SupHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -688,7 +688,7 @@ theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_bot SupHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
@@ -699,7 +699,7 @@ theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_top SupHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
@@ -710,7 +710,7 @@ theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.sup_apply SupHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
@@ -721,7 +721,7 @@ theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align sup_hom.bot_apply SupHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
@@ -732,7 +732,7 @@ theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2625 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align sup_hom.top_apply SupHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : SupHom α β) a = ⊤ :=
@@ -767,7 +767,7 @@ instance : CoeFun (InfHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
@@ -778,7 +778,7 @@ theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2} {g : InfHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align inf_hom.ext InfHom.extₓ'. -/
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -799,7 +799,7 @@ protected def copy (f : InfHom α β) (f' : α → β) (h : f' = f) : InfHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_copy InfHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -810,7 +810,7 @@ theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_hom.copy_eq InfHom.copy_eqₓ'. -/
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -857,7 +857,7 @@ def comp (f : InfHom β γ) (g : InfHom α β) : InfHom α γ
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_comp InfHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -868,7 +868,7 @@ theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ)
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.comp_apply InfHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfHom β γ) (g : InfHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -913,7 +913,7 @@ theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g₁ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_right InfHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -924,7 +924,7 @@ theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surject
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_left InfHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -951,7 +951,7 @@ def const (b : β) : InfHom α β :=
lean 3 declaration is
forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_const InfHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -995,7 +995,7 @@ instance [BoundedOrder β] : BoundedOrder (InfHom α β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_inf InfHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1006,7 +1006,7 @@ theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_bot InfHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
@@ -1017,7 +1017,7 @@ theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_top InfHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
@@ -1028,7 +1028,7 @@ theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.inf_apply InfHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
@@ -1039,7 +1039,7 @@ theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align inf_hom.bot_apply InfHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
@@ -1050,7 +1050,7 @@ theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4234 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align inf_hom.top_apply InfHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : InfHom α β) a = ⊤ :=
@@ -1096,7 +1096,7 @@ instance : CoeFun (SupBotHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
@@ -1107,7 +1107,7 @@ theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.ext SupBotHom.extₓ'. -/
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1118,7 +1118,7 @@ theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy SupBotHom.copyₓ'. -/
/-- Copy of a `sup_bot_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1130,7 +1130,7 @@ protected def copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : SupBotH
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_copy SupBotHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1141,7 +1141,7 @@ theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy_eq SupBotHom.copy_eqₓ'. -/
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1164,7 +1164,7 @@ instance : Inhabited (SupBotHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_id SupBotHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(SupBotHom.id α) = id :=
@@ -1177,7 +1177,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.id_apply SupBotHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : SupBotHom.id α a = a :=
@@ -1195,7 +1195,7 @@ def comp (f : SupBotHom β γ) (g : SupBotHom α β) : SupBotHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_comp SupBotHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1206,7 +1206,7 @@ theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_apply SupBotHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupBotHom β γ) (g : SupBotHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1251,7 +1251,7 @@ theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g₁ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_right SupBotHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1262,7 +1262,7 @@ theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : S
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_left SupBotHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1287,7 +1287,7 @@ instance : OrderBot (SupBotHom α β) where
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_sup SupBotHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -1298,7 +1298,7 @@ theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_bot SupBotHom.coe_botₓ'. -/
@[simp]
theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
@@ -1309,7 +1309,7 @@ theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.sup_apply SupBotHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
@@ -1320,7 +1320,7 @@ theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.5949 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.bot_apply SupBotHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply (a : α) : (⊥ : SupBotHom α β) a = ⊥ :=
@@ -1366,7 +1366,7 @@ instance : CoeFun (InfTopHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
@@ -1377,7 +1377,7 @@ theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.ext InfTopHom.extₓ'. -/
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1388,7 +1388,7 @@ theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy InfTopHom.copyₓ'. -/
/-- Copy of an `inf_top_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1400,7 +1400,7 @@ protected def copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : InfTopH
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_copy InfTopHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1411,7 +1411,7 @@ theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy_eq InfTopHom.copy_eqₓ'. -/
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1434,7 +1434,7 @@ instance : Inhabited (InfTopHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_id InfTopHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(InfTopHom.id α) = id :=
@@ -1447,7 +1447,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align inf_top_hom.id_apply InfTopHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : InfTopHom.id α a = a :=
@@ -1465,7 +1465,7 @@ def comp (f : InfTopHom β γ) (g : InfTopHom α β) : InfTopHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_comp InfTopHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1476,7 +1476,7 @@ theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_apply InfTopHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfTopHom β γ) (g : InfTopHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1521,7 +1521,7 @@ theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g₁ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_right InfTopHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1532,7 +1532,7 @@ theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : S
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_left InfTopHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1557,7 +1557,7 @@ instance : OrderTop (InfTopHom α β) where
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_inf InfTopHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1568,7 +1568,7 @@ theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_top InfTopHom.coe_topₓ'. -/
@[simp]
theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
@@ -1579,7 +1579,7 @@ theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.inf_apply InfTopHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
@@ -1590,7 +1590,7 @@ theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7663 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.top_apply InfTopHom.top_applyₓ'. -/
@[simp]
theorem top_apply (a : α) : (⊤ : InfTopHom α β) a = ⊤ :=
@@ -1633,7 +1633,7 @@ instance : CoeFun (LatticeHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
@@ -1644,7 +1644,7 @@ theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {g : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2} {g : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2} {g : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align lattice_hom.ext LatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1655,7 +1655,7 @@ theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
Case conversion may be inaccurate. Consider using '#align lattice_hom.copy LatticeHom.copyₓ'. -/
/-- Copy of a `lattice_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1667,7 +1667,7 @@ protected def copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : Lattic
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_copy LatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1678,7 +1678,7 @@ theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.co
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align lattice_hom.copy_eq LatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : LatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1702,7 +1702,7 @@ instance : Inhabited (LatticeHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_id LatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(LatticeHom.id α) = id :=
@@ -1715,7 +1715,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
Case conversion may be inaccurate. Consider using '#align lattice_hom.id_apply LatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : LatticeHom.id α a = a :=
@@ -1733,7 +1733,7 @@ def comp (f : LatticeHom β γ) (g : LatticeHom α β) : LatticeHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp LatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1744,7 +1744,7 @@ theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align lattice_hom.comp_apply LatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1813,7 +1813,7 @@ theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g₁ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g₁ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g₁ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_right LatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1824,7 +1824,7 @@ theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_left LatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : LatticeHom β γ} {f₁ f₂ : LatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1868,7 +1868,7 @@ def toLatticeHom (f : F) : LatticeHom α β :=
lean 3 declaration is
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F), Eq.{max (succ u2) (succ u3)} (α -> β) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f)) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f)
but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
+ forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
Case conversion may be inaccurate. Consider using '#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_homₓ'. -/
@[simp]
theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
@@ -1879,7 +1879,7 @@ theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
lean 3 declaration is
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f a)
but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9311 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_applyₓ'. -/
@[simp]
theorem to_lattice_hom_apply (f : F) (a : α) : toLatticeHom α β f a = f a :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/8b8ba04e2f326f3f7cf24ad129beda58531ada61
@@ -4,11 +4,10 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
! This file was ported from Lean 3 source module order.hom.lattice
-! leanprover-community/mathlib commit 4c19a16e4b705bf135cf9a80ac18fcc99c438514
+! leanprover-community/mathlib commit 9d684a893c52e1d6692a504a118bfccbae04feeb
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
-import Mathbin.Data.Finset.Lattice
import Mathbin.Order.Hom.Bounded
import Mathbin.Order.SymmDiff
@@ -322,32 +321,6 @@ instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [
#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClass
-/
-/- warning: map_finset_sup -> map_finset_sup is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {ι : Type.{u2}} {α : Type.{u3}} {β : Type.{u4}} [_inst_1 : SemilatticeSup.{u3} α] [_inst_2 : OrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1)))] [_inst_3 : SemilatticeSup.{u4} β] [_inst_4 : OrderBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3)))] [_inst_5 : SupBotHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u2} ι) (g : ι -> α), Eq.{succ u4} β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (SupHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (SupBotHomClass.toSupHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f (Finset.sup.{u3, u2} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u4, u2} β ι _inst_3 _inst_4 s (Function.comp.{succ u2, succ u3, succ u4} ι α β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (SupHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (SupBotHomClass.toSupHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f) g))
-but is expected to have type
- forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u4} α] [_inst_2 : OrderBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : SupBotHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
-Case conversion may be inaccurate. Consider using '#align map_finset_sup map_finset_supₓ'. -/
-@[simp]
-theorem map_finset_sup [SemilatticeSup α] [OrderBot α] [SemilatticeSup β] [OrderBot β]
- [SupBotHomClass F α β] (f : F) (s : Finset ι) (g : ι → α) : f (s.sup g) = s.sup (f ∘ g) :=
- Finset.cons_induction_on s (map_bot f) fun i s _ h => by
- rw [Finset.sup_cons, Finset.sup_cons, map_sup, h]
-#align map_finset_sup map_finset_sup
-
-/- warning: map_finset_inf -> map_finset_inf is a dubious translation:
-lean 3 declaration is
- forall {F : Type.{u1}} {ι : Type.{u2}} {α : Type.{u3}} {β : Type.{u4}} [_inst_1 : SemilatticeInf.{u3} α] [_inst_2 : OrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1)))] [_inst_3 : SemilatticeInf.{u4} β] [_inst_4 : OrderTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3)))] [_inst_5 : InfTopHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u2} ι) (g : ι -> α), Eq.{succ u4} β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f (Finset.inf.{u3, u2} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u4, u2} β ι _inst_3 _inst_4 s (Function.comp.{succ u2, succ u3, succ u4} ι α β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f) g))
-but is expected to have type
- forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u4} α] [_inst_2 : OrderTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : InfTopHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
-Case conversion may be inaccurate. Consider using '#align map_finset_inf map_finset_infₓ'. -/
-@[simp]
-theorem map_finset_inf [SemilatticeInf α] [OrderTop α] [SemilatticeInf β] [OrderTop β]
- [InfTopHomClass F α β] (f : F) (s : Finset ι) (g : ι → α) : f (s.inf g) = s.inf (f ∘ g) :=
- Finset.cons_induction_on s (map_top f) fun i s _ h => by
- rw [Finset.inf_cons, Finset.inf_cons, map_inf, h]
-#align map_finset_inf map_finset_inf
-
section BoundedLattice
variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [BoundedLatticeHomClass F α β]
mathlib commit https://github.com/leanprover-community/mathlib/commit/347636a7a80595d55bedf6e6fbd996a3c39da69a
@@ -172,7 +172,7 @@ attribute [simp] map_top map_bot map_sup map_inf
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeSup.{u2} α} {_inst_2 : SemilatticeSup.{u3} β} [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
Case conversion may be inaccurate. Consider using '#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [SemilatticeSup β]
@@ -185,7 +185,7 @@ instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [Semi
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeInf.{u2} α} {_inst_2 : SemilatticeInf.{u3} β} [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
Case conversion may be inaccurate. Consider using '#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) InfHomClass.toOrderHomClass [SemilatticeInf α] [SemilatticeInf β]
@@ -214,7 +214,7 @@ instance (priority := 100) InfTopHomClass.toTopHomClass [Inf α] [Inf β] [Top
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} [_inst_3 : LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2], InfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2], InfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2)
Case conversion may be inaccurate. Consider using '#align lattice_hom_class.to_inf_hom_class LatticeHomClass.toInfHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) LatticeHomClass.toInfHomClass [Lattice α] [Lattice β]
@@ -226,7 +226,7 @@ instance (priority := 100) LatticeHomClass.toInfHomClass [Lattice α] [Lattice
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toHasBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toHasBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} {_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))} {_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))} [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_sup_bot_hom_class BoundedLatticeHomClass.toSupBotHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α] [Lattice β]
@@ -238,7 +238,7 @@ instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α]
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)) (OrderTop.toHasTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toHasTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} {_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))} {_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))} [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass [Lattice α] [Lattice β]
@@ -258,7 +258,7 @@ instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattic
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeSup.{u2} α} {_inst_2 : SemilatticeSup.{u3} β} [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_hom_class OrderIsoClass.toSupHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
@@ -272,7 +272,7 @@ instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [Semi
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeInf.{u2} α} {_inst_2 : SemilatticeInf.{u3} β} [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [SemilatticeInf β]
@@ -286,7 +286,7 @@ instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [Semi
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toHasBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeSup.{u2} α} {_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))} {_inst_3 : SemilatticeSup.{u3} β} {_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))} [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_bot_hom_class OrderIsoClass.toSupBotHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [OrderBot α]
@@ -298,7 +298,7 @@ instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [O
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toHasTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeInf.{u2} α} {_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))} {_inst_3 : SemilatticeInf.{u3} β} {_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))} [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfTopHomClass [SemilatticeInf α] [OrderTop α]
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -339,7 +339,7 @@ theorem map_finset_sup [SemilatticeSup α] [OrderBot α] [SemilatticeSup β] [Or
lean 3 declaration is
forall {F : Type.{u1}} {ι : Type.{u2}} {α : Type.{u3}} {β : Type.{u4}} [_inst_1 : SemilatticeInf.{u3} α] [_inst_2 : OrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1)))] [_inst_3 : SemilatticeInf.{u4} β] [_inst_4 : OrderTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3)))] [_inst_5 : InfTopHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u2} ι) (g : ι -> α), Eq.{succ u4} β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f (Finset.inf.{u3, u2} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u4, u2} β ι _inst_3 _inst_4 s (Function.comp.{succ u2, succ u3, succ u4} ι α β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f) g))
but is expected to have type
- forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u4} α] [_inst_2 : OrderTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : InfTopHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
+ forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u4} α] [_inst_2 : OrderTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : InfTopHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
Case conversion may be inaccurate. Consider using '#align map_finset_inf map_finset_infₓ'. -/
@[simp]
theorem map_finset_inf [SemilatticeInf α] [OrderTop α] [SemilatticeInf β] [OrderTop β]
@@ -359,7 +359,7 @@ include β
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align disjoint.map Disjoint.mapₓ'. -/
theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot]
@@ -369,7 +369,7 @@ theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align codisjoint.map Codisjoint.mapₓ'. -/
theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
rw [codisjoint_iff, ← map_sup, h.eq_top, map_top]
@@ -379,7 +379,7 @@ theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 a b) -> (IsCompl.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) _inst_4 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align is_compl.map IsCompl.mapₓ'. -/
theorem IsCompl.map (h : IsCompl a b) : IsCompl (f a) (f b) :=
⟨h.1.map _, h.2.map _⟩
@@ -404,7 +404,7 @@ theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} β (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
Case conversion may be inaccurate. Consider using '#align map_sdiff' map_sdiff'ₓ'. -/
/-- Special case of `map_sdiff` for boolean algebras. -/
theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
@@ -415,7 +415,7 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (symmDiff.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (symmDiff.{u3} β (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (symmDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeSup.toSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (GeneralizedCoheytingAlgebra.toLattice.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (BiheytingAlgebra.toCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (BooleanAlgebra.toBiheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_2)))))) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (symmDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (SemilatticeSup.toSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (Lattice.toSemilatticeSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (GeneralizedCoheytingAlgebra.toLattice.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (BiheytingAlgebra.toCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (BooleanAlgebra.toBiheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_2)))))) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
Case conversion may be inaccurate. Consider using '#align map_symm_diff' map_symm_diff'ₓ'. -/
/-- Special case of `map_symm_diff` for boolean algebras. -/
theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
@@ -476,7 +476,7 @@ instance : CoeFun (SupHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
@@ -487,7 +487,7 @@ theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2} {g : SupHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align sup_hom.ext SupHom.extₓ'. -/
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -508,7 +508,7 @@ protected def copy (f : SupHom α β) (f' : α → β) (h : f' = f) : SupHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_copy SupHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -519,7 +519,7 @@ theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_hom.copy_eq SupHom.copy_eqₓ'. -/
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -566,7 +566,7 @@ def comp (f : SupHom β γ) (g : SupHom α β) : SupHom α γ
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_comp SupHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -577,7 +577,7 @@ theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ)
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.comp_apply SupHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupHom β γ) (g : SupHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -622,7 +622,7 @@ theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g₁ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_right SupHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -633,7 +633,7 @@ theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surject
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_left SupHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -660,7 +660,7 @@ def const (b : β) : SupHom α β :=
lean 3 declaration is
forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_const SupHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -704,7 +704,7 @@ instance [BoundedOrder β] : BoundedOrder (SupHom α β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_sup SupHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -715,7 +715,7 @@ theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_bot SupHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
@@ -726,7 +726,7 @@ theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_top SupHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
@@ -737,7 +737,7 @@ theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.sup_apply SupHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
@@ -748,7 +748,7 @@ theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align sup_hom.bot_apply SupHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
@@ -759,7 +759,7 @@ theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2817 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align sup_hom.top_apply SupHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : SupHom α β) a = ⊤ :=
@@ -794,7 +794,7 @@ instance : CoeFun (InfHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
@@ -805,7 +805,7 @@ theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2} {g : InfHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align inf_hom.ext InfHom.extₓ'. -/
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -826,7 +826,7 @@ protected def copy (f : InfHom α β) (f' : α → β) (h : f' = f) : InfHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_copy InfHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -837,7 +837,7 @@ theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_hom.copy_eq InfHom.copy_eqₓ'. -/
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -884,7 +884,7 @@ def comp (f : InfHom β γ) (g : InfHom α β) : InfHom α γ
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_comp InfHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -895,7 +895,7 @@ theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ)
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.comp_apply InfHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfHom β γ) (g : InfHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -940,7 +940,7 @@ theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g₁ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_right InfHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -951,7 +951,7 @@ theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surject
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_left InfHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -978,7 +978,7 @@ def const (b : β) : InfHom α β :=
lean 3 declaration is
forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_const InfHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -1022,7 +1022,7 @@ instance [BoundedOrder β] : BoundedOrder (InfHom α β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_inf InfHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1033,7 +1033,7 @@ theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_bot InfHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
@@ -1044,7 +1044,7 @@ theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_top InfHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
@@ -1055,7 +1055,7 @@ theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.inf_apply InfHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
@@ -1066,7 +1066,7 @@ theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align inf_hom.bot_apply InfHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
@@ -1077,7 +1077,7 @@ theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4426 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align inf_hom.top_apply InfHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : InfHom α β) a = ⊤ :=
@@ -1123,7 +1123,7 @@ instance : CoeFun (SupBotHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
@@ -1134,7 +1134,7 @@ theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.ext SupBotHom.extₓ'. -/
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1145,7 +1145,7 @@ theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy SupBotHom.copyₓ'. -/
/-- Copy of a `sup_bot_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1157,7 +1157,7 @@ protected def copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : SupBotH
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_copy SupBotHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1168,7 +1168,7 @@ theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy_eq SupBotHom.copy_eqₓ'. -/
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1191,7 +1191,7 @@ instance : Inhabited (SupBotHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_id SupBotHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(SupBotHom.id α) = id :=
@@ -1204,7 +1204,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.id_apply SupBotHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : SupBotHom.id α a = a :=
@@ -1222,7 +1222,7 @@ def comp (f : SupBotHom β γ) (g : SupBotHom α β) : SupBotHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_comp SupBotHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1233,7 +1233,7 @@ theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_apply SupBotHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupBotHom β γ) (g : SupBotHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1278,7 +1278,7 @@ theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g₁ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_right SupBotHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1289,7 +1289,7 @@ theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : S
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_left SupBotHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1314,7 +1314,7 @@ instance : OrderBot (SupBotHom α β) where
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_sup SupBotHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -1325,7 +1325,7 @@ theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_bot SupBotHom.coe_botₓ'. -/
@[simp]
theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
@@ -1336,7 +1336,7 @@ theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.sup_apply SupBotHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
@@ -1347,7 +1347,7 @@ theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6141 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.bot_apply SupBotHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply (a : α) : (⊥ : SupBotHom α β) a = ⊥ :=
@@ -1393,7 +1393,7 @@ instance : CoeFun (InfTopHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
@@ -1404,7 +1404,7 @@ theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.ext InfTopHom.extₓ'. -/
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1415,7 +1415,7 @@ theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy InfTopHom.copyₓ'. -/
/-- Copy of an `inf_top_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1427,7 +1427,7 @@ protected def copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : InfTopH
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_copy InfTopHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1438,7 +1438,7 @@ theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy_eq InfTopHom.copy_eqₓ'. -/
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1461,7 +1461,7 @@ instance : Inhabited (InfTopHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_id InfTopHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(InfTopHom.id α) = id :=
@@ -1474,7 +1474,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align inf_top_hom.id_apply InfTopHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : InfTopHom.id α a = a :=
@@ -1492,7 +1492,7 @@ def comp (f : InfTopHom β γ) (g : InfTopHom α β) : InfTopHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_comp InfTopHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1503,7 +1503,7 @@ theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_apply InfTopHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfTopHom β γ) (g : InfTopHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1548,7 +1548,7 @@ theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g₁ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_right InfTopHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1559,7 +1559,7 @@ theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : S
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_left InfTopHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1584,7 +1584,7 @@ instance : OrderTop (InfTopHom α β) where
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_inf InfTopHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1595,7 +1595,7 @@ theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_top InfTopHom.coe_topₓ'. -/
@[simp]
theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
@@ -1606,7 +1606,7 @@ theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.inf_apply InfTopHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
@@ -1617,7 +1617,7 @@ theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7855 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.top_apply InfTopHom.top_applyₓ'. -/
@[simp]
theorem top_apply (a : α) : (⊤ : InfTopHom α β) a = ⊤ :=
@@ -1660,7 +1660,7 @@ instance : CoeFun (LatticeHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
@@ -1671,7 +1671,7 @@ theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {g : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2} {g : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2} {g : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align lattice_hom.ext LatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1682,7 +1682,7 @@ theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
Case conversion may be inaccurate. Consider using '#align lattice_hom.copy LatticeHom.copyₓ'. -/
/-- Copy of a `lattice_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1694,7 +1694,7 @@ protected def copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : Lattic
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_copy LatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1705,7 +1705,7 @@ theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.co
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align lattice_hom.copy_eq LatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : LatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1729,7 +1729,7 @@ instance : Inhabited (LatticeHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_id LatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(LatticeHom.id α) = id :=
@@ -1742,7 +1742,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
Case conversion may be inaccurate. Consider using '#align lattice_hom.id_apply LatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : LatticeHom.id α a = a :=
@@ -1760,7 +1760,7 @@ def comp (f : LatticeHom β γ) (g : LatticeHom α β) : LatticeHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp LatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1771,7 +1771,7 @@ theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align lattice_hom.comp_apply LatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1794,7 +1794,7 @@ theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.latticeHomClass.{u1, u3} α γ _inst_1 _inst_3))))) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.latticeHomClass.{u2, u3} β γ _inst_2 _inst_3))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.latticeHomClass.{u1, u2} α β _inst_1 _inst_2))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp_inf_hom LatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
@@ -1840,7 +1840,7 @@ theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g₁ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g₁ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g₁ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_right LatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1851,7 +1851,7 @@ theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_left LatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : LatticeHom β γ} {f₁ f₂ : LatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1895,7 +1895,7 @@ def toLatticeHom (f : F) : LatticeHom α β :=
lean 3 declaration is
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F), Eq.{max (succ u2) (succ u3)} (α -> β) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f)) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f)
but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
+ forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
Case conversion may be inaccurate. Consider using '#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_homₓ'. -/
@[simp]
theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
@@ -1906,7 +1906,7 @@ theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
lean 3 declaration is
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f a)
but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9503 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_applyₓ'. -/
@[simp]
theorem to_lattice_hom_apply (f : F) (a : α) : toLatticeHom α β f a = f a :=
@@ -1970,7 +1970,7 @@ instance : CoeFun (BoundedLatticeHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :=
@@ -1981,7 +1981,7 @@ theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a)) -> (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.ext BoundedLatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1992,7 +1992,7 @@ theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy BoundedLatticeHom.copyₓ'. -/
/-- Copy of a `bounded_lattice_hom` with a new `to_fun` equal to the old one. Useful to fix
definitional equalities. -/
@@ -2004,7 +2004,7 @@ protected def copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -2015,7 +2015,7 @@ theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -2037,7 +2037,7 @@ instance : Inhabited (BoundedLatticeHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_id BoundedLatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(BoundedLatticeHom.id α) = id :=
@@ -2050,7 +2050,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : BoundedLatticeHom.id α a = a :=
@@ -2068,7 +2068,7 @@ def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLa
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} ((fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2080,7 +2080,7 @@ theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (a : α) :
@@ -2092,7 +2092,7 @@ theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_homₓ'. -/
@[simp]
theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2116,7 +2116,7 @@ theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2162,7 +2162,7 @@ theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -2173,7 +2173,7 @@ theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHo
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_left BoundedLatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : BoundedLatticeHom β γ} {f₁ f₂ : BoundedLatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -2212,7 +2212,7 @@ theorem dual_id : (SupHom.id α).dual = InfHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u1, u3} α γ _inst_1 _inst_3) -> (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u2, u3} β γ _inst_2 _inst_3) -> (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) => (SupHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : SupHom.{u3, u2} β γ _inst_2 _inst_3) (f : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u3, u2} β γ _inst_2 _inst_3) => InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u3} α β _inst_1 _inst_2) => InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : SupHom.{u3, u2} β γ _inst_2 _inst_3) (f : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u3, u2} β γ _inst_2 _inst_3) => InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u3} α β _inst_1 _inst_2) => InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align sup_hom.dual_comp SupHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupHom β γ) (f : SupHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2230,7 +2230,7 @@ theorem symm_dual_id : SupHom.dual.symm (InfHom.id _) = SupHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (f : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) => (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) g f)) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) => (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) => (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) -> (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (f : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (fun (_x : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => SupHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (f : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (fun (_x : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => SupHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align sup_hom.symm_dual_comp SupHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfHom βᵒᵈ γᵒᵈ) (f : InfHom αᵒᵈ βᵒᵈ) :
@@ -2267,7 +2267,7 @@ theorem dual_id : (InfHom.id α).dual = SupHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u1, u3} α γ _inst_1 _inst_3) -> (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u2, u3} β γ _inst_2 _inst_3) -> (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) => (InfHom.{u1, u2} α β _inst_1 _inst_2) -> (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : InfHom.{u3, u2} β γ _inst_2 _inst_3) (f : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u3, u2} β γ _inst_2 _inst_3) => SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u3} α β _inst_1 _inst_2) => SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : InfHom.{u3, u2} β γ _inst_2 _inst_3) (f : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u3, u2} β γ _inst_2 _inst_3) => SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfHom.{u1, u3} α β _inst_1 _inst_2) => SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align inf_hom.dual_comp InfHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfHom β γ) (f : InfHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2285,7 +2285,7 @@ theorem symm_dual_id : InfHom.dual.symm (SupHom.id _) = InfHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (f : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) => (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) g f)) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) => (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) => (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) -> (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (f : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (fun (_x : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => InfHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (f : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (fun (_x : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => InfHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align inf_hom.symm_dual_comp InfHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupHom βᵒᵈ γᵒᵈ) (f : SupHom αᵒᵈ βᵒᵈ) :
@@ -2322,7 +2322,7 @@ theorem dual_id : (SupBotHom.id α).dual = InfTopHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) => (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.dual_comp SupBotHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupBotHom β γ) (f : SupBotHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2340,7 +2340,7 @@ theorem symm_dual_id : SupBotHom.dual.symm (InfTopHom.id _) = SupBotHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (f : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) g f)) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (f : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (fun (_x : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (f : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (fun (_x : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.symm_dual_comp SupBotHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfTopHom βᵒᵈ γᵒᵈ) (f : InfTopHom αᵒᵈ βᵒᵈ) :
@@ -2378,7 +2378,7 @@ theorem dual_id : (InfTopHom.id α).dual = SupBotHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) => (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.dual_comp InfTopHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfTopHom β γ) (f : InfTopHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2396,7 +2396,7 @@ theorem symm_dual_id : InfTopHom.dual.symm (SupBotHom.id _) = InfTopHom.id α :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (f : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) g f)) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (f : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (fun (_x : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (f : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (fun (_x : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.symm_dual_comp InfTopHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupBotHom βᵒᵈ γᵒᵈ) (f : SupBotHom αᵒᵈ βᵒᵈ) :
@@ -2433,7 +2433,7 @@ theorem dual_id : (LatticeHom.id α).dual = LatticeHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) => (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) -> (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3))) (LatticeHom.dual.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) => (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) -> (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3))) (LatticeHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) => (LatticeHom.{u1, u2} α β _inst_1 _inst_2) -> (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2))) (LatticeHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (f : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} α γ _inst_1 _inst_3) => LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) => LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3))) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u3} α β _inst_1 _inst_2) => LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2))) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align lattice_hom.dual_comp LatticeHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : LatticeHom β γ) (f : LatticeHom α β) :
@@ -2452,7 +2452,7 @@ theorem symm_dual_id : LatticeHom.dual.symm (LatticeHom.id _) = LatticeHom.id α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (g : LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (f : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) => (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) -> (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3) g f)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) => (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) -> (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_2) (OrderDual.lattice.{u3} γ _inst_3)) (LatticeHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) => (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_2)) (LatticeHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (f : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (fun (_x : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => LatticeHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (g : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (f : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3) g f)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (fun (_x : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) => LatticeHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (LatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_2) (OrderDual.lattice.{u2} γ _inst_3)) (LatticeHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (fun (_x : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) => LatticeHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) (LatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_2)) (LatticeHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align lattice_hom.symm_dual_comp LatticeHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : LatticeHom βᵒᵈ γᵒᵈ) (f : LatticeHom αᵒᵈ βᵒᵈ) :
@@ -2490,7 +2490,7 @@ theorem dual_id : (BoundedLatticeHom.id α).dual = BoundedLatticeHom.id _ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) => (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) => (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 g f)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6))) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4))) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.dual_comp BoundedLatticeHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
@@ -2510,7 +2510,7 @@ theorem symm_dual_id :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : Lattice.{u3} γ] [_inst_6 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5))))] (g : BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) -> (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.lattice.{u3} γ _inst_5) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (fun (_x : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : Lattice.{u2} γ] [_inst_6 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5))))] (g : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (f : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (BoundedLatticeHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (BoundedLatticeHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6) g f)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_3 _inst_5 _inst_2 _inst_4 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (fun (_x : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) => BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (BoundedLatticeHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.lattice.{u2} γ _inst_5) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (OrderDual.boundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_5)))) _inst_6)) (BoundedLatticeHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (fun (_x : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) => BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (BoundedLatticeHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.lattice.{u1} α _inst_1) (OrderDual.lattice.{u3} β _inst_3) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (OrderDual.boundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4)) (BoundedLatticeHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.symm_dual_comp BoundedLatticeHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLatticeHom αᵒᵈ βᵒᵈ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -326,7 +326,7 @@ instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [
lean 3 declaration is
forall {F : Type.{u1}} {ι : Type.{u2}} {α : Type.{u3}} {β : Type.{u4}} [_inst_1 : SemilatticeSup.{u3} α] [_inst_2 : OrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1)))] [_inst_3 : SemilatticeSup.{u4} β] [_inst_4 : OrderBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3)))] [_inst_5 : SupBotHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u2} ι) (g : ι -> α), Eq.{succ u4} β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (SupHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (SupBotHomClass.toSupHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f (Finset.sup.{u3, u2} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u4, u2} β ι _inst_3 _inst_4 s (Function.comp.{succ u2, succ u3, succ u4} ι α β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (SupHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (SupBotHomClass.toSupHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f) g))
but is expected to have type
- forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u4} α] [_inst_2 : OrderBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : SupBotHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
+ forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u4} α] [_inst_2 : OrderBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : SupBotHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
Case conversion may be inaccurate. Consider using '#align map_finset_sup map_finset_supₓ'. -/
@[simp]
theorem map_finset_sup [SemilatticeSup α] [OrderBot α] [SemilatticeSup β] [OrderBot β]
@@ -339,7 +339,7 @@ theorem map_finset_sup [SemilatticeSup α] [OrderBot α] [SemilatticeSup β] [Or
lean 3 declaration is
forall {F : Type.{u1}} {ι : Type.{u2}} {α : Type.{u3}} {β : Type.{u4}} [_inst_1 : SemilatticeInf.{u3} α] [_inst_2 : OrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1)))] [_inst_3 : SemilatticeInf.{u4} β] [_inst_4 : OrderTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3)))] [_inst_5 : InfTopHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u2} ι) (g : ι -> α), Eq.{succ u4} β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f (Finset.inf.{u3, u2} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u4, u2} β ι _inst_3 _inst_4 s (Function.comp.{succ u2, succ u3, succ u4} ι α β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f) g))
but is expected to have type
- forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u4} α] [_inst_2 : OrderTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : InfTopHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
+ forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u4} α] [_inst_2 : OrderTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : InfTopHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
Case conversion may be inaccurate. Consider using '#align map_finset_inf map_finset_infₓ'. -/
@[simp]
theorem map_finset_inf [SemilatticeInf α] [OrderTop α] [SemilatticeInf β] [OrderTop β]
@@ -359,7 +359,7 @@ include β
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align disjoint.map Disjoint.mapₓ'. -/
theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot]
@@ -369,7 +369,7 @@ theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align codisjoint.map Codisjoint.mapₓ'. -/
theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
rw [codisjoint_iff, ← map_sup, h.eq_top, map_top]
@@ -379,7 +379,7 @@ theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 a b) -> (IsCompl.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) _inst_4 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align is_compl.map IsCompl.mapₓ'. -/
theorem IsCompl.map (h : IsCompl a b) : IsCompl (f a) (f b) :=
⟨h.1.map _, h.2.map _⟩
@@ -404,7 +404,7 @@ theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} β (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
Case conversion may be inaccurate. Consider using '#align map_sdiff' map_sdiff'ₓ'. -/
/-- Special case of `map_sdiff` for boolean algebras. -/
theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
@@ -415,7 +415,7 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (symmDiff.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (symmDiff.{u3} β (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (symmDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeSup.toSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (GeneralizedCoheytingAlgebra.toLattice.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BiheytingAlgebra.toCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BooleanAlgebra.toBiheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2)))))) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (symmDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (SemilatticeSup.toSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (Lattice.toSemilatticeSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (GeneralizedCoheytingAlgebra.toLattice.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (BiheytingAlgebra.toCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (BooleanAlgebra.toBiheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_2)))))) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
Case conversion may be inaccurate. Consider using '#align map_symm_diff' map_symm_diff'ₓ'. -/
/-- Special case of `map_symm_diff` for boolean algebras. -/
theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
@@ -476,7 +476,7 @@ instance : CoeFun (SupHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
@@ -487,7 +487,7 @@ theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2} {g : SupHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align sup_hom.ext SupHom.extₓ'. -/
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -508,7 +508,7 @@ protected def copy (f : SupHom α β) (f' : α → β) (h : f' = f) : SupHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_copy SupHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -519,7 +519,7 @@ theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_hom.copy_eq SupHom.copy_eqₓ'. -/
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -566,7 +566,7 @@ def comp (f : SupHom β γ) (g : SupHom α β) : SupHom α γ
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_comp SupHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -577,7 +577,7 @@ theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ)
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.comp_apply SupHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupHom β γ) (g : SupHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -622,7 +622,7 @@ theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g₁ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_right SupHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -633,7 +633,7 @@ theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surject
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_left SupHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -660,7 +660,7 @@ def const (b : β) : SupHom α β :=
lean 3 declaration is
forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_const SupHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -704,7 +704,7 @@ instance [BoundedOrder β] : BoundedOrder (SupHom α β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_sup SupHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -715,7 +715,7 @@ theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_bot SupHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
@@ -726,7 +726,7 @@ theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_top SupHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
@@ -737,7 +737,7 @@ theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.sup_apply SupHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
@@ -748,7 +748,7 @@ theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align sup_hom.bot_apply SupHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
@@ -759,7 +759,7 @@ theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2772 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align sup_hom.top_apply SupHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : SupHom α β) a = ⊤ :=
@@ -794,7 +794,7 @@ instance : CoeFun (InfHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
@@ -805,7 +805,7 @@ theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2} {g : InfHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align inf_hom.ext InfHom.extₓ'. -/
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -826,7 +826,7 @@ protected def copy (f : InfHom α β) (f' : α → β) (h : f' = f) : InfHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_copy InfHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -837,7 +837,7 @@ theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_hom.copy_eq InfHom.copy_eqₓ'. -/
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -884,7 +884,7 @@ def comp (f : InfHom β γ) (g : InfHom α β) : InfHom α γ
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_comp InfHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -895,7 +895,7 @@ theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ)
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.comp_apply InfHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfHom β γ) (g : InfHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -940,7 +940,7 @@ theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g₁ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_right InfHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -951,7 +951,7 @@ theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surject
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_left InfHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -978,7 +978,7 @@ def const (b : β) : InfHom α β :=
lean 3 declaration is
forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_const InfHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -1022,7 +1022,7 @@ instance [BoundedOrder β] : BoundedOrder (InfHom α β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_inf InfHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1033,7 +1033,7 @@ theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_bot InfHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
@@ -1044,7 +1044,7 @@ theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_top InfHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
@@ -1055,7 +1055,7 @@ theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.inf_apply InfHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
@@ -1066,7 +1066,7 @@ theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align inf_hom.bot_apply InfHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
@@ -1077,7 +1077,7 @@ theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) _inst_3)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4344 : α) => β) a) _inst_3)
Case conversion may be inaccurate. Consider using '#align inf_hom.top_apply InfHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : InfHom α β) a = ⊤ :=
@@ -1123,7 +1123,7 @@ instance : CoeFun (SupBotHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
@@ -1134,7 +1134,7 @@ theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.ext SupBotHom.extₓ'. -/
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1145,7 +1145,7 @@ theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy SupBotHom.copyₓ'. -/
/-- Copy of a `sup_bot_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1157,7 +1157,7 @@ protected def copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : SupBotH
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_copy SupBotHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1168,7 +1168,7 @@ theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy_eq SupBotHom.copy_eqₓ'. -/
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1191,7 +1191,7 @@ instance : Inhabited (SupBotHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_id SupBotHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(SupBotHom.id α) = id :=
@@ -1204,7 +1204,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.id_apply SupBotHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : SupBotHom.id α a = a :=
@@ -1222,7 +1222,7 @@ def comp (f : SupBotHom β γ) (g : SupBotHom α β) : SupBotHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_comp SupBotHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1233,7 +1233,7 @@ theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_apply SupBotHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupBotHom β γ) (g : SupBotHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1278,7 +1278,7 @@ theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g₁ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_right SupBotHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1289,7 +1289,7 @@ theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : S
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_left SupBotHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1314,7 +1314,7 @@ instance : OrderBot (SupBotHom α β) where
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_sup SupBotHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -1325,7 +1325,7 @@ theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_bot SupBotHom.coe_botₓ'. -/
@[simp]
theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
@@ -1336,7 +1336,7 @@ theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.sup_apply SupBotHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
@@ -1347,7 +1347,7 @@ theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6022 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.bot_apply SupBotHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply (a : α) : (⊥ : SupBotHom α β) a = ⊥ :=
@@ -1393,7 +1393,7 @@ instance : CoeFun (InfTopHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
@@ -1404,7 +1404,7 @@ theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.ext InfTopHom.extₓ'. -/
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1415,7 +1415,7 @@ theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy InfTopHom.copyₓ'. -/
/-- Copy of an `inf_top_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1427,7 +1427,7 @@ protected def copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : InfTopH
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_copy InfTopHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1438,7 +1438,7 @@ theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy_eq InfTopHom.copy_eqₓ'. -/
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1461,7 +1461,7 @@ instance : Inhabited (InfTopHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_id InfTopHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(InfTopHom.id α) = id :=
@@ -1474,7 +1474,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align inf_top_hom.id_apply InfTopHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : InfTopHom.id α a = a :=
@@ -1492,7 +1492,7 @@ def comp (f : InfTopHom β γ) (g : InfTopHom α β) : InfTopHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_comp InfTopHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1503,7 +1503,7 @@ theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_apply InfTopHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfTopHom β γ) (g : InfTopHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1548,7 +1548,7 @@ theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g₁ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_right InfTopHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1559,7 +1559,7 @@ theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : S
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_left InfTopHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1584,7 +1584,7 @@ instance : OrderTop (InfTopHom α β) where
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_inf InfTopHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1595,7 +1595,7 @@ theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_top InfTopHom.coe_topₓ'. -/
@[simp]
theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
@@ -1606,7 +1606,7 @@ theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.inf_apply InfTopHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
@@ -1617,7 +1617,7 @@ theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7709 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.top_apply InfTopHom.top_applyₓ'. -/
@[simp]
theorem top_apply (a : α) : (⊤ : InfTopHom α β) a = ⊤ :=
@@ -1660,7 +1660,7 @@ instance : CoeFun (LatticeHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
@@ -1671,7 +1671,7 @@ theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {g : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2} {g : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2} {g : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align lattice_hom.ext LatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1682,7 +1682,7 @@ theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
Case conversion may be inaccurate. Consider using '#align lattice_hom.copy LatticeHom.copyₓ'. -/
/-- Copy of a `lattice_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1694,7 +1694,7 @@ protected def copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : Lattic
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_copy LatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1705,7 +1705,7 @@ theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.co
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] (f : LatticeHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) (LatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align lattice_hom.copy_eq LatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : LatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1729,7 +1729,7 @@ instance : Inhabited (LatticeHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_id LatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(LatticeHom.id α) = id :=
@@ -1742,7 +1742,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
Case conversion may be inaccurate. Consider using '#align lattice_hom.id_apply LatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : LatticeHom.id α a = a :=
@@ -1760,7 +1760,7 @@ def comp (f : LatticeHom β γ) (g : LatticeHom α β) : LatticeHom α γ :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp LatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1771,7 +1771,7 @@ theorem coe_comp (f : LatticeHom β γ) (g : LatticeHom α β) : (f.comp g : α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : LatticeHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (LatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align lattice_hom.comp_apply LatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1782,7 +1782,7 @@ theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.c
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.latticeHomClass.{u1, u3} α γ _inst_1 _inst_3))))) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.latticeHomClass.{u2, u3} β γ _inst_2 _inst_3))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.latticeHomClass.{u1, u2} α β _inst_1 _inst_2))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp_sup_hom LatticeHom.coe_comp_sup_homₓ'. -/
@[simp]
theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
@@ -1794,7 +1794,7 @@ theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.latticeHomClass.{u1, u3} α γ _inst_1 _inst_3))))) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.latticeHomClass.{u2, u3} β γ _inst_2 _inst_3))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.latticeHomClass.{u1, u2} α β _inst_1 _inst_2))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp_inf_hom LatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
@@ -1840,7 +1840,7 @@ theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g₁ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g₁ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g₁ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_right LatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1851,7 +1851,7 @@ theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] {g : LatticeHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (LatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] {g : LatticeHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : LatticeHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : LatticeHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : β) => γ) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align lattice_hom.cancel_left LatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : LatticeHom β γ} {f₁ f₂ : LatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -1895,7 +1895,7 @@ def toLatticeHom (f : F) : LatticeHom α β :=
lean 3 declaration is
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F), Eq.{max (succ u2) (succ u3)} (α -> β) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f)) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f)
but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
+ forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
Case conversion may be inaccurate. Consider using '#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_homₓ'. -/
@[simp]
theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
@@ -1906,7 +1906,7 @@ theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
lean 3 declaration is
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f a)
but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9330 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_applyₓ'. -/
@[simp]
theorem to_lattice_hom_apply (f : F) (a : α) : toLatticeHom α β f a = f a :=
@@ -1970,7 +1970,7 @@ instance : CoeFun (BoundedLatticeHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :=
@@ -1981,7 +1981,7 @@ theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a)) -> (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.ext BoundedLatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1992,7 +1992,7 @@ theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy BoundedLatticeHom.copyₓ'. -/
/-- Copy of a `bounded_lattice_hom` with a new `to_fun` equal to the old one. Useful to fix
definitional equalities. -/
@@ -2004,7 +2004,7 @@ protected def copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -2015,7 +2015,7 @@ theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -2037,7 +2037,7 @@ instance : Inhabited (BoundedLatticeHom α α) :=
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_id BoundedLatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(BoundedLatticeHom.id α) = id :=
@@ -2050,7 +2050,7 @@ variable {α}
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : BoundedLatticeHom.id α a = a :=
@@ -2068,7 +2068,7 @@ def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLa
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} ((fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2080,7 +2080,7 @@ theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (a : α) :
@@ -2092,7 +2092,7 @@ theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_homₓ'. -/
@[simp]
theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2104,7 +2104,7 @@ theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHo
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.433 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_homₓ'. -/
@[simp]
theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2116,7 +2116,7 @@ theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2162,7 +2162,7 @@ theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -2173,7 +2173,7 @@ theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHo
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.491 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_left BoundedLatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : BoundedLatticeHom β γ} {f₁ f₂ : BoundedLatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -53,7 +53,7 @@ variable {F ι α β γ δ : Type _}
#print SupHom /-
/-- The type of `⊔`-preserving functions from `α` to `β`. -/
-structure SupHom (α β : Type _) [HasSup α] [HasSup β] where
+structure SupHom (α β : Type _) [Sup α] [Sup β] where
toFun : α → β
map_sup' (a b : α) : to_fun (a ⊔ b) = to_fun a ⊔ to_fun b
#align sup_hom SupHom
@@ -61,7 +61,7 @@ structure SupHom (α β : Type _) [HasSup α] [HasSup β] where
#print InfHom /-
/-- The type of `⊓`-preserving functions from `α` to `β`. -/
-structure InfHom (α β : Type _) [HasInf α] [HasInf β] where
+structure InfHom (α β : Type _) [Inf α] [Inf β] where
toFun : α → β
map_inf' (a b : α) : to_fun (a ⊓ b) = to_fun a ⊓ to_fun b
#align inf_hom InfHom
@@ -69,14 +69,14 @@ structure InfHom (α β : Type _) [HasInf α] [HasInf β] where
#print SupBotHom /-
/-- The type of finitary supremum-preserving homomorphisms from `α` to `β`. -/
-structure SupBotHom (α β : Type _) [HasSup α] [HasSup β] [Bot α] [Bot β] extends SupHom α β where
+structure SupBotHom (α β : Type _) [Sup α] [Sup β] [Bot α] [Bot β] extends SupHom α β where
map_bot' : to_fun ⊥ = ⊥
#align sup_bot_hom SupBotHom
-/
#print InfTopHom /-
/-- The type of finitary infimum-preserving homomorphisms from `α` to `β`. -/
-structure InfTopHom (α β : Type _) [HasInf α] [HasInf β] [Top α] [Top β] extends InfHom α β where
+structure InfTopHom (α β : Type _) [Inf α] [Inf β] [Top α] [Top β] extends InfHom α β where
map_top' : to_fun ⊤ = ⊤
#align inf_top_hom InfTopHom
-/
@@ -103,7 +103,7 @@ section
/-- `sup_hom_class F α β` states that `F` is a type of `⊔`-preserving morphisms.
You should extend this class when you extend `sup_hom`. -/
-class SupHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasSup β] extends
+class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] extends
FunLike F α fun _ => β where
map_sup (f : F) (a b : α) : f (a ⊔ b) = f a ⊔ f b
#align sup_hom_class SupHomClass
@@ -113,7 +113,7 @@ class SupHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasSup
/-- `inf_hom_class F α β` states that `F` is a type of `⊓`-preserving morphisms.
You should extend this class when you extend `inf_hom`. -/
-class InfHomClass (F : Type _) (α β : outParam <| Type _) [HasInf α] [HasInf β] extends
+class InfHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] extends
FunLike F α fun _ => β where
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
#align inf_hom_class InfHomClass
@@ -123,8 +123,8 @@ class InfHomClass (F : Type _) (α β : outParam <| Type _) [HasInf α] [HasInf
/-- `sup_bot_hom_class F α β` states that `F` is a type of finitary supremum-preserving morphisms.
You should extend this class when you extend `sup_bot_hom`. -/
-class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasSup β] [Bot α]
- [Bot β] extends SupHomClass F α β where
+class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] [Bot α] [Bot β] extends
+ SupHomClass F α β where
map_bot (f : F) : f ⊥ = ⊥
#align sup_bot_hom_class SupBotHomClass
-/
@@ -133,8 +133,8 @@ class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasS
/-- `inf_top_hom_class F α β` states that `F` is a type of finitary infimum-preserving morphisms.
You should extend this class when you extend `sup_bot_hom`. -/
-class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [HasInf α] [HasInf β] [Top α]
- [Top β] extends InfHomClass F α β where
+class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] [Top α] [Top β] extends
+ InfHomClass F α β where
map_top (f : F) : f ⊤ = ⊤
#align inf_top_hom_class InfTopHomClass
-/
@@ -168,27 +168,35 @@ export InfHomClass (map_inf)
attribute [simp] map_top map_bot map_sup map_inf
-#print SupHomClass.toOrderHomClass /-
+/- warning: sup_hom_class.to_order_hom_class -> SupHomClass.toOrderHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeSup.{u2} α} {_inst_2 : SemilatticeSup.{u3} β} [_inst_3 : SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))
+Case conversion may be inaccurate. Consider using '#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [SemilatticeSup β]
[SupHomClass F α β] : OrderHomClass F α β :=
{ ‹SupHomClass F α β› with
map_rel := fun f a b h => by rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h] }
#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClass
--/
-#print InfHomClass.toOrderHomClass /-
+/- warning: inf_hom_class.to_order_hom_class -> InfHomClass.toOrderHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeInf.{u2} α} {_inst_2 : SemilatticeInf.{u3} β} [_inst_3 : InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)], OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))
+Case conversion may be inaccurate. Consider using '#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) InfHomClass.toOrderHomClass [SemilatticeInf α] [SemilatticeInf β]
[InfHomClass F α β] : OrderHomClass F α β :=
{ ‹InfHomClass F α β› with
map_rel := fun f a b h => by rw [← inf_eq_left, ← map_inf, inf_eq_left.2 h] }
#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClass
--/
#print SupBotHomClass.toBotHomClass /-
-- See note [lower instance priority]
-instance (priority := 100) SupBotHomClass.toBotHomClass [HasSup α] [HasSup β] [Bot α] [Bot β]
+instance (priority := 100) SupBotHomClass.toBotHomClass [Sup α] [Sup β] [Bot α] [Bot β]
[SupBotHomClass F α β] : BotHomClass F α β :=
{ ‹SupBotHomClass F α β› with }
#align sup_bot_hom_class.to_bot_hom_class SupBotHomClass.toBotHomClass
@@ -196,25 +204,29 @@ instance (priority := 100) SupBotHomClass.toBotHomClass [HasSup α] [HasSup β]
#print InfTopHomClass.toTopHomClass /-
-- See note [lower instance priority]
-instance (priority := 100) InfTopHomClass.toTopHomClass [HasInf α] [HasInf β] [Top α] [Top β]
+instance (priority := 100) InfTopHomClass.toTopHomClass [Inf α] [Inf β] [Top α] [Top β]
[InfTopHomClass F α β] : TopHomClass F α β :=
{ ‹InfTopHomClass F α β› with }
#align inf_top_hom_class.to_top_hom_class InfTopHomClass.toTopHomClass
-/
-#print LatticeHomClass.toInfHomClass /-
+/- warning: lattice_hom_class.to_inf_hom_class -> LatticeHomClass.toInfHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} [_inst_3 : LatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2], InfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2)
+Case conversion may be inaccurate. Consider using '#align lattice_hom_class.to_inf_hom_class LatticeHomClass.toInfHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) LatticeHomClass.toInfHomClass [Lattice α] [Lattice β]
[LatticeHomClass F α β] : InfHomClass F α β :=
{ ‹LatticeHomClass F α β› with }
#align lattice_hom_class.to_inf_hom_class LatticeHomClass.toInfHomClass
--/
/- warning: bounded_lattice_hom_class.to_sup_bot_hom_class -> BoundedLatticeHomClass.toSupBotHomClass is a dubious translation:
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toHasBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toHasBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} {_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))} {_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))} [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} {_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))} {_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))} [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_sup_bot_hom_class BoundedLatticeHomClass.toSupBotHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α] [Lattice β]
@@ -226,7 +238,7 @@ instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α]
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)) (OrderTop.toHasTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toHasTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} {_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))} {_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))} [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : Lattice.{u2} α} {_inst_2 : Lattice.{u3} β} {_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))} {_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))} [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 _inst_4], InfTopHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_3)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_4))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass [Lattice α] [Lattice β]
@@ -242,7 +254,12 @@ instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattic
#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
-/
-#print OrderIsoClass.toSupHomClass /-
+/- warning: order_iso_class.to_sup_hom_class -> OrderIsoClass.toSupHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : SemilatticeSup.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_2)
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeSup.{u2} α} {_inst_2 : SemilatticeSup.{u3} β} [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_2)))], SupHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_2)
+Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_hom_class OrderIsoClass.toSupHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
[OrderIsoClass F α β] : SupHomClass F α β :=
@@ -250,9 +267,13 @@ instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [Semi
map_sup := fun f a b =>
eq_of_forall_ge_iff fun c => by simp only [← le_map_inv_iff, sup_le_iff] }
#align order_iso_class.to_sup_hom_class OrderIsoClass.toSupHomClass
--/
-#print OrderIsoClass.toInfHomClass /-
+/- warning: order_iso_class.to_inf_hom_class -> OrderIsoClass.toInfHomClass is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : SemilatticeInf.{u3} β] [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_2)
+but is expected to have type
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeInf.{u2} α} {_inst_2 : SemilatticeInf.{u3} β} [_inst_3 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_2)))], InfHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_2)
+Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [SemilatticeInf β]
[OrderIsoClass F α β] : InfHomClass F α β :=
@@ -260,13 +281,12 @@ instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [Semi
map_inf := fun f a b =>
eq_of_forall_le_iff fun c => by simp only [← map_inv_le_iff, le_inf_iff] }
#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClass
--/
/- warning: order_iso_class.to_sup_bot_hom_class -> OrderIsoClass.toSupBotHomClass is a dubious translation:
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toHasBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeSup.{u2} α} {_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))} {_inst_3 : SemilatticeSup.{u3} β} {_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))} [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toHasSup.{u2} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeSup.{u2} α} {_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)))} {_inst_3 : SemilatticeSup.{u3} β} {_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))} [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))], SupBotHomClass.{u1, u2, u3} F α β (SemilatticeSup.toSup.{u2} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_sup_bot_hom_class OrderIsoClass.toSupBotHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [OrderBot α]
@@ -278,7 +298,7 @@ instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [O
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u2} α] [_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toHasTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeInf.{u2} α} {_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))} {_inst_3 : SemilatticeInf.{u3} β} {_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))} [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} {_inst_1 : SemilatticeInf.{u2} α} {_inst_2 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1)))} {_inst_3 : SemilatticeInf.{u3} β} {_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))} [_inst_5 : OrderIsoClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))], InfTopHomClass.{u1, u2, u3} F α β (SemilatticeInf.toInf.{u2} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)
Case conversion may be inaccurate. Consider using '#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClassₓ'. -/
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toInfTopHomClass [SemilatticeInf α] [OrderTop α]
@@ -306,7 +326,7 @@ instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [
lean 3 declaration is
forall {F : Type.{u1}} {ι : Type.{u2}} {α : Type.{u3}} {β : Type.{u4}} [_inst_1 : SemilatticeSup.{u3} α] [_inst_2 : OrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1)))] [_inst_3 : SemilatticeSup.{u4} β] [_inst_4 : OrderBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3)))] [_inst_5 : SupBotHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u2} ι) (g : ι -> α), Eq.{succ u4} β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (SupHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (SupBotHomClass.toSupHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f (Finset.sup.{u3, u2} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u4, u2} β ι _inst_3 _inst_4 s (Function.comp.{succ u2, succ u3, succ u4} ι α β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (SupHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (SupBotHomClass.toSupHomClass.{u1, u3, u4} F α β (SemilatticeSup.toHasSup.{u3} α _inst_1) (SemilatticeSup.toHasSup.{u4} β _inst_3) (OrderBot.toHasBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeSup.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderBot.toHasBot.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeSup.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f) g))
but is expected to have type
- forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u4} α] [_inst_2 : OrderBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : SupBotHomClass.{u2, u4, u3} F α β (SemilatticeSup.toHasSup.{u4} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toHasSup.{u4} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toHasSup.{u4} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toHasSup.{u4} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toHasSup.{u4} α _inst_1) (SemilatticeSup.toHasSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
+ forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeSup.{u4} α] [_inst_2 : OrderBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeSup.{u3} β] [_inst_4 : OrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : SupBotHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.sup.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.sup.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) _x) (SupHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (SupBotHomClass.toSupHomClass.{u2, u4, u3} F α β (SemilatticeSup.toSup.{u4} α _inst_1) (SemilatticeSup.toSup.{u3} β _inst_3) (OrderBot.toBot.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeSup.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderBot.toBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeSup.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
Case conversion may be inaccurate. Consider using '#align map_finset_sup map_finset_supₓ'. -/
@[simp]
theorem map_finset_sup [SemilatticeSup α] [OrderBot α] [SemilatticeSup β] [OrderBot β]
@@ -319,7 +339,7 @@ theorem map_finset_sup [SemilatticeSup α] [OrderBot α] [SemilatticeSup β] [Or
lean 3 declaration is
forall {F : Type.{u1}} {ι : Type.{u2}} {α : Type.{u3}} {β : Type.{u4}} [_inst_1 : SemilatticeInf.{u3} α] [_inst_2 : OrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1)))] [_inst_3 : SemilatticeInf.{u4} β] [_inst_4 : OrderTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3)))] [_inst_5 : InfTopHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u2} ι) (g : ι -> α), Eq.{succ u4} β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f (Finset.inf.{u3, u2} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u4, u2} β ι _inst_3 _inst_4 s (Function.comp.{succ u2, succ u3, succ u4} ι α β (coeFn.{succ u1, max (succ u3) (succ u4)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u3, succ u4} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u4} F α β (SemilatticeInf.toHasInf.{u3} α _inst_1) (SemilatticeInf.toHasInf.{u4} β _inst_3) (OrderTop.toHasTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α _inst_1))) _inst_2) (OrderTop.toHasTop.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (SemilatticeInf.toPartialOrder.{u4} β _inst_3))) _inst_4) _inst_5))) f) g))
but is expected to have type
- forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u4} α] [_inst_2 : OrderTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : InfTopHomClass.{u2, u4, u3} F α β (SemilatticeInf.toHasInf.{u4} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toHasInf.{u4} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toHasInf.{u4} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toHasInf.{u4} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toHasInf.{u4} α _inst_1) (SemilatticeInf.toHasInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
+ forall {F : Type.{u2}} {ι : Type.{u1}} {α : Type.{u4}} {β : Type.{u3}} [_inst_1 : SemilatticeInf.{u4} α] [_inst_2 : OrderTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1)))] [_inst_3 : SemilatticeInf.{u3} β] [_inst_4 : OrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3)))] [_inst_5 : InfTopHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4)] (f : F) (s : Finset.{u1} ι) (g : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f (Finset.inf.{u4, u1} α ι _inst_1 _inst_2 s g)) (Finset.inf.{u3, u1} β ι _inst_3 _inst_4 s (Function.comp.{succ u1, succ u4, succ u3} ι α β (FunLike.coe.{succ u2, succ u4, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (InfTopHomClass.toInfHomClass.{u2, u4, u3} F α β (SemilatticeInf.toInf.{u4} α _inst_1) (SemilatticeInf.toInf.{u3} β _inst_3) (OrderTop.toTop.{u4} α (Preorder.toLE.{u4} α (PartialOrder.toPreorder.{u4} α (SemilatticeInf.toPartialOrder.{u4} α _inst_1))) _inst_2) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β _inst_3))) _inst_4) _inst_5)) f) g))
Case conversion may be inaccurate. Consider using '#align map_finset_inf map_finset_infₓ'. -/
@[simp]
theorem map_finset_inf [SemilatticeInf α] [OrderTop α] [SemilatticeInf β] [OrderTop β]
@@ -339,7 +359,7 @@ include β
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderBot.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Disjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderBot.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Disjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) (BoundedOrder.toOrderBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align disjoint.map Disjoint.mapₓ'. -/
theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot]
@@ -349,7 +369,7 @@ theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)))) _inst_4) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (Codisjoint.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2) a b) -> (Codisjoint.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) (BoundedOrder.toOrderTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)))) _inst_4) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align codisjoint.map Codisjoint.mapₓ'. -/
theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
rw [codisjoint_iff, ← map_sup, h.eq_top, map_top]
@@ -359,7 +379,7 @@ theorem Codisjoint.map (h : Codisjoint a b) : Codisjoint (f a) (f b) := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : Lattice.{u2} α] [_inst_2 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_3 : Lattice.{u3} β] [_inst_4 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 a b) -> (IsCompl.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) _inst_4 (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_3)) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α _inst_1) (Lattice.toHasInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
+ forall {F : Type.{u1}} {α : Type.{u3}} {β : Type.{u2}} [_inst_1 : Lattice.{u3} α] [_inst_2 : BoundedOrder.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1))))] [_inst_3 : Lattice.{u2} β] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3))))] [_inst_5 : BoundedLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4] (f : F) {a : α} {b : α}, (IsCompl.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)) _inst_2 a b) -> (IsCompl.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeInf.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_3)) _inst_4 (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f a) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (InfTopHomClass.toInfHomClass.{u1, u3, u2} F α β (Lattice.toInf.{u3} α _inst_1) (Lattice.toInf.{u2} β _inst_3) (OrderTop.toTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) (BoundedOrder.toOrderTop.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α _inst_1)))) _inst_2)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)))) _inst_4)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u3, u2} F α β _inst_1 _inst_3 _inst_2 _inst_4 _inst_5))) f b))
Case conversion may be inaccurate. Consider using '#align is_compl.map IsCompl.mapₓ'. -/
theorem IsCompl.map (h : IsCompl a b) : IsCompl (f a) (f b) :=
⟨h.1.map _, h.2.map _⟩
@@ -384,7 +404,7 @@ theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} β (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (SDiff.sdiff.{u2} α (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (SDiff.sdiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
Case conversion may be inaccurate. Consider using '#align map_sdiff' map_sdiff'ₓ'. -/
/-- Special case of `map_sdiff` for boolean algebras. -/
theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
@@ -395,7 +415,7 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
lean 3 declaration is
forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} β (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f (symmDiff.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (BooleanAlgebra.toHasSdiff.{u2} α _inst_1) a b)) (symmDiff.{u3} β (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (BooleanAlgebra.toHasSdiff.{u3} β _inst_2) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (InfHomClass.toFunLike.{u1, u2, u3} F α β (SemilatticeInf.toHasInf.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))))) (SemilatticeInf.toHasInf.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))))) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BoundedLatticeHomClass.toLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} α _inst_1))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u3} β _inst_2))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3)))) f b))
but is expected to have type
- forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (symmDiff.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (symmDiff.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (symmDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeSup.toHasSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (GeneralizedCoheytingAlgebra.toLattice.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BiheytingAlgebra.toCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BooleanAlgebra.toBiheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2)))))) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toHasInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toHasInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
+ forall {F : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : BooleanAlgebra.{u2} α] [_inst_2 : BooleanAlgebra.{u3} β] [_inst_3 : BoundedLatticeHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2)] (f : F) (a : α) (b : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f (symmDiff.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))) (BooleanAlgebra.toSDiff.{u2} α _inst_1) a b)) (symmDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (SemilatticeSup.toSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (Lattice.toSemilatticeSup.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (GeneralizedCoheytingAlgebra.toLattice.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BiheytingAlgebra.toCoheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (BooleanAlgebra.toBiheytingAlgebra.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2)))))) (BooleanAlgebra.toSDiff.{u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) _inst_2) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (InfTopHomClass.toInfHomClass.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1))))) (Lattice.toInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2))))) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))))))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1))) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))))))) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2))) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u2, u3} F α β (GeneralizedCoheytingAlgebra.toLattice.{u2} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} α (BiheytingAlgebra.toCoheytingAlgebra.{u2} α (BooleanAlgebra.toBiheytingAlgebra.{u2} α _inst_1)))) (GeneralizedCoheytingAlgebra.toLattice.{u3} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u3} β (BiheytingAlgebra.toCoheytingAlgebra.{u3} β (BooleanAlgebra.toBiheytingAlgebra.{u3} β _inst_2)))) (BooleanAlgebra.toBoundedOrder.{u2} α _inst_1) (BooleanAlgebra.toBoundedOrder.{u3} β _inst_2) _inst_3))) f b))
Case conversion may be inaccurate. Consider using '#align map_symm_diff' map_symm_diff'ₓ'. -/
/-- Special case of `map_symm_diff` for boolean algebras. -/
theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
@@ -404,16 +424,16 @@ theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
end BooleanAlgebra
-instance [HasSup α] [HasSup β] [SupHomClass F α β] : CoeTC F (SupHom α β) :=
+instance [Sup α] [Sup β] [SupHomClass F α β] : CoeTC F (SupHom α β) :=
⟨fun f => ⟨f, map_sup f⟩⟩
-instance [HasInf α] [HasInf β] [InfHomClass F α β] : CoeTC F (InfHom α β) :=
+instance [Inf α] [Inf β] [InfHomClass F α β] : CoeTC F (InfHom α β) :=
⟨fun f => ⟨f, map_inf f⟩⟩
-instance [HasSup α] [HasSup β] [Bot α] [Bot β] [SupBotHomClass F α β] : CoeTC F (SupBotHom α β) :=
+instance [Sup α] [Sup β] [Bot α] [Bot β] [SupBotHomClass F α β] : CoeTC F (SupBotHom α β) :=
⟨fun f => ⟨f, map_bot f⟩⟩
-instance [HasInf α] [HasInf β] [Top α] [Top β] [InfTopHomClass F α β] : CoeTC F (InfTopHom α β) :=
+instance [Inf α] [Inf β] [Top α] [Top β] [InfTopHomClass F α β] : CoeTC F (InfTopHom α β) :=
⟨fun f => ⟨f, map_top f⟩⟩
instance [Lattice α] [Lattice β] [LatticeHomClass F α β] : CoeTC F (LatticeHom α β) :=
@@ -435,11 +455,11 @@ instance [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] [BoundedL
namespace SupHom
-variable [HasSup α]
+variable [Sup α]
-section HasSup
+section Sup
-variable [HasSup β] [HasSup γ] [HasSup δ]
+variable [Sup β] [Sup γ] [Sup δ]
instance : SupHomClass (SupHom α β) α β
where
@@ -454,9 +474,9 @@ instance : CoeFun (SupHom α β) fun _ => α → β :=
/- warning: sup_hom.to_fun_eq_coe -> SupHom.toFun_eq_coe is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : HasSup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
@@ -465,9 +485,9 @@ theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
/- warning: sup_hom.ext -> SupHom.ext is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2} {g : SupHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] {f : SupHom.{u1, u2} α β _inst_1 _inst_2} {g : SupHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : HasSup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] {f : SupHom.{u2, u1} α β _inst_1 _inst_2} {g : SupHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align sup_hom.ext SupHom.extₓ'. -/
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -486,9 +506,9 @@ protected def copy (f : SupHom α β) (f' : α → β) (h : f' = f) : SupHom α
/- warning: sup_hom.coe_copy -> SupHom.coe_copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : HasSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_copy SupHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -497,9 +517,9 @@ theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
/- warning: sup_hom.copy_eq -> SupHom.copy_eq is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : HasSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_hom.copy_eq SupHom.copy_eqₓ'. -/
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -544,9 +564,9 @@ def comp (f : SupHom β γ) (g : SupHom α β) : SupHom α γ
/- warning: sup_hom.coe_comp -> SupHom.coe_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u3} β] [_inst_3 : HasSup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_comp SupHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -555,9 +575,9 @@ theorem coe_comp (f : SupHom β γ) (g : SupHom α β) : (f.comp g : α → γ)
/- warning: sup_hom.comp_apply -> SupHom.comp_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (f : SupHom.{u2, u3} β γ _inst_2 _inst_3) (g : SupHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (SupHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u3} β] [_inst_3 : HasSup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (f : SupHom.{u3, u2} β γ _inst_2 _inst_3) (g : SupHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => γ) _x) (SupHom.instFunLikeSupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.comp_apply SupHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupHom β γ) (g : SupHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -566,9 +586,9 @@ theorem comp_apply (f : SupHom β γ) (g : SupHom α β) (a : α) : (f.comp g) a
/- warning: sup_hom.comp_assoc -> SupHom.comp_assoc is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u3} γ] [_inst_4 : HasSup.{u4} δ] (f : SupHom.{u3, u4} γ δ _inst_3 _inst_4) (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (h : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (SupHom.{u1, u4} α δ _inst_1 _inst_4) (SupHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (SupHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (SupHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] [_inst_4 : Sup.{u4} δ] (f : SupHom.{u3, u4} γ δ _inst_3 _inst_4) (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (h : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (SupHom.{u1, u4} α δ _inst_1 _inst_4) (SupHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (SupHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (SupHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u4} γ] [_inst_4 : HasSup.{u3} δ] (f : SupHom.{u4, u3} γ δ _inst_3 _inst_4) (g : SupHom.{u2, u4} β γ _inst_2 _inst_3) (h : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α δ _inst_1 _inst_4) (SupHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (SupHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (SupHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (SupHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u4} γ] [_inst_4 : Sup.{u3} δ] (f : SupHom.{u4, u3} γ δ _inst_3 _inst_4) (g : SupHom.{u2, u4} β γ _inst_2 _inst_3) (h : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α δ _inst_1 _inst_4) (SupHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (SupHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (SupHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (SupHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
Case conversion may be inaccurate. Consider using '#align sup_hom.comp_assoc SupHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : SupHom γ δ) (g : SupHom β γ) (h : SupHom α β) :
@@ -578,9 +598,9 @@ theorem comp_assoc (f : SupHom γ δ) (g : SupHom β γ) (h : SupHom α β) :
/- warning: sup_hom.comp_id -> SupHom.comp_id is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (SupHom.id.{u1} α _inst_1)) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (SupHom.id.{u1} α _inst_1)) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : HasSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (SupHom.id.{u2} α _inst_1)) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (SupHom.id.{u2} α _inst_1)) f
Case conversion may be inaccurate. Consider using '#align sup_hom.comp_id SupHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : SupHom α β) : f.comp (SupHom.id α) = f :=
@@ -589,9 +609,9 @@ theorem comp_id (f : SupHom α β) : f.comp (SupHom.id α) = f :=
/- warning: sup_hom.id_comp -> SupHom.id_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (SupHom.id.{u2} β _inst_2) f) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (SupHom.id.{u2} β _inst_2) f) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : HasSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (SupHom.id.{u1} β _inst_2) f) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Sup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (SupHom.{u2, u1} α β _inst_1 _inst_2) (SupHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (SupHom.id.{u1} β _inst_2) f) f
Case conversion may be inaccurate. Consider using '#align sup_hom.id_comp SupHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
@@ -600,9 +620,9 @@ theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f :=
/- warning: sup_hom.cancel_right -> SupHom.cancel_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u3} γ] {g₁ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g₁ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u3} β] [_inst_3 : HasSup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g₁ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_right SupHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -611,9 +631,9 @@ theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surject
/- warning: sup_hom.cancel_left -> SupHom.cancel_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u3} γ] {g : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] {g : SupHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (SupHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u3} β] [_inst_3 : HasSup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] {g : SupHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : SupHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : SupHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : β) => γ) _x) (SupHom.instFunLikeSupHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_hom.cancel_left SupHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -621,22 +641,26 @@ theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injectiv
congr_arg _⟩
#align sup_hom.cancel_left SupHom.cancel_left
-end HasSup
+end Sup
variable (α) [SemilatticeSup β]
-#print SupHom.const /-
+/- warning: sup_hom.const -> SupHom.const is a dubious translation:
+lean 3 declaration is
+ forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], β -> (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2))
+but is expected to have type
+ forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], β -> (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2))
+Case conversion may be inaccurate. Consider using '#align sup_hom.const SupHom.constₓ'. -/
/-- The constant function as a `sup_hom`. -/
def const (b : β) : SupHom α β :=
⟨fun _ => b, fun _ _ => sup_idem.symm⟩
#align sup_hom.const SupHom.const
--/
/- warning: sup_hom.coe_const -> SupHom.coe_const is a dubious translation:
lean 3 declaration is
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
+ forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_const SupHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -652,7 +676,7 @@ theorem const_apply (b : β) (a : α) : const α b a = b :=
variable {α}
-instance : HasSup (SupHom α β) :=
+instance : Sup (SupHom α β) :=
⟨fun f g =>
⟨f ⊔ g, fun a b => by
rw [Pi.sup_apply, map_sup, map_sup]
@@ -678,53 +702,69 @@ instance [BoundedOrder β] : BoundedOrder (SupHom α β) :=
/- warning: sup_hom.coe_sup -> SupHom.coe_sup is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (HasSup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (HasSup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (SupHom.instHasSupSupHomToHasSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (HasSup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (SupHom.instHasSupSupHomToHasSup.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => β) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align sup_hom.coe_sup SupHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
rfl
#align sup_hom.coe_sup SupHom.coe_sup
-#print SupHom.coe_bot /-
+/- warning: sup_hom.coe_bot -> SupHom.coe_bot is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+Case conversion may be inaccurate. Consider using '#align sup_hom.coe_bot SupHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : SupHom α β) = ⊥ :=
rfl
#align sup_hom.coe_bot SupHom.coe_bot
--/
-#print SupHom.coe_top /-
+/- warning: sup_hom.coe_top -> SupHom.coe_top is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+Case conversion may be inaccurate. Consider using '#align sup_hom.coe_top SupHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : SupHom α β) = ⊤ :=
rfl
#align sup_hom.coe_top SupHom.coe_top
--/
/- warning: sup_hom.sup_apply -> SupHom.sup_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (HasSup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g) a) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (g : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasSup.{u1, u2} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (HasSup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) (SupHom.instHasSupSupHomToHasSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (HasSup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : SemilatticeSup.{u1} β] (f : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (g : SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (Sup.sup.{max u2 u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) (SupHom.instSupSupHomToSup.{u2, u1} α β _inst_1 _inst_2) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align sup_hom.sup_apply SupHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
rfl
#align sup_hom.sup_apply SupHom.sup_apply
-#print SupHom.bot_apply /-
+/- warning: sup_hom.bot_apply -> SupHom.bot_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instBotSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) _inst_3)
+Case conversion may be inaccurate. Consider using '#align sup_hom.bot_apply SupHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : SupHom α β) a = ⊥ :=
rfl
#align sup_hom.bot_apply SupHom.bot_apply
--/
-#print SupHom.top_apply /-
+/- warning: sup_hom.top_apply -> SupHom.top_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (fun (_x : SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) => α -> β) (SupHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_2)) (SupHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) _x) (SupHom.instFunLikeSupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (Top.top.{max u1 u2} (SupHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_2)) (SupHom.instTopSupHomToSup.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.2768 : α) => β) a) _inst_3)
+Case conversion may be inaccurate. Consider using '#align sup_hom.top_apply SupHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : SupHom α β) a = ⊤ :=
rfl
#align sup_hom.top_apply SupHom.top_apply
--/
end SupHom
@@ -733,11 +773,11 @@ end SupHom
namespace InfHom
-variable [HasInf α]
+variable [Inf α]
-section HasInf
+section Inf
-variable [HasInf β] [HasInf γ] [HasInf δ]
+variable [Inf β] [Inf γ] [Inf δ]
instance : InfHomClass (InfHom α β) α β
where
@@ -752,9 +792,9 @@ instance : CoeFun (InfHom α β) fun _ => α → β :=
/- warning: inf_hom.to_fun_eq_coe -> InfHom.toFun_eq_coe is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_2 f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : HasInf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_2 f) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
@@ -763,9 +803,9 @@ theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
/- warning: inf_hom.ext -> InfHom.ext is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2} {g : InfHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] {f : InfHom.{u1, u2} α β _inst_1 _inst_2} {g : InfHom.{u1, u2} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : HasInf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] {f : InfHom.{u2, u1} α β _inst_1 _inst_2} {g : InfHom.{u2, u1} α β _inst_1 _inst_2}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) f g)
Case conversion may be inaccurate. Consider using '#align inf_hom.ext InfHom.extₓ'. -/
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -784,9 +824,9 @@ protected def copy (f : InfHom α β) (f' : α → β) (h : f' = f) : InfHom α
/- warning: inf_hom.coe_copy -> InfHom.coe_copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : HasInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_copy InfHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -795,9 +835,9 @@ theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
/- warning: inf_hom.copy_eq -> InfHom.copy_eq is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.copy.{u1, u2} α β _inst_1 _inst_2 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : HasInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 _inst_2) f)), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.copy.{u2, u1} α β _inst_1 _inst_2 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_hom.copy_eq InfHom.copy_eqₓ'. -/
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -842,9 +882,9 @@ def comp (f : InfHom β γ) (g : InfHom α β) : InfHom α γ
/- warning: inf_hom.coe_comp -> InfHom.coe_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u3} β] [_inst_3 : HasInf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_comp InfHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -853,9 +893,9 @@ theorem coe_comp (f : InfHom β γ) (g : InfHom α β) : (f.comp g : α → γ)
/- warning: inf_hom.comp_apply -> InfHom.comp_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (f : InfHom.{u2, u3} β γ _inst_2 _inst_3) (g : InfHom.{u1, u2} α β _inst_1 _inst_2) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u3} α γ _inst_1 _inst_3) => α -> γ) (InfHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u3} β] [_inst_3 : HasInf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (f : InfHom.{u3, u2} β γ _inst_2 _inst_3) (g : InfHom.{u1, u3} α β _inst_1 _inst_2) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => γ) _x) (InfHom.instFunLikeInfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.comp_apply InfHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfHom β γ) (g : InfHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -864,9 +904,9 @@ theorem comp_apply (f : InfHom β γ) (g : InfHom α β) (a : α) : (f.comp g) a
/- warning: inf_hom.comp_assoc -> InfHom.comp_assoc is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u3} γ] [_inst_4 : HasInf.{u4} δ] (f : InfHom.{u3, u4} γ δ _inst_3 _inst_4) (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (h : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (InfHom.{u1, u4} α δ _inst_1 _inst_4) (InfHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (InfHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (InfHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] [_inst_4 : Inf.{u4} δ] (f : InfHom.{u3, u4} γ δ _inst_3 _inst_4) (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (h : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u4)} (InfHom.{u1, u4} α δ _inst_1 _inst_4) (InfHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_4 (InfHom.comp.{u2, u3, u4} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (InfHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_3 _inst_4 f (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g h))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u4} γ] [_inst_4 : HasInf.{u3} δ] (f : InfHom.{u4, u3} γ δ _inst_3 _inst_4) (g : InfHom.{u2, u4} β γ _inst_2 _inst_3) (h : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α δ _inst_1 _inst_4) (InfHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (InfHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (InfHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (InfHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u4} γ] [_inst_4 : Inf.{u3} δ] (f : InfHom.{u4, u3} γ δ _inst_3 _inst_4) (g : InfHom.{u2, u4} β γ _inst_2 _inst_3) (h : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α δ _inst_1 _inst_4) (InfHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_4 (InfHom.comp.{u2, u4, u3} β γ δ _inst_2 _inst_3 _inst_4 f g) h) (InfHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_3 _inst_4 f (InfHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 g h))
Case conversion may be inaccurate. Consider using '#align inf_hom.comp_assoc InfHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : InfHom γ δ) (g : InfHom β γ) (h : InfHom α β) :
@@ -876,9 +916,9 @@ theorem comp_assoc (f : InfHom γ δ) (g : InfHom β γ) (h : InfHom α β) :
/- warning: inf_hom.comp_id -> InfHom.comp_id is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (InfHom.id.{u1} α _inst_1)) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.comp.{u1, u1, u2} α α β _inst_1 _inst_1 _inst_2 f (InfHom.id.{u1} α _inst_1)) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : HasInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (InfHom.id.{u2} α _inst_1)) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.comp.{u2, u2, u1} α α β _inst_1 _inst_1 _inst_2 f (InfHom.id.{u2} α _inst_1)) f
Case conversion may be inaccurate. Consider using '#align inf_hom.comp_id InfHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : InfHom α β) : f.comp (InfHom.id α) = f :=
@@ -887,9 +927,9 @@ theorem comp_id (f : InfHom α β) : f.comp (InfHom.id α) = f :=
/- warning: inf_hom.id_comp -> InfHom.id_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (InfHom.id.{u2} β _inst_2) f) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_2 (InfHom.id.{u2} β _inst_2) f) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : HasInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (InfHom.id.{u1} β _inst_2) f) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Inf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (InfHom.{u2, u1} α β _inst_1 _inst_2) (InfHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_2 (InfHom.id.{u1} β _inst_2) f) f
Case conversion may be inaccurate. Consider using '#align inf_hom.id_comp InfHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
@@ -898,9 +938,9 @@ theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f :=
/- warning: inf_hom.cancel_right -> InfHom.cancel_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u3} γ] {g₁ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g₁ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {g₂ : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u3} β] [_inst_3 : HasInf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g₁ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {g₂ : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfHom.{u1, u3} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u3} α β _inst_1 _inst_2) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₁ f) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_right InfHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -909,9 +949,9 @@ theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surject
/- warning: inf_hom.cancel_left -> InfHom.cancel_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u3} γ] {g : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] {g : InfHom.{u2, u3} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u2} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u2} α β _inst_1 _inst_2}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u2, u3} β γ _inst_2 _inst_3) => β -> γ) (InfHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u3} β] [_inst_3 : HasInf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] {g : InfHom.{u3, u2} β γ _inst_2 _inst_3} {f₁ : InfHom.{u1, u3} α β _inst_1 _inst_2} {f₂ : InfHom.{u1, u3} α β _inst_1 _inst_2}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : β) => γ) _x) (InfHom.instFunLikeInfHom.{u3, u2} β γ _inst_2 _inst_3) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₁) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α β _inst_1 _inst_2) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_hom.cancel_left InfHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -919,22 +959,26 @@ theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injectiv
congr_arg _⟩
#align inf_hom.cancel_left InfHom.cancel_left
-end HasInf
+end Inf
variable (α) [SemilatticeInf β]
-#print InfHom.const /-
+/- warning: inf_hom.const -> InfHom.const is a dubious translation:
+lean 3 declaration is
+ forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], β -> (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2))
+but is expected to have type
+ forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], β -> (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2))
+Case conversion may be inaccurate. Consider using '#align inf_hom.const InfHom.constₓ'. -/
/-- The constant function as an `inf_hom`. -/
def const (b : β) : InfHom α β :=
⟨fun _ => b, fun _ _ => inf_idem.symm⟩
#align inf_hom.const InfHom.const
--/
/- warning: inf_hom.coe_const -> InfHom.coe_const is a dubious translation:
lean 3 declaration is
- forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
+ forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (b : β), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.const.{u1, u2} α β _inst_1 _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
but is expected to have type
- forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+ forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (b : β), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.const.{u2, u1} α β _inst_1 _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_const InfHom.coe_constₓ'. -/
@[simp]
theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
@@ -950,7 +994,7 @@ theorem const_apply (b : β) (a : α) : const α b a = b :=
variable {α}
-instance : HasInf (InfHom α β) :=
+instance : Inf (InfHom α β) :=
⟨fun f g =>
⟨f ⊓ g, fun a b => by
rw [Pi.inf_apply, map_inf, map_inf]
@@ -976,53 +1020,69 @@ instance [BoundedOrder β] : BoundedOrder (InfHom α β) :=
/- warning: inf_hom.coe_inf -> InfHom.coe_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (HasInf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (HasInf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (InfHom.instHasInfInfHomToHasInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (HasInf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (InfHom.instHasInfInfHomToHasInf.{u2, u1} α β _inst_1 _inst_2) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => β) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g))
Case conversion may be inaccurate. Consider using '#align inf_hom.coe_inf InfHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
rfl
#align inf_hom.coe_inf InfHom.coe_inf
-#print InfHom.coe_bot /-
+/- warning: inf_hom.coe_bot -> InfHom.coe_bot is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Bot.bot.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (Pi.instBotForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+Case conversion may be inaccurate. Consider using '#align inf_hom.coe_bot InfHom.coe_botₓ'. -/
@[simp]
theorem coe_bot [Bot β] : ⇑(⊥ : InfHom α β) = ⊥ :=
rfl
#align inf_hom.coe_bot InfHom.coe_bot
--/
-#print InfHom.coe_top /-
+/- warning: inf_hom.coe_top -> InfHom.coe_top is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_3)))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β], Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3))) (Top.top.{max u1 u2} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (Pi.instTopForAll.{u1, u2} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) ᾰ) (fun (i : α) => _inst_3)))
+Case conversion may be inaccurate. Consider using '#align inf_hom.coe_top InfHom.coe_topₓ'. -/
@[simp]
theorem coe_top [Top β] : ⇑(⊤ : InfHom α β) = ⊤ :=
rfl
#align inf_hom.coe_top InfHom.coe_top
--/
/- warning: inf_hom.inf_apply -> InfHom.inf_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (HasInf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g) a) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (g : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasInf.{u1, u2} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (HasInf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) (InfHom.instHasInfInfHomToHasInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (HasInf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (SemilatticeInf.toHasInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_2)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : SemilatticeInf.{u1} β] (f : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (g : InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (Inf.inf.{max u2 u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) (InfHom.instInfInfHomToInf.{u2, u1} α β _inst_1 _inst_2) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_2)) g a))
Case conversion may be inaccurate. Consider using '#align inf_hom.inf_apply InfHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
rfl
#align inf_hom.inf_apply InfHom.inf_apply
-#print InfHom.bot_apply /-
+/- warning: inf_hom.bot_apply -> InfHom.bot_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasBot.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} β _inst_3)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Bot.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Bot.bot.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instBotInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) _inst_3)
+Case conversion may be inaccurate. Consider using '#align inf_hom.bot_apply InfHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply [Bot β] (a : α) : (⊥ : InfHom α β) a = ⊥ :=
rfl
#align inf_hom.bot_apply InfHom.bot_apply
--/
-#print InfHom.top_apply /-
+/- warning: inf_hom.top_apply -> InfHom.top_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (fun (_x : InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) => α -> β) (InfHom.hasCoeToFun.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_2)) (InfHom.hasTop.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} β _inst_3)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] [_inst_3 : Top.{u2} β] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) _x) (InfHom.instFunLikeInfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (Top.top.{max u1 u2} (InfHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_2)) (InfHom.instTopInfHomToInf.{u1, u2} α β _inst_1 _inst_2 _inst_3)) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.4340 : α) => β) a) _inst_3)
+Case conversion may be inaccurate. Consider using '#align inf_hom.top_apply InfHom.top_applyₓ'. -/
@[simp]
theorem top_apply [Top β] (a : α) : (⊤ : InfHom α β) a = ⊤ :=
rfl
#align inf_hom.top_apply InfHom.top_apply
--/
end InfHom
@@ -1031,11 +1091,11 @@ end InfHom
namespace SupBotHom
-variable [HasSup α] [Bot α]
+variable [Sup α] [Bot α]
-section HasSup
+section Sup
-variable [HasSup β] [Bot β] [HasSup γ] [Bot γ] [HasSup δ] [Bot δ]
+variable [Sup β] [Bot β] [Sup γ] [Bot γ] [Sup δ] [Bot δ]
#print SupBotHom.toBotHom /-
/-- Reinterpret a `sup_bot_hom` as a `bot_hom`. -/
@@ -1061,9 +1121,9 @@ instance : CoeFun (SupBotHom α β) fun _ => α → β :=
/- warning: sup_bot_hom.to_fun_eq_coe -> SupBotHom.toFun_eq_coe is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : HasSup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β _inst_1 _inst_3 (SupBotHom.toSupHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
@@ -1072,9 +1132,9 @@ theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
/- warning: sup_bot_hom.ext -> SupBotHom.ext is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : HasSup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] {f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.ext SupBotHom.extₓ'. -/
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1083,9 +1143,9 @@ theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
/- warning: sup_bot_hom.copy -> SupBotHom.copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy SupBotHom.copyₓ'. -/
/-- Copy of a `sup_bot_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1095,9 +1155,9 @@ protected def copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : SupBotH
/- warning: sup_bot_hom.coe_copy -> SupBotHom.coe_copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : HasSup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_copy SupBotHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1106,9 +1166,9 @@ theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
/- warning: sup_bot_hom.copy_eq -> SupBotHom.copy_eq is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : HasSup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.copy_eq SupBotHom.copy_eqₓ'. -/
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1129,9 +1189,9 @@ instance : Inhabited (SupBotHom α α) :=
/- warning: sup_bot_hom.coe_id -> SupBotHom.coe_id is a dubious translation:
lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_id SupBotHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(SupBotHom.id α) = id :=
@@ -1142,9 +1202,9 @@ variable {α}
/- warning: sup_bot_hom.id_apply -> SupBotHom.id_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (SupBotHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (SupBotHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => α) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (SupBotHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.id_apply SupBotHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : SupBotHom.id α a = a :=
@@ -1160,9 +1220,9 @@ def comp (f : SupBotHom β γ) (g : SupBotHom α β) : SupBotHom α γ :=
/- warning: sup_bot_hom.coe_comp -> SupBotHom.coe_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : HasSup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_comp SupBotHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1171,9 +1231,9 @@ theorem coe_comp (f : SupBotHom β γ) (g : SupBotHom α β) : (f.comp g : α
/- warning: sup_bot_hom.comp_apply -> SupBotHom.comp_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (f : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (SupBotHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : HasSup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (f : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_apply SupBotHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : SupBotHom β γ) (g : SupBotHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1182,9 +1242,9 @@ theorem comp_apply (f : SupBotHom β γ) (g : SupBotHom α β) (a : α) : (f.com
/- warning: sup_bot_hom.comp_assoc -> SupBotHom.comp_assoc is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u3} γ] [_inst_6 : Bot.{u3} γ] [_inst_7 : HasSup.{u4} δ] [_inst_8 : Bot.{u4} δ] (f : SupBotHom.{u3, u4} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u4)} (SupBotHom.{u1, u4} α δ _inst_1 _inst_7 _inst_2 _inst_8) (SupBotHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (SupBotHom.comp.{u2, u3, u4} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (SupBotHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] [_inst_7 : Sup.{u4} δ] [_inst_8 : Bot.{u4} δ] (f : SupBotHom.{u3, u4} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u4)} (SupBotHom.{u1, u4} α δ _inst_1 _inst_7 _inst_2 _inst_8) (SupBotHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (SupBotHom.comp.{u2, u3, u4} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (SupBotHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u4} γ] [_inst_6 : Bot.{u4} γ] [_inst_7 : HasSup.{u3} δ] [_inst_8 : Bot.{u3} δ] (f : SupBotHom.{u4, u3} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : SupBotHom.{u2, u4} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α δ _inst_1 _inst_7 _inst_2 _inst_8) (SupBotHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (SupBotHom.comp.{u2, u4, u3} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (SupBotHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (SupBotHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u4} γ] [_inst_6 : Bot.{u4} γ] [_inst_7 : Sup.{u3} δ] [_inst_8 : Bot.{u3} δ] (f : SupBotHom.{u4, u3} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : SupBotHom.{u2, u4} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α δ _inst_1 _inst_7 _inst_2 _inst_8) (SupBotHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (SupBotHom.comp.{u2, u4, u3} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (SupBotHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (SupBotHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_assoc SupBotHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : SupBotHom γ δ) (g : SupBotHom β γ) (h : SupBotHom α β) :
@@ -1194,9 +1254,9 @@ theorem comp_assoc (f : SupBotHom γ δ) (g : SupBotHom β γ) (h : SupBotHom α
/- warning: sup_bot_hom.comp_id -> SupBotHom.comp_id is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u1, u1, u2} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (SupBotHom.id.{u1} α _inst_1 _inst_2)) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u1, u1, u2} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (SupBotHom.id.{u1} α _inst_1 _inst_2)) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : HasSup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u2, u2, u1} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (SupBotHom.id.{u2} α _inst_1 _inst_2)) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u2, u2, u1} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (SupBotHom.id.{u2} α _inst_1 _inst_2)) f
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.comp_id SupBotHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : SupBotHom α β) : f.comp (SupBotHom.id α) = f :=
@@ -1205,9 +1265,9 @@ theorem comp_id (f : SupBotHom α β) : f.comp (SupBotHom.id α) = f :=
/- warning: sup_bot_hom.id_comp -> SupBotHom.id_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (SupBotHom.id.{u2} β _inst_3 _inst_4) f) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (SupBotHom.id.{u2} β _inst_3 _inst_4) f) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : HasSup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (SupBotHom.id.{u1} β _inst_3 _inst_4) f) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : Sup.{u1} β] [_inst_4 : Bot.{u1} β] (f : SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (SupBotHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (SupBotHom.id.{u1} β _inst_3 _inst_4) f) f
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.id_comp SupBotHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
@@ -1216,9 +1276,9 @@ theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f :=
/- warning: sup_bot_hom.cancel_right -> SupBotHom.cancel_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g₁ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g₁ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : HasSup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g₁ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_right SupBotHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1227,20 +1287,20 @@ theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : S
/- warning: sup_bot_hom.cancel_left -> SupBotHom.cancel_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] {g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (SupBotHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : HasSup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] {g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : β) => γ) _x) (SupBotHom.instFunLikeSupBotHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.cancel_left SupBotHom.cancel_leftₓ'. -/
theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => SupBotHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align sup_bot_hom.cancel_left SupBotHom.cancel_left
-end HasSup
+end Sup
variable [SemilatticeSup β] [OrderBot β]
-instance : HasSup (SupBotHom α β) :=
+instance : Sup (SupBotHom α β) :=
⟨fun f g => { f.toBotHom ⊔ g.toBotHom with toSupHom := f.toSupHom ⊔ g.toSupHom }⟩
instance : SemilatticeSup (SupBotHom α β) :=
@@ -1252,9 +1312,9 @@ instance : OrderBot (SupBotHom α β) where
/- warning: sup_bot_hom.coe_sup -> SupBotHom.coe_sup is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (HasSup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (HasSup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (HasSup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instHasSupSupBotHomToHasSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (HasSup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instHasSupSupBotHomToHasSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_sup SupBotHom.coe_supₓ'. -/
@[simp]
theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -1263,9 +1323,9 @@ theorem coe_sup (f g : SupBotHom α β) : ⇑(f ⊔ g) = f ⊔ g :=
/- warning: sup_bot_hom.coe_bot -> SupBotHom.coe_bot is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u1 u2} (α -> β) (Pi.hasBot.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToHasSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToHasSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToHasSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Bot.bot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Bot.bot.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (Pi.instBotForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) ᾰ) (fun (i : α) => OrderBot.toBot.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.coe_bot SupBotHom.coe_botₓ'. -/
@[simp]
theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
@@ -1274,9 +1334,9 @@ theorem coe_bot : ⇑(⊥ : SupBotHom α β) = ⊥ :=
/- warning: sup_bot_hom.sup_apply -> SupBotHom.sup_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (HasSup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (f : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Sup.sup.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.hasSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasSup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (HasSup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instHasSupSupBotHomToHasSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (HasSup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SemilatticeSup.toHasSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toHasSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Sup.{u2} α] [_inst_2 : Bot.{u2} α] [_inst_3 : SemilatticeSup.{u1} β] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3)))] (f : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Sup.sup.{max u2 u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SupBotHom.instSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Sup.sup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SemilatticeSup.toSup.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (SupBotHom.{u2, u1} α β _inst_1 (SemilatticeSup.toSup.{u1} β _inst_3) _inst_2 (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u1} β _inst_3) (OrderBot.toBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.sup_apply SupBotHom.sup_applyₓ'. -/
@[simp]
theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
@@ -1285,9 +1345,9 @@ theorem sup_apply (f g : SupBotHom α β) (a : α) : (f ⊔ g) a = f a ⊔ g a :
/- warning: sup_bot_hom.bot_apply -> SupBotHom.bot_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (SupBotHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toHasBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.semilatticeSup.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.orderBot.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toHasSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToHasSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToHasSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToHasSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : SemilatticeSup.{u2} β] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) _x) (SupBotHom.instFunLikeSupBotHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeSup.toSup.{u2} β _inst_3) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Bot.bot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderBot.toBot.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeSup.toPartialOrder.{max u1 u2} (SupBotHom.{u1, u2} α β _inst_1 (SemilatticeSup.toSup.{u2} β _inst_3) _inst_2 (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SupBotHom.instSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Bot.bot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (OrderBot.toBot.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) (SemilatticeSup.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.6018 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.bot_apply SupBotHom.bot_applyₓ'. -/
@[simp]
theorem bot_apply (a : α) : (⊥ : SupBotHom α β) a = ⊥ :=
@@ -1301,11 +1361,11 @@ end SupBotHom
namespace InfTopHom
-variable [HasInf α] [Top α]
+variable [Inf α] [Top α]
-section HasInf
+section Inf
-variable [HasInf β] [Top β] [HasInf γ] [Top γ] [HasInf δ] [Top δ]
+variable [Inf β] [Top β] [Inf γ] [Top γ] [Inf δ] [Top δ]
#print InfTopHom.toTopHom /-
/-- Reinterpret an `inf_top_hom` as a `top_hom`. -/
@@ -1331,9 +1391,9 @@ instance : CoeFun (InfTopHom α β) fun _ => α → β :=
/- warning: inf_top_hom.to_fun_eq_coe -> InfTopHom.toFun_eq_coe is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u1) (succ u2)} (α -> β) (InfHom.toFun.{u1, u2} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : HasInf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, Eq.{max (succ u2) (succ u1)} (α -> β) (InfHom.toFun.{u2, u1} α β _inst_1 _inst_3 (InfTopHom.toInfHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
@@ -1342,9 +1402,9 @@ theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) :=
/- warning: inf_top_hom.ext -> InfTopHom.ext is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : HasInf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] {f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4} {g : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) g a)) -> (Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) f g)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.ext InfTopHom.extₓ'. -/
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
@@ -1353,9 +1413,9 @@ theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
/- warning: inf_top_hom.copy -> InfTopHom.copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy InfTopHom.copyₓ'. -/
/-- Copy of an `inf_top_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
@@ -1365,9 +1425,9 @@ protected def copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : InfTopH
/- warning: inf_top_hom.coe_copy -> InfTopHom.coe_copy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : HasInf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_copy InfTopHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1376,9 +1436,9 @@ theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
/- warning: inf_top_hom.copy_eq -> InfTopHom.copy_eq is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : HasInf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f)), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 f f' h) f
Case conversion may be inaccurate. Consider using '#align inf_top_hom.copy_eq InfTopHom.copy_eqₓ'. -/
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1399,9 +1459,9 @@ instance : Inhabited (InfTopHom α α) :=
/- warning: inf_top_hom.coe_id -> InfTopHom.coe_id is a dubious translation:
lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
+ forall (α : Type.{u1}) [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2)) (id.{succ u1} α)
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_id InfTopHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(InfTopHom.id α) = id :=
@@ -1412,9 +1472,9 @@ variable {α}
/- warning: inf_top_hom.id_apply -> InfTopHom.id_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) (fun (_x : InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) => α -> α) (InfTopHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
+ forall {α : Type.{u1}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (InfTopHom.{u1, u1} α α _inst_1 _inst_1 _inst_2 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => α) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u1} α α _inst_1 _inst_2 _inst_1 _inst_2) (InfTopHom.id.{u1} α _inst_1 _inst_2) a) a
Case conversion may be inaccurate. Consider using '#align inf_top_hom.id_apply InfTopHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : InfTopHom.id α a = a :=
@@ -1430,9 +1490,9 @@ def comp (f : InfTopHom β γ) (g : InfTopHom α β) : InfTopHom α γ :=
/- warning: inf_top_hom.coe_comp -> InfTopHom.coe_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} ((fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : HasInf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_comp InfTopHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α → γ) = f ∘ g :=
@@ -1441,9 +1501,9 @@ theorem coe_comp (f : InfTopHom β γ) (g : InfTopHom α β) : (f.comp g : α
/- warning: inf_top_hom.comp_apply -> InfTopHom.comp_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (f : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) => α -> γ) (InfTopHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : HasInf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (f : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (g : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_apply InfTopHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : InfTopHom β γ) (g : InfTopHom α β) (a : α) : (f.comp g) a = f (g a) :=
@@ -1452,9 +1512,9 @@ theorem comp_apply (f : InfTopHom β γ) (g : InfTopHom α β) (a : α) : (f.com
/- warning: inf_top_hom.comp_assoc -> InfTopHom.comp_assoc is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u3} γ] [_inst_6 : Top.{u3} γ] [_inst_7 : HasInf.{u4} δ] [_inst_8 : Top.{u4} δ] (f : InfTopHom.{u3, u4} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u4)} (InfTopHom.{u1, u4} α δ _inst_1 _inst_7 _inst_2 _inst_8) (InfTopHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (InfTopHom.comp.{u2, u3, u4} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (InfTopHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] [_inst_7 : Inf.{u4} δ] [_inst_8 : Top.{u4} δ] (f : InfTopHom.{u3, u4} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u4)} (InfTopHom.{u1, u4} α δ _inst_1 _inst_7 _inst_2 _inst_8) (InfTopHom.comp.{u1, u2, u4} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (InfTopHom.comp.{u2, u3, u4} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (InfTopHom.comp.{u1, u3, u4} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u4} γ] [_inst_6 : Top.{u4} γ] [_inst_7 : HasInf.{u3} δ] [_inst_8 : Top.{u3} δ] (f : InfTopHom.{u4, u3} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : InfTopHom.{u2, u4} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α δ _inst_1 _inst_7 _inst_2 _inst_8) (InfTopHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (InfTopHom.comp.{u2, u4, u3} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (InfTopHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (InfTopHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u4}} {δ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u4} γ] [_inst_6 : Top.{u4} γ] [_inst_7 : Inf.{u3} δ] [_inst_8 : Top.{u3} δ] (f : InfTopHom.{u4, u3} γ δ _inst_5 _inst_7 _inst_6 _inst_8) (g : InfTopHom.{u2, u4} β γ _inst_3 _inst_5 _inst_4 _inst_6) (h : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α δ _inst_1 _inst_7 _inst_2 _inst_8) (InfTopHom.comp.{u1, u2, u3} α β δ _inst_1 _inst_2 _inst_3 _inst_4 _inst_7 _inst_8 (InfTopHom.comp.{u2, u4, u3} β γ δ _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 f g) h) (InfTopHom.comp.{u1, u4, u3} α γ δ _inst_1 _inst_2 _inst_5 _inst_6 _inst_7 _inst_8 f (InfTopHom.comp.{u1, u2, u4} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g h))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_assoc InfTopHom.comp_assocₓ'. -/
@[simp]
theorem comp_assoc (f : InfTopHom γ δ) (g : InfTopHom β γ) (h : InfTopHom α β) :
@@ -1464,9 +1524,9 @@ theorem comp_assoc (f : InfTopHom γ δ) (g : InfTopHom β γ) (h : InfTopHom α
/- warning: inf_top_hom.comp_id -> InfTopHom.comp_id is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u1, u1, u2} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (InfTopHom.id.{u1} α _inst_1 _inst_2)) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u1, u1, u2} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (InfTopHom.id.{u1} α _inst_1 _inst_2)) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : HasInf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u2, u2, u1} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (InfTopHom.id.{u2} α _inst_1 _inst_2)) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u2, u2, u1} α α β _inst_1 _inst_2 _inst_1 _inst_2 _inst_3 _inst_4 f (InfTopHom.id.{u2} α _inst_1 _inst_2)) f
Case conversion may be inaccurate. Consider using '#align inf_top_hom.comp_id InfTopHom.comp_idₓ'. -/
@[simp]
theorem comp_id (f : InfTopHom α β) : f.comp (InfTopHom.id α) = f :=
@@ -1475,9 +1535,9 @@ theorem comp_id (f : InfTopHom α β) : f.comp (InfTopHom.id α) = f :=
/- warning: inf_top_hom.id_comp -> InfTopHom.id_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (InfTopHom.id.{u2} β _inst_3 _inst_4) f) f
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u1, u2, u2} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (InfTopHom.id.{u2} β _inst_3 _inst_4) f) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : HasInf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (InfTopHom.id.{u1} β _inst_3 _inst_4) f) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : Inf.{u1} β] [_inst_4 : Top.{u1} β] (f : InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u2) (succ u1)} (InfTopHom.{u2, u1} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.comp.{u2, u1, u1} α β β _inst_1 _inst_2 _inst_3 _inst_4 _inst_3 _inst_4 (InfTopHom.id.{u1} β _inst_3 _inst_4) f) f
Case conversion may be inaccurate. Consider using '#align inf_top_hom.id_comp InfTopHom.id_compₓ'. -/
@[simp]
theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
@@ -1486,9 +1546,9 @@ theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f :=
/- warning: inf_top_hom.cancel_right -> InfTopHom.cancel_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u3} γ] [_inst_6 : Top.{u3} γ] {g₁ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g₁ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : HasInf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g₁ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {g₂ : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₁ f) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g₂ f)) (Eq.{max (succ u3) (succ u2)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_right InfTopHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -1497,20 +1557,20 @@ theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : S
/- warning: inf_top_hom.cancel_left -> InfTopHom.cancel_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u3} γ] [_inst_6 : Top.{u3} γ] {g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] {g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) => β -> γ) (InfTopHom.hasCoeToFun.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : HasInf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] {g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6} {f₁ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4} {f₂ : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : β) => γ) _x) (InfTopHom.instFunLikeInfTopHom.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₁) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f₂)) (Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.cancel_left InfTopHom.cancel_leftₓ'. -/
theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => InfTopHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align inf_top_hom.cancel_left InfTopHom.cancel_left
-end HasInf
+end Inf
variable [SemilatticeInf β] [OrderTop β]
-instance : HasInf (InfTopHom α β) :=
+instance : Inf (InfTopHom α β) :=
⟨fun f g => { f.toTopHom ⊓ g.toTopHom with toInfHom := f.toInfHom ⊓ g.toInfHom }⟩
instance : SemilatticeInf (InfTopHom α β) :=
@@ -1522,9 +1582,9 @@ instance : OrderTop (InfTopHom α β) where
/- warning: inf_top_hom.coe_inf -> InfTopHom.coe_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (HasInf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (HasInf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)), Eq.{succ (max u1 u2)} (α -> β) (coeFn.{succ (max u1 u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_3)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (HasInf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instHasInfInfTopHomToHasInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (HasInf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instHasInfInfTopHomToHasInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)), Eq.{max (succ u2) (succ u1)} (α -> β) (FunLike.coe.{succ (max u2 u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => β) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_inf InfTopHom.coe_infₓ'. -/
@[simp]
theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1533,9 +1593,9 @@ theorem coe_inf (f g : InfTopHom α β) : ⇑(f ⊓ g) = f ⊓ g :=
/- warning: inf_top_hom.coe_top -> InfTopHom.coe_top is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))], Eq.{succ (max u1 u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), succ (max u1 u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u1 u2} (α -> β) (Pi.hasTop.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToHasInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToHasInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToHasInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) _inst_3))) _inst_4)))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Top.top.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Preorder.toLE.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (Top.top.{max u2 u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (Pi.instTopForAll.{u2, u1} α (fun (ᾰ : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) ᾰ) (fun (i : α) => OrderTop.toTop.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (Preorder.toLE.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (PartialOrder.toPreorder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) i) _inst_3))) _inst_4)))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.coe_top InfTopHom.coe_topₓ'. -/
@[simp]
theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
@@ -1544,9 +1604,9 @@ theorem coe_top : ⇑(⊤ : InfTopHom α β) = ⊤ :=
/- warning: inf_top_hom.inf_apply -> InfTopHom.inf_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (HasInf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (f : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (g : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Inf.inf.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.hasInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_3) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) g a))
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasInf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (HasInf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instHasInfInfTopHomToHasInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (HasInf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (SemilatticeInf.toHasInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toHasInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Inf.{u2} α] [_inst_2 : Top.{u2} α] [_inst_3 : SemilatticeInf.{u1} β] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3)))] (f : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (g : InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (Inf.inf.{max u2 u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) (InfTopHom.instInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4) f g) a) (Inf.inf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (SemilatticeInf.toInf.{u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) _inst_3) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (InfTopHom.{u2, u1} α β _inst_1 (SemilatticeInf.toInf.{u1} β _inst_3) _inst_2 (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u2, u1} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u1} β _inst_3) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_3))) _inst_4)) g a))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.inf_apply InfTopHom.inf_applyₓ'. -/
@[simp]
theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
@@ -1555,9 +1615,9 @@ theorem inf_apply (f g : InfTopHom α β) (a : α) : (f ⊓ g) a = f a ⊓ g a :
/- warning: inf_top_hom.top_apply -> InfTopHom.top_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (fun (_x : InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) => α -> β) (InfTopHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toHasTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.semilatticeInf.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.orderTop.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toHasInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToHasInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToHasInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToHasInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) _inst_3))) _inst_4))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : SemilatticeInf.{u2} β] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3)))] (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) _x) (InfTopHom.instFunLikeInfTopHom.{u1, u2} α β _inst_1 _inst_2 (SemilatticeInf.toInf.{u2} β _inst_3) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Top.top.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (OrderTop.toTop.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (Preorder.toLE.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (PartialOrder.toPreorder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (SemilatticeInf.toPartialOrder.{max u1 u2} (InfTopHom.{u1, u2} α β _inst_1 (SemilatticeInf.toInf.{u2} β _inst_3) _inst_2 (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_3))) _inst_4)) (InfTopHom.instSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)))) (InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4))) a) (Top.top.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (OrderTop.toTop.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (Preorder.toLE.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (PartialOrder.toPreorder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) (SemilatticeInf.toPartialOrder.{u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.7705 : α) => β) a) _inst_3))) _inst_4))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.top_apply InfTopHom.top_applyₓ'. -/
@[simp]
theorem top_apply (a : α) : (⊤ : InfTopHom α β) a = ⊤ :=
@@ -1573,12 +1633,16 @@ namespace LatticeHom
variable [Lattice α] [Lattice β] [Lattice γ] [Lattice δ]
-#print LatticeHom.toInfHom /-
+/- warning: lattice_hom.to_inf_hom -> LatticeHom.toInfHom is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β], (LatticeHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β], (LatticeHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2))
+Case conversion may be inaccurate. Consider using '#align lattice_hom.to_inf_hom LatticeHom.toInfHomₓ'. -/
/-- Reinterpret a `lattice_hom` as an `inf_hom`. -/
def toInfHom (f : LatticeHom α β) : InfHom α β :=
{ f with }
#align lattice_hom.to_inf_hom LatticeHom.toInfHom
--/
instance : LatticeHomClass (LatticeHom α β) α β
where
@@ -1596,7 +1660,7 @@ instance : CoeFun (LatticeHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] {f : LatticeHom.{u1, u2} α β _inst_1 _inst_2}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] {f : LatticeHom.{u2, u1} α β _inst_1 _inst_2}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LatticeHom.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u1} α β _inst_1 _inst_2) f)
Case conversion may be inaccurate. Consider using '#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) :=
@@ -1614,13 +1678,17 @@ theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align lattice_hom.ext LatticeHom.ext
-#print LatticeHom.copy /-
+/- warning: lattice_hom.copy -> LatticeHom.copy is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (fun (_x : LatticeHom.{u1, u2} α β _inst_1 _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] (f : LatticeHom.{u1, u2} α β _inst_1 _inst_2) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u2} α β _inst_1 _inst_2) f)) -> (LatticeHom.{u1, u2} α β _inst_1 _inst_2)
+Case conversion may be inaccurate. Consider using '#align lattice_hom.copy LatticeHom.copyₓ'. -/
/-- Copy of a `lattice_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : LatticeHom α β :=
{ f.toSupHom.copy f' h, f.toInfHom.copy f' h with }
#align lattice_hom.copy LatticeHom.copy
--/
/- warning: lattice_hom.coe_copy -> LatticeHom.coe_copy is a dubious translation:
lean 3 declaration is
@@ -1657,21 +1725,29 @@ protected def id : LatticeHom α α where
instance : Inhabited (LatticeHom α α) :=
⟨LatticeHom.id α⟩
-#print LatticeHom.coe_id /-
+/- warning: lattice_hom.coe_id -> LatticeHom.coe_id is a dubious translation:
+lean 3 declaration is
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
+but is expected to have type
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1)) (id.{succ u1} α)
+Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_id LatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(LatticeHom.id α) = id :=
rfl
#align lattice_hom.coe_id LatticeHom.coe_id
--/
variable {α}
-#print LatticeHom.id_apply /-
+/- warning: lattice_hom.id_apply -> LatticeHom.id_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) (fun (_x : LatticeHom.{u1, u1} α α _inst_1 _inst_1) => α -> α) (LatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (LatticeHom.{u1, u1} α α _inst_1 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => α) _x) (LatticeHom.instFunLikeLatticeHom.{u1, u1} α α _inst_1 _inst_1) (LatticeHom.id.{u1} α _inst_1) a) a
+Case conversion may be inaccurate. Consider using '#align lattice_hom.id_apply LatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : LatticeHom.id α a = a :=
rfl
#align lattice_hom.id_apply LatticeHom.id_apply
--/
#print LatticeHom.comp /-
/-- Composition of `lattice_hom`s as a `lattice_hom`. -/
@@ -1706,7 +1782,7 @@ theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.c
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.latticeHomClass.{u1, u3} α γ _inst_1 _inst_3))))) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.latticeHomClass.{u2, u3} β γ _inst_2 _inst_3))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.latticeHomClass.{u1, u2} α β _inst_1 _inst_2))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp_sup_hom LatticeHom.coe_comp_sup_homₓ'. -/
@[simp]
theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
@@ -1718,7 +1794,7 @@ theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] (f : LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.latticeHomClass.{u1, u3} α γ _inst_1 _inst_3))))) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.latticeHomClass.{u2, u3} β γ _inst_2 _inst_3))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.latticeHomClass.{u1, u2} α β _inst_1 _inst_2))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (InfHom.mk.{u1, u3} α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] (f : LatticeHom.{u3, u2} β γ _inst_2 _inst_3) (g : LatticeHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) α γ _inst_1 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u2} α γ _inst_1 _inst_3)) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (LatticeHom.{u3, u2} β γ _inst_2 _inst_3) β γ _inst_2 _inst_3 (LatticeHom.instLatticeHomClassLatticeHom.{u3, u2} β γ _inst_2 _inst_3)) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (LatticeHom.{u1, u3} α β _inst_1 _inst_2) α β _inst_1 _inst_2 (LatticeHom.instLatticeHomClassLatticeHom.{u1, u3} α β _inst_1 _inst_2)) g)))
Case conversion may be inaccurate. Consider using '#align lattice_hom.coe_comp_inf_hom LatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
@@ -1819,19 +1895,23 @@ def toLatticeHom (f : F) : LatticeHom α β :=
lean 3 declaration is
forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F), Eq.{max (succ u2) (succ u3)} (α -> β) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f)) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f)
but is expected to have type
- forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toHasInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toHasInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
+ forall {F : Type.{u1}} (α : Type.{u3}) (β : Type.{u2}) [_inst_1 : LinearOrder.{u3} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : OrderHomClass.{u1, u3, u2} F α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : F), Eq.{max (succ u3) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (LatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u3, u2} α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3 f)) (FunLike.coe.{succ u1, succ u3, succ u2} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u3, u2} F α β (Lattice.toInf.{u3} α (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1))) (Lattice.toInf.{u2} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u3, u2} F α β (DistribLattice.toLattice.{u3} α (instDistribLattice.{u3} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u3, u2} F α β _inst_1 _inst_2 _inst_3))) f)
Case conversion may be inaccurate. Consider using '#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_homₓ'. -/
@[simp]
theorem coe_to_lattice_hom (f : F) : ⇑(toLatticeHom α β f) = f :=
rfl
#align order_hom_class.coe_to_lattice_hom OrderHomClass.coe_to_lattice_hom
-#print OrderHomClass.to_lattice_hom_apply /-
+/- warning: order_hom_class.to_lattice_hom_apply -> OrderHomClass.to_lattice_hom_apply is a dubious translation:
+lean 3 declaration is
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (fun (_x : LatticeHom.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) => α -> β) (LatticeHom.hasCoeToFun.{u2, u3} α β (LinearOrder.toLattice.{u2} α _inst_1) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (coeFn.{succ u1, max (succ u2) (succ u3)} F (fun (_x : F) => α -> β) (FunLike.hasCoeToFun.{succ u1, succ u2, succ u3} F α (fun (_x : α) => β) (RelHomClass.toFunLike.{u1, u2, u3} F α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))) _inst_3)) f a)
+but is expected to have type
+ forall {F : Type.{u1}} (α : Type.{u2}) (β : Type.{u3}) [_inst_1 : LinearOrder.{u2} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : OrderHomClass.{u1, u2, u3} F α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] (f : F) (a : α), Eq.{succ u3} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.9326 : α) => β) _x) (LatticeHom.instFunLikeLatticeHom.{u2, u3} α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2) (OrderHomClass.toLatticeHom.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3 f) a) (FunLike.coe.{succ u1, succ u2, succ u3} F α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{u1, u2, u3} F α β (Lattice.toInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{u1, u2, u3} F α β (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)) _inst_2 (OrderHomClass.toLatticeHomClass.{u1, u2, u3} F α β _inst_1 _inst_2 _inst_3))) f a)
+Case conversion may be inaccurate. Consider using '#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_applyₓ'. -/
@[simp]
theorem to_lattice_hom_apply (f : F) (a : α) : toLatticeHom α β f a = f a :=
rfl
#align order_hom_class.to_lattice_hom_apply OrderHomClass.to_lattice_hom_apply
--/
end OrderHomClass
@@ -1847,7 +1927,7 @@ variable [Lattice α] [Lattice β] [Lattice γ] [Lattice δ] [BoundedOrder α] [
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (SupBotHom.{u1, u2} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_sup_bot_hom BoundedLatticeHom.toSupBotHomₓ'. -/
/-- Reinterpret a `bounded_lattice_hom` as a `sup_bot_hom`. -/
def toSupBotHom (f : BoundedLatticeHom α β) : SupBotHom α β :=
@@ -1858,7 +1938,7 @@ def toSupBotHom (f : BoundedLatticeHom α β) : SupBotHom α β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))], (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) -> (InfTopHom.{u1, u2} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_inf_top_hom BoundedLatticeHom.toInfTopHomₓ'. -/
/-- Reinterpret a `bounded_lattice_hom` as an `inf_top_hom`. -/
def toInfTopHom (f : BoundedLatticeHom α β) : InfTopHom α β :=
@@ -1890,7 +1970,7 @@ instance : CoeFun (BoundedLatticeHom α β) fun _ => α → β :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u1) (succ u2)} (α -> β) (SupHom.toFun.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHom.toSupHom.{u1, u2} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toHasSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, Eq.{max (succ u2) (succ u1)} (α -> β) (SupHom.toFun.{u2, u1} α β (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α _inst_1)) (SemilatticeSup.toSup.{u1} β (Lattice.toSemilatticeSup.{u1} β _inst_2)) (LatticeHom.toSupHom.{u2, u1} α β _inst_1 _inst_2 (BoundedLatticeHom.toLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coeₓ'. -/
@[simp]
theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :=
@@ -1901,26 +1981,30 @@ theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a)) -> (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] {f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6} {g : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6}, (forall (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a)) -> (Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) f g)
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.ext BoundedLatticeHom.extₓ'. -/
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
#align bounded_lattice_hom.ext BoundedLatticeHom.ext
-#print BoundedLatticeHom.copy /-
+/- warning: bounded_lattice_hom.copy -> BoundedLatticeHom.copy is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β), (Eq.{max (succ u1) (succ u2)} (α -> β) f' (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) (BoundedOrder.toOrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy BoundedLatticeHom.copyₓ'. -/
/-- Copy of a `bounded_lattice_hom` with a new `to_fun` equal to the old one. Useful to fix
definitional equalities. -/
protected def copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : BoundedLatticeHom α β :=
{ f.toLatticeHom.copy f' h, f.toBoundedOrderHom.copy f' h with }
#align bounded_lattice_hom.copy BoundedLatticeHom.copy
--/
/- warning: bounded_lattice_hom.coe_copy -> BoundedLatticeHom.coe_copy is a dubious translation:
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h)) f'
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copyₓ'. -/
@[simp]
theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' :=
@@ -1931,7 +2015,7 @@ theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] (f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u1) (succ u2)} (α -> β) f' (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)), Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u2} α _inst_1) (Lattice.toHasInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
+ forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_5 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] [_inst_6 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))] (f : BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (f' : α -> β) (h : Eq.{max (succ u2) (succ u1)} (α -> β) f' (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (InfTopHomClass.toInfHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u2} α _inst_1) (Lattice.toInf.{u1} β _inst_2) (OrderTop.toTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (BoundedOrder.toOrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) (BoundedOrder.toOrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u2 u1, u2, u1} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)), Eq.{max (succ u2) (succ u1)} (BoundedLatticeHom.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6) (BoundedLatticeHom.copy.{u2, u1} α β _inst_1 _inst_2 _inst_5 _inst_6 f f' h) f
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eqₓ'. -/
theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
FunLike.ext' h
@@ -1949,21 +2033,29 @@ protected def id : BoundedLatticeHom α α :=
instance : Inhabited (BoundedLatticeHom α α) :=
⟨BoundedLatticeHom.id α⟩
-#print BoundedLatticeHom.coe_id /-
+/- warning: bounded_lattice_hom.coe_id -> BoundedLatticeHom.coe_id is a dubious translation:
+lean 3 declaration is
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (α -> α) (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
+but is expected to have type
+ forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Eq.{succ u1} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) ᾰ) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5)) (id.{succ u1} α)
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_id BoundedLatticeHom.coe_idₓ'. -/
@[simp]
theorem coe_id : ⇑(BoundedLatticeHom.id α) = id :=
rfl
#align bounded_lattice_hom.coe_id BoundedLatticeHom.coe_id
--/
variable {α}
-#print BoundedLatticeHom.id_apply /-
+/- warning: bounded_lattice_hom.id_apply -> BoundedLatticeHom.id_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (fun (_x : BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) => α -> α) (BoundedLatticeHom.hasCoeToFun.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (a : α), Eq.{succ u1} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => α) _x) (InfHomClass.toFunLike.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (InfTopHomClass.toInfHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u1} α _inst_1) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (BoundedLatticeHomClass.toInfTopHomClass.{u1, u1, u1} (BoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5) α α _inst_1 _inst_1 _inst_5 _inst_5 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u1} α α _inst_1 _inst_1 _inst_5 _inst_5)))) (BoundedLatticeHom.id.{u1} α _inst_1 _inst_5) a) a
+Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_applyₓ'. -/
@[simp]
theorem id_apply (a : α) : BoundedLatticeHom.id α a = a :=
rfl
#align bounded_lattice_hom.id_apply BoundedLatticeHom.id_apply
--/
#print BoundedLatticeHom.comp /-
/-- Composition of `bounded_lattice_hom`s as a `bounded_lattice_hom`. -/
@@ -1976,7 +2068,7 @@ def comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) : BoundedLa
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} ((fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u2, succ u3} α β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (forall (a : α), (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (Function.comp.{succ u1, succ u3, succ u2} α β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp BoundedLatticeHom.coe_compₓ'. -/
@[simp]
theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -1988,7 +2080,7 @@ theorem coe_comp (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u3} γ (coeFn.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (fun (_x : BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) => α -> γ) (BoundedLatticeHom.hasCoeToFun.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) f (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) g a))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) (a : α), Eq.{succ u2} ((fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) _x) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g) a) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g a))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_applyₓ'. -/
@[simp]
theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (a : α) :
@@ -2000,7 +2092,7 @@ theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (LatticeHom.{u1, u3} α γ _inst_1 _inst_3) (LatticeHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (LatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (LatticeHom.{u2, u3} β γ _inst_2 _inst_3) (LatticeHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (LatticeHom.{u1, u2} α β _inst_1 _inst_2) (LatticeHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (LatticeHom.{u1, u2} α γ _inst_1 _inst_3) (LatticeHom.mk.{u1, u2} α γ _inst_1 _inst_3 (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (instCoeTCLatticeHom.proof_1.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (instCoeTCLatticeHom.proof_2.{u2, u1, max u1 u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (LatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (LatticeHom.mk.{u3, u2} β γ _inst_2 _inst_3 (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (LatticeHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (instCoeTCLatticeHom.proof_1.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (instCoeTCLatticeHom.proof_2.{u2, u3, max u3 u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)) f)) (LatticeHom.mk.{u1, u3} α β _inst_1 _inst_2 (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (instCoeTCLatticeHom.proof_1.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)) (instCoeTCLatticeHom.proof_2.{u3, u1, max u1 u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_homₓ'. -/
@[simp]
theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2012,7 +2104,7 @@ theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHo
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (SupHom.{u1, u3} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHom.comp.{u1, u2, u3} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (SupHom.{u2, u3} β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3))) (SupHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (SemilatticeSup.toHasSup.{u3} γ (Lattice.toSemilatticeSup.{u3} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (SupHom.{u1, u2} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2))) (SupHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toHasSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toHasSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (SupHom.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3))) (SupHom.mk.{u1, u2} α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => γ) a) (SupHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (SupHomClass.map_sup.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (SupHom.comp.{u1, u3, u2} α β γ (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (SupHom.mk.{u3, u2} β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : β) => γ) a) (SupHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (SupHomClass.map_sup.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (SemilatticeSup.toSup.{u2} γ (Lattice.toSemilatticeSup.{u2} γ _inst_3)) (LatticeHomClass.toSupHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (SupHom.mk.{u1, u3} α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.429 : α) => β) a) (SupHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (SupHomClass.map_sup.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (SemilatticeSup.toSup.{u3} β (Lattice.toSemilatticeSup.{u3} β _inst_2)) (LatticeHomClass.toSupHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_homₓ'. -/
@[simp]
theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2024,7 +2116,7 @@ theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] (f : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) ((fun (a : Sort.{max (succ u1) (succ u3)}) (b : Sort.{max (succ u1) (succ u3)}) [self : HasLiftT.{max (succ u1) (succ u3), max (succ u1) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (InfHom.{u1, u3} α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7)))))) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHom.comp.{u1, u2, u3} α β γ (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (InfHom.{u2, u3} β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))) (InfHom.hasCoeT.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (SemilatticeInf.toHasInf.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3)) (LatticeHomClass.toInfHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 (BoundedLatticeHomClass.toLatticeHomClass.{max u2 u3, u2, u3} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.boundedLatticeHomClass.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7)))))) f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{max (succ u1) (succ u2), max (succ u1) (succ u2)} a b] => self.0) (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (HasLiftT.mk.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (CoeTCₓ.coe.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (InfHom.{u1, u2} α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) (InfHom.hasCoeT.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)) (LatticeHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 (BoundedLatticeHomClass.toLatticeHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.boundedLatticeHomClass.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6)))))) g))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] (f : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) (g : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6), Eq.{max (succ u1) (succ u2)} (InfHom.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3)) (InfHom.mk.{u1, u2} α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u1 u2), succ u1, succ u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => γ) a) (InfHomClass.toFunLike.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7)))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g)) (InfHomClass.map_inf.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u2, u1, u2} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) α γ _inst_1 _inst_3 _inst_5 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7))) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 f g))) (InfHom.comp.{u1, u3, u2} α β γ (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfHom.mk.{u3, u2} β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (FunLike.coe.{succ (max u3 u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (a : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) a) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) f) (InfHomClass.map_inf.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7))) f)) (InfHom.mk.{u1, u3} α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (FunLike.coe.{succ (max u1 u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (a : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) a) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) g) (InfHomClass.map_inf.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6))) g)))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.coe_comp_inf_hom BoundedLatticeHom.coe_comp_inf_homₓ'. -/
@[simp]
theorem coe_comp_inf_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
@@ -2070,7 +2162,7 @@ theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) (fun (_x : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) => α -> β) (BoundedLatticeHom.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toHasInf.{u1} α _inst_1) (Lattice.toHasInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g₁ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {g₂ : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Surjective.{succ u1, succ u3} α β (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α (fun (_x : α) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : α) => β) _x) (InfHomClass.toFunLike.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (InfTopHomClass.toInfHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β (Lattice.toInf.{u1} α _inst_1) (Lattice.toInf.{u3} β _inst_2) (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_5)) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (BoundedLatticeHomClass.toInfTopHomClass.{max u1 u3, u1, u3} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) α β _inst_1 _inst_2 _inst_5 _inst_6 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6)))) f)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₁ f) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g₂ f)) (Eq.{max (succ u3) (succ u2)} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) g₁ g₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_rightₓ'. -/
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
@@ -2081,7 +2173,7 @@ theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHo
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : Lattice.{u3} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))] [_inst_7 : BoundedOrder.{u3} γ (Preorder.toLE.{u3} γ (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ _inst_3))))] {g : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u2, succ u3} β γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) (fun (_x : BoundedLatticeHom.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) => β -> γ) (BoundedLatticeHom.hasCoeToFun.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_7) g)) -> (Iff (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toHasInf.{u3} β _inst_2) (Lattice.toHasInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u3} β] [_inst_3 : Lattice.{u2} γ] [_inst_5 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_6 : BoundedOrder.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2))))] [_inst_7 : BoundedOrder.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3))))] {g : BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7} {f₁ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6} {f₂ : BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6}, (Function.Injective.{succ u3, succ u2} β γ (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β (fun (_x : β) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.487 : β) => γ) _x) (InfHomClass.toFunLike.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (InfTopHomClass.toInfHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ (Lattice.toInf.{u3} β _inst_2) (Lattice.toInf.{u2} γ _inst_3) (OrderTop.toTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) (BoundedOrder.toOrderTop.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (SemilatticeInf.toPartialOrder.{u3} β (Lattice.toSemilatticeInf.{u3} β _inst_2)))) _inst_6)) (OrderTop.toTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) (BoundedOrder.toOrderTop.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ _inst_3)))) _inst_7)) (BoundedLatticeHomClass.toInfTopHomClass.{max u3 u2, u3, u2} (BoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7) β γ _inst_2 _inst_3 _inst_6 _inst_7 (BoundedLatticeHom.instBoundedLatticeHomClassBoundedLatticeHom.{u3, u2} β γ _inst_2 _inst_3 _inst_6 _inst_7)))) g)) -> (Iff (Eq.{max (succ u1) (succ u2)} (BoundedLatticeHom.{u1, u2} α γ _inst_1 _inst_3 _inst_5 _inst_7) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₁) (BoundedLatticeHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 g f₂)) (Eq.{max (succ u1) (succ u3)} (BoundedLatticeHom.{u1, u3} α β _inst_1 _inst_2 _inst_5 _inst_6) f₁ f₂))
Case conversion may be inaccurate. Consider using '#align bounded_lattice_hom.cancel_left BoundedLatticeHom.cancel_leftₓ'. -/
theorem cancel_left {g : BoundedLatticeHom β γ} {f₁ f₂ : BoundedLatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
@@ -2095,7 +2187,7 @@ end BoundedLatticeHom
namespace SupHom
-variable [HasSup α] [HasSup β] [HasSup γ]
+variable [Sup α] [Sup β] [Sup γ]
#print SupHom.dual /-
/-- Reinterpret a supremum homomorphism as an infimum homomorphism between the dual lattices. -/
@@ -2118,9 +2210,9 @@ theorem dual_id : (SupHom.id α).dual = InfHom.id _ :=
/- warning: sup_hom.dual_comp -> SupHom.dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u3} γ] (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u1, u3} α γ _inst_1 _inst_3) -> (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u2, u3} β γ _inst_2 _inst_3) -> (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) => (SupHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : SupHom.{u2, u3} β γ _inst_2 _inst_3) (f : SupHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u1, u3} α γ _inst_1 _inst_3) -> (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) => (SupHom.{u2, u3} β γ _inst_2 _inst_3) -> (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3))) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) => (SupHom.{u1, u2} α β _inst_1 _inst_2) -> (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2))) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u3} β] [_inst_3 : HasSup.{u2} γ] (g : SupHom.{u3, u2} β γ _inst_2 _inst_3) (f : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3))) (SupHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3))) (SupHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u3, u2} β γ _inst_2 _inst_3) => InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2))) (SupHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u3} α β _inst_1 _inst_2) => InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2))) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : SupHom.{u3, u2} β γ _inst_2 _inst_3) (f : SupHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : SupHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} α γ _inst_1 _inst_3) => InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : SupHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u3, u2} β γ _inst_2 _inst_3) => InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3))) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : SupHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u3} α β _inst_1 _inst_2) => InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2))) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align sup_hom.dual_comp SupHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupHom β γ) (f : SupHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2136,9 +2228,9 @@ theorem symm_dual_id : SupHom.dual.symm (InfHom.id _) = SupHom.id α :=
/- warning: sup_hom.symm_dual_comp -> SupHom.symm_dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u2} β] [_inst_3 : HasSup.{u3} γ] (g : InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (f : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) => (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) g f)) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) => (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) => (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) -> (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u2} β] [_inst_3 : Sup.{u3} γ] (g : InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (f : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) => (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} α γ _inst_1 _inst_3) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3) g f)) (SupHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) => (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) -> (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} β γ _inst_2 _inst_3) (InfHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_2) (OrderDual.hasInf.{u3} γ _inst_3)) (SupHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) => (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) -> (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} α β _inst_1 _inst_2) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_2)) (SupHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasSup.{u3} β] [_inst_3 : HasSup.{u2} γ] (g : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) (f : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3) g f)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) => SupHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_2) (instHasInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)) (fun (_x : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)) => SupHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_2)) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Sup.{u3} β] [_inst_3 : Sup.{u2} γ] (g : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (f : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} α γ _inst_1 _inst_3) (InfHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (InfHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3) g f)) (SupHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (fun (_x : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) => SupHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} β γ _inst_2 _inst_3) (InfHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_2) (instInfOrderDual.{u2} γ _inst_3)) (SupHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (fun (_x : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) => SupHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} α β _inst_1 _inst_2) (InfHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_2)) (SupHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align sup_hom.symm_dual_comp SupHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfHom βᵒᵈ γᵒᵈ) (f : InfHom αᵒᵈ βᵒᵈ) :
@@ -2150,7 +2242,7 @@ end SupHom
namespace InfHom
-variable [HasInf α] [HasInf β] [HasInf γ]
+variable [Inf α] [Inf β] [Inf γ]
#print InfHom.dual /-
/-- Reinterpret an infimum homomorphism as a supremum homomorphism between the dual lattices. -/
@@ -2173,9 +2265,9 @@ theorem dual_id : (InfHom.id α).dual = SupHom.id _ :=
/- warning: inf_hom.dual_comp -> InfHom.dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u3} γ] (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u1, u3} α γ _inst_1 _inst_3) -> (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u2, u3} β γ _inst_2 _inst_3) -> (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) => (InfHom.{u1, u2} α β _inst_1 _inst_2) -> (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : InfHom.{u2, u3} β γ _inst_2 _inst_3) (f : InfHom.{u1, u2} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u1, u3} α γ _inst_1 _inst_3) -> (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) => (InfHom.{u2, u3} β γ _inst_2 _inst_3) -> (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3))) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) => (InfHom.{u1, u2} α β _inst_1 _inst_2) -> (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2))) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u3} β] [_inst_3 : HasInf.{u2} γ] (g : InfHom.{u3, u2} β γ _inst_2 _inst_3) (f : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3))) (InfHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3))) (InfHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u3, u2} β γ _inst_2 _inst_3) => SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2))) (InfHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u3} α β _inst_1 _inst_2) => SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2))) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : InfHom.{u3, u2} β γ _inst_2 _inst_3) (f : InfHom.{u1, u3} α β _inst_1 _inst_2), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u1, u2} α γ _inst_1 _inst_3) (fun (_x : InfHom.{u1, u2} α γ _inst_1 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u2} α γ _inst_1 _inst_3) => SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 g f)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.{u3, u2} β γ _inst_2 _inst_3) (fun (_x : InfHom.{u3, u2} β γ _inst_2 _inst_3) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u3, u2} β γ _inst_2 _inst_3) => SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3))) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.{u1, u3} α β _inst_1 _inst_2) (fun (_x : InfHom.{u1, u3} α β _inst_1 _inst_2) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfHom.{u1, u3} α β _inst_1 _inst_2) => SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2))) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2) f))
Case conversion may be inaccurate. Consider using '#align inf_hom.dual_comp InfHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfHom β γ) (f : InfHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2191,9 +2283,9 @@ theorem symm_dual_id : InfHom.dual.symm (SupHom.id _) = InfHom.id α :=
/- warning: inf_hom.symm_dual_comp -> InfHom.symm_dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u2} β] [_inst_3 : HasInf.{u3} γ] (g : SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (f : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) => (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) g f)) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) => (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) => (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) -> (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u2} β] [_inst_3 : Inf.{u3} γ] (g : SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (f : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)), Eq.{max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) => (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u1, u3} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfHom.{u1, u3} α γ _inst_1 _inst_3) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u1, u3} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3) g f)) (InfHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) => (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) -> (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.{u2, u3} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u2, u3} β γ _inst_2 _inst_3) (SupHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_2) (OrderDual.hasSup.{u3} γ _inst_3)) (InfHom.dual.{u2, u3} β γ _inst_2 _inst_3)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) => (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) -> (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.{u1, u2} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfHom.{u1, u2} α β _inst_1 _inst_2) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_2)) (InfHom.dual.{u1, u2} α β _inst_1 _inst_2)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : HasInf.{u3} β] [_inst_3 : HasInf.{u2} γ] (g : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) (f : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3) g f)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) => InfHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_2) (instHasSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)) (fun (_x : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)) => InfHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_2)) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Inf.{u3} β] [_inst_3 : Inf.{u2} γ] (g : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (f : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u1, u2} α γ _inst_1 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u1, u2} α γ _inst_1 _inst_3)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfHom.{u1, u2} α γ _inst_1 _inst_3) (SupHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u1, u2} α γ _inst_1 _inst_3)) (SupHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3) g f)) (InfHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (fun (_x : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) => InfHom.{u3, u2} β γ _inst_2 _inst_3) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.{u3, u2} β γ _inst_2 _inst_3)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfHom.{u3, u2} β γ _inst_2 _inst_3) (SupHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_2) (instSupOrderDual.{u2} γ _inst_3)) (InfHom.dual.{u3, u2} β γ _inst_2 _inst_3)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (fun (_x : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) => InfHom.{u1, u3} α β _inst_1 _inst_2) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.{u1, u3} α β _inst_1 _inst_2)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfHom.{u1, u3} α β _inst_1 _inst_2) (SupHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_2)) (InfHom.dual.{u1, u3} α β _inst_1 _inst_2)) f))
Case conversion may be inaccurate. Consider using '#align inf_hom.symm_dual_comp InfHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupHom βᵒᵈ γᵒᵈ) (f : SupHom αᵒᵈ βᵒᵈ) :
@@ -2205,7 +2297,7 @@ end InfHom
namespace SupBotHom
-variable [HasSup α] [Bot α] [HasSup β] [Bot β] [HasSup γ] [Bot γ]
+variable [Sup α] [Bot α] [Sup β] [Bot β] [Sup γ] [Bot γ]
#print SupBotHom.dual /-
/-- Reinterpret a finitary supremum homomorphism as a finitary infimum homomorphism between the dual
@@ -2228,9 +2320,9 @@ theorem dual_id : (SupBotHom.id α).dual = InfTopHom.id _ :=
/- warning: sup_bot_hom.dual_comp -> SupBotHom.dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) => (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) => (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6))) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) => (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4))) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : HasSup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6))) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4))) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.dual_comp SupBotHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : SupBotHom β γ) (f : SupBotHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2246,9 +2338,9 @@ theorem symm_dual_id : SupBotHom.dual.symm (InfTopHom.id _) = SupBotHom.id α :=
/- warning: sup_bot_hom.symm_dual_comp -> SupBotHom.symm_dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : HasSup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (f : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) g f)) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u2} β] [_inst_4 : Bot.{u2} β] [_inst_5 : Sup.{u3} γ] [_inst_6 : Bot.{u3} γ] (g : InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (f : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u3} γ _inst_6) g f)) (SupBotHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) -> (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasInf.{u3} γ _inst_5) (OrderDual.hasTop.{u2} β _inst_4) (OrderDual.hasTop.{u3} γ _inst_6)) (SupBotHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) -> (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasInf.{u1} α _inst_1) (OrderDual.hasInf.{u2} β _inst_3) (OrderDual.hasTop.{u1} α _inst_2) (OrderDual.hasTop.{u2} β _inst_4)) (SupBotHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : HasSup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : HasSup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (f : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasInfOrderDual.{u3} β _inst_3) (instHasInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (fun (_x : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasInfOrderDual.{u1} α _inst_1) (instHasInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : Sup.{u3} β] [_inst_4 : Bot.{u3} β] [_inst_5 : Sup.{u2} γ] [_inst_6 : Bot.{u2} γ] (g : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (f : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (InfTopHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (InfTopHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u1} α _inst_1) (OrderDual.top.{u1} α _inst_2) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u3} β _inst_4) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u2} γ _inst_6) g f)) (SupBotHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (fun (_x : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) => SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (InfTopHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instInfOrderDual.{u3} β _inst_3) (instInfOrderDual.{u2} γ _inst_5) (OrderDual.top.{u3} β _inst_4) (OrderDual.top.{u2} γ _inst_6)) (SupBotHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (fun (_x : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) => SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (InfTopHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instInfOrderDual.{u1} α _inst_1) (instInfOrderDual.{u3} β _inst_3) (OrderDual.top.{u1} α _inst_2) (OrderDual.top.{u3} β _inst_4)) (SupBotHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align sup_bot_hom.symm_dual_comp SupBotHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : InfTopHom βᵒᵈ γᵒᵈ) (f : InfTopHom αᵒᵈ βᵒᵈ) :
@@ -2260,7 +2352,7 @@ end SupBotHom
namespace InfTopHom
-variable [HasInf α] [Top α] [HasInf β] [Top β] [HasInf γ] [Top γ]
+variable [Inf α] [Top α] [Inf β] [Top β] [Inf γ] [Top γ]
#print InfTopHom.dual /-
/-- Reinterpret a finitary infimum homomorphism as a finitary supremum homomorphism between the dual
@@ -2284,9 +2376,9 @@ theorem dual_id : (InfTopHom.id α).dual = SupBotHom.id _ :=
/- warning: inf_top_hom.dual_comp -> InfTopHom.dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) => (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) -> (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) => (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) -> (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6))) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) => (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) -> (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4))) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : HasInf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (f : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (fun (_x : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) => SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 g f)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (fun (_x : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) => SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6))) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (fun (_x : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) => SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4))) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4) f))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.dual_comp InfTopHom.dual_compₓ'. -/
@[simp]
theorem dual_comp (g : InfTopHom β γ) (f : InfTopHom α β) : (g.comp f).dual = g.dual.comp f.dual :=
@@ -2302,9 +2394,9 @@ theorem symm_dual_id : InfTopHom.dual.symm (SupBotHom.id _) = InfTopHom.id α :=
/- warning: inf_top_hom.symm_dual_comp -> InfTopHom.symm_dual_comp is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : HasInf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (f : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) g f)) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u2} β] [_inst_4 : Top.{u2} β] [_inst_5 : Inf.{u3} γ] [_inst_6 : Top.{u3} γ] (g : SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (f : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)), Eq.{max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (coeFn.{max 1 (succ u1) (succ u3), max (succ u1) (succ u3)} (Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (fun (_x : Equiv.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) => (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.hasCoeToFun.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u1) (succ u3), max (succ u1) (succ u3)} (InfTopHom.{u1, u3} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u1, u3} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u2, u3} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u3} γ _inst_6) g f)) (InfTopHom.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (fun (_x : Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) => (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) -> (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.hasCoeToFun.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u2, u3} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u2, u3} (OrderDual.{u2} β) (OrderDual.{u3} γ) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasSup.{u3} γ _inst_5) (OrderDual.hasBot.{u2} β _inst_4) (OrderDual.hasBot.{u3} γ _inst_6)) (InfTopHom.dual.{u2, u3} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (fun (_x : Equiv.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) => (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) -> (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.hasCoeToFun.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (InfTopHom.{u1, u2} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} β) (OrderDual.hasSup.{u1} α _inst_1) (OrderDual.hasSup.{u2} β _inst_3) (OrderDual.hasBot.{u1} α _inst_2) (OrderDual.hasBot.{u2} β _inst_4)) (InfTopHom.dual.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : HasInf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : HasInf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : HasInf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (f : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instHasSupOrderDual.{u3} β _inst_3) (instHasSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (fun (_x : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instHasSupOrderDual.{u1} α _inst_1) (instHasSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
+ forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Inf.{u3} β] [_inst_4 : Top.{u3} β] [_inst_5 : Inf.{u2} γ] [_inst_6 : Top.{u2} γ] (g : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (f : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)), Eq.{max (succ u1) (succ u2)} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (Equiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6)) (Equiv.symm.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (InfTopHom.{u1, u2} α γ _inst_1 _inst_5 _inst_2 _inst_6) (SupBotHom.{u1, u2} (OrderDual.{u1} α) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u1, u2} α γ _inst_1 _inst_2 _inst_5 _inst_6)) (SupBotHom.comp.{u1, u3, u2} (OrderDual.{u1} α) (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u1} α _inst_1) (OrderDual.bot.{u1} α _inst_2) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u3} β _inst_4) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u2} γ _inst_6) g f)) (InfTopHom.comp.{u1, u3, u2} α β γ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 (FunLike.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3), max (succ u2) (succ u3)} (Equiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (fun (_x : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) => InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) _x) (Equiv.instFunLikeEquiv.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6)) (Equiv.symm.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (InfTopHom.{u3, u2} β γ _inst_3 _inst_5 _inst_4 _inst_6) (SupBotHom.{u3, u2} (OrderDual.{u3} β) (OrderDual.{u2} γ) (instSupOrderDual.{u3} β _inst_3) (instSupOrderDual.{u2} γ _inst_5) (OrderDual.bot.{u3} β _inst_4) (OrderDual.bot.{u2} γ _inst_6)) (InfTopHom.dual.{u3, u2} β γ _inst_3 _inst_4 _inst_5 _inst_6)) g) (FunLike.coe.{max (succ u3) (succ u1), max (succ u3) (succ u1), max (succ u3) (succ u1)} (Equiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (fun (_x : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) => InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) _x) (Equiv.instFunLikeEquiv.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4)) (Equiv.symm.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (InfTopHom.{u1, u3} α β _inst_1 _inst_3 _inst_2 _inst_4) (SupBotHom.{u1, u3} (OrderDual.{u1} α) (OrderDual.{u3} β) (instSupOrderDual.{u1} α _inst_1) (instSupOrderDual.{u3} β _inst_3) (OrderDual.bot.{u1} α _inst_2) (OrderDual.bot.{u3} β _inst_4)) (InfTopHom.dual.{u1, u3} α β _inst_1 _inst_2 _inst_3 _inst_4)) f))
Case conversion may be inaccurate. Consider using '#align inf_top_hom.symm_dual_comp InfTopHom.symm_dual_compₓ'. -/
@[simp]
theorem symm_dual_comp (g : SupBotHom βᵒᵈ γᵒᵈ) (f : SupBotHom αᵒᵈ βᵒᵈ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -87,7 +87,7 @@ structure BoundedLatticeHom (α β : Type*) [Lattice α] [Lattice β] [BoundedOr
map_bot' : toFun ⊥ = ⊥
#align bounded_lattice_hom BoundedLatticeHom
--- Porting note: todo: remove this configuration and use the default configuration.
+-- Porting note (#11215): TODO: remove this configuration and use the default configuration.
-- We keep this to be consistent with Lean 3.
initialize_simps_projections SupBotHom (+toSupHom, -toFun)
initialize_simps_projections InfTopHom (+toInfHom, -toFun)
Those lemmas have historically been very annoying to use in rw
since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.
Downstream code broken by this change can fix it by adding appropriately many _
s.
Also marks CauSeq.ext
@[ext]
.
Order.BoundedOrder
top_sup_eq
sup_top_eq
bot_sup_eq
sup_bot_eq
top_inf_eq
inf_top_eq
bot_inf_eq
inf_bot_eq
Order.Lattice
sup_idem
sup_comm
sup_assoc
sup_left_idem
sup_right_idem
inf_idem
inf_comm
inf_assoc
inf_left_idem
inf_right_idem
sup_inf_left
sup_inf_right
inf_sup_left
inf_sup_right
Order.MinMax
max_min_distrib_left
max_min_distrib_right
min_max_distrib_left
min_max_distrib_right
Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -464,8 +464,7 @@ end Sup
variable (α) [SemilatticeSup β]
/-- The constant function as a `SupHom`. -/
-def const (b : β) : SupHom α β :=
- ⟨fun _ => b, fun _ _ => sup_idem.symm⟩
+def const (b : β) : SupHom α β := ⟨fun _ ↦ b, fun _ _ ↦ (sup_idem _).symm⟩
#align sup_hom.const SupHom.const
@[simp]
@@ -649,8 +648,7 @@ end Inf
variable (α) [SemilatticeInf β]
/-- The constant function as an `InfHom`. -/
-def const (b : β) : InfHom α β :=
- ⟨fun _ => b, fun _ _ => inf_idem.symm⟩
+def const (b : β) : InfHom α β := ⟨fun _ ↦ b, fun _ _ ↦ (inf_idem _).symm⟩
#align inf_hom.const InfHom.const
@[simp]
@@ -1651,9 +1649,9 @@ def withTop' [OrderTop β] (f : SupHom α β) : SupHom (WithTop α) β where
toFun a := a.elim ⊤ f
map_sup' a b :=
match a, b with
- | ⊤, ⊤ => top_sup_eq.symm
- | ⊤, (b : α) => top_sup_eq.symm
- | (a : α), ⊤ => sup_top_eq.symm
+ | ⊤, ⊤ => (top_sup_eq _).symm
+ | ⊤, (b : α) => (top_sup_eq _).symm
+ | (a : α), ⊤ => (sup_top_eq _).symm
| (a : α), (b : α) => f.map_sup' _ _
#align sup_hom.with_top' SupHom.withTop'
@@ -1663,9 +1661,9 @@ def withBot' [OrderBot β] (f : SupHom α β) : SupBotHom (WithBot α) β where
toFun a := a.elim ⊥ f
map_sup' a b :=
match a, b with
- | ⊥, ⊥ => bot_sup_eq.symm
- | ⊥, (b : α) => bot_sup_eq.symm
- | (a : α), ⊥ => sup_bot_eq.symm
+ | ⊥, ⊥ => (bot_sup_eq _).symm
+ | ⊥, (b : α) => (bot_sup_eq _).symm
+ | (a : α), ⊥ => (sup_bot_eq _).symm
| (a : α), (b : α) => f.map_sup' _ _
map_bot' := rfl
#align sup_hom.with_bot' SupHom.withBot'
@@ -1729,9 +1727,9 @@ def withTop' [OrderTop β] (f : InfHom α β) : InfTopHom (WithTop α) β where
toFun a := a.elim ⊤ f
map_inf' a b :=
match a, b with
- | ⊤, ⊤ => top_inf_eq.symm
- | ⊤, (b : α) => top_inf_eq.symm
- | (a : α), ⊤ => inf_top_eq.symm
+ | ⊤, ⊤ => (top_inf_eq _).symm
+ | ⊤, (b : α) => (top_inf_eq _).symm
+ | (a : α), ⊤ => (inf_top_eq _).symm
| (a : α), (b : α) => f.map_inf' _ _
map_top' := rfl
#align inf_hom.with_top' InfHom.withTop'
@@ -1742,9 +1740,9 @@ def withBot' [OrderBot β] (f : InfHom α β) : InfHom (WithBot α) β where
toFun a := a.elim ⊥ f
map_inf' a b :=
match a, b with
- | ⊥, ⊥ => bot_inf_eq.symm
- | ⊥, (b : α) => bot_inf_eq.symm
- | (a : α), ⊥ => inf_bot_eq.symm
+ | ⊥, ⊥ => (bot_inf_eq _).symm
+ | ⊥, (b : α) => (bot_inf_eq _).symm
+ | (a : α), ⊥ => (inf_bot_eq _).symm
| (a : α), (b : α) => f.map_inf' _ _
#align inf_hom.with_bot' InfHom.withBot'
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -162,7 +162,7 @@ section Hom
variable [FunLike F α β]
--- porting note: changes to the typeclass inference system mean that we need to
+-- Porting note: changes to the typeclass inference system mean that we need to
-- make a lot of changes here, adding `outParams`, changing `[]`s into `{}` and
-- so on.
-- See note [lower instance priority]
@@ -1113,7 +1113,7 @@ theorem comp_apply (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) : (f.c
#align lattice_hom.comp_apply LatticeHom.comp_apply
@[simp]
--- porting note: `simp`-normal form of `coe_comp_sup_hom`
+-- Porting note: `simp`-normal form of `coe_comp_sup_hom`
theorem coe_comp_sup_hom' (f : LatticeHom β γ) (g : LatticeHom α β) :
⟨f ∘ g, map_sup (f.comp g)⟩ = (f : SupHom β γ).comp g :=
rfl
@@ -1124,7 +1124,7 @@ theorem coe_comp_sup_hom (f : LatticeHom β γ) (g : LatticeHom α β) :
#align lattice_hom.coe_comp_sup_hom LatticeHom.coe_comp_sup_hom
@[simp]
--- porting note: `simp`-normal form of `coe_comp_inf_hom`
+-- Porting note: `simp`-normal form of `coe_comp_inf_hom`
theorem coe_comp_inf_hom' (f : LatticeHom β γ) (g : LatticeHom α β) :
⟨f ∘ g, map_inf (f.comp g)⟩ = (f : InfHom β γ).comp g :=
rfl
@@ -1170,7 +1170,7 @@ namespace OrderHomClass
variable (α β) [LinearOrder α] [Lattice β] [FunLike F α β] [OrderHomClass F α β]
/-- An order homomorphism from a linear order is a lattice homomorphism. -/
--- porting note: made it an `instance` because we're no longer afraid of loops
+-- Porting note: made it an `instance` because we're no longer afraid of loops
instance (priority := 100) toLatticeHomClass : LatticeHomClass F α β :=
{ ‹OrderHomClass F α β› with
map_sup := fun f a b => by
@@ -1301,7 +1301,7 @@ theorem comp_apply (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) (
#align bounded_lattice_hom.comp_apply BoundedLatticeHom.comp_apply
@[simp]
--- porting note: `simp`-normal form of `coe_comp_lattice_hom`
+-- Porting note: `simp`-normal form of `coe_comp_lattice_hom`
theorem coe_comp_lattice_hom' (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
(⟨(f : SupHom β γ).comp g, map_inf (f.comp g)⟩ : LatticeHom α γ) =
(f : LatticeHom β γ).comp g :=
@@ -1313,7 +1313,7 @@ theorem coe_comp_lattice_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHo
#align bounded_lattice_hom.coe_comp_lattice_hom BoundedLatticeHom.coe_comp_lattice_hom
@[simp]
--- porting note: `simp`-normal form of `coe_comp_sup_hom`
+-- Porting note: `simp`-normal form of `coe_comp_sup_hom`
theorem coe_comp_sup_hom' (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
⟨f ∘ g, map_sup (f.comp g)⟩ = (f : SupHom β γ).comp g :=
rfl
@@ -1324,7 +1324,7 @@ theorem coe_comp_sup_hom (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α
#align bounded_lattice_hom.coe_comp_sup_hom BoundedLatticeHom.coe_comp_sup_hom
@[simp]
--- porting note: `simp`-normal form of `coe_comp_inf_hom`
+-- Porting note: `simp`-normal form of `coe_comp_inf_hom`
theorem coe_comp_inf_hom' (f : BoundedLatticeHom β γ) (g : BoundedLatticeHom α β) :
⟨f ∘ g, map_inf (f.comp g)⟩ = (f : InfHom β γ).comp g :=
rfl
@@ -1600,7 +1600,7 @@ variable [SemilatticeSup α] [SemilatticeSup β] [SemilatticeSup γ]
/-- Adjoins a `⊤` to the domain and codomain of a `SupHom`. -/
@[simps]
protected def withTop (f : SupHom α β) : SupHom (WithTop α) (WithTop β) where
- -- porting note: this was `Option.map f`
+ -- Porting note: this was `Option.map f`
toFun := WithTop.map f
map_sup' a b :=
match a, b with
@@ -1617,7 +1617,7 @@ theorem withTop_id : (SupHom.id α).withTop = SupHom.id _ := DFunLike.coe_inject
@[simp]
theorem withTop_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
--- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+-- Porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align sup_hom.with_top_comp SupHom.withTop_comp
@@ -1641,7 +1641,7 @@ theorem withBot_id : (SupHom.id α).withBot = SupBotHom.id _ := DFunLike.coe_inj
@[simp]
theorem withBot_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
--- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+-- Porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align sup_hom.with_bot_comp SupHom.withBot_comp
@@ -1696,7 +1696,7 @@ theorem withTop_id : (InfHom.id α).withTop = InfTopHom.id _ := DFunLike.coe_inj
@[simp]
theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
--- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+-- Porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align inf_hom.with_top_comp InfHom.withTop_comp
@@ -1719,7 +1719,7 @@ theorem withBot_id : (InfHom.id α).withBot = InfHom.id _ := DFunLike.coe_inject
@[simp]
theorem withBot_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
--- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+-- Porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align inf_hom.with_bot_comp InfHom.withBot_comp
@@ -1760,7 +1760,7 @@ protected def withTop (f : LatticeHom α β) : LatticeHom (WithTop α) (WithTop
{ f.toInfHom.withTop with toSupHom := f.toSupHom.withTop }
#align lattice_hom.with_top LatticeHom.withTop
--- porting note: `simps` doesn't generate those
+-- Porting note: `simps` doesn't generate those
@[simp, norm_cast]
lemma coe_withTop (f : LatticeHom α β) : ⇑f.withTop = WithTop.map f := rfl
@@ -1774,7 +1774,7 @@ theorem withTop_id : (LatticeHom.id α).withTop = LatticeHom.id _ :=
@[simp]
theorem withTop_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
--- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+-- Porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align lattice_hom.with_top_comp LatticeHom.withTop_comp
@@ -1784,7 +1784,7 @@ protected def withBot (f : LatticeHom α β) : LatticeHom (WithBot α) (WithBot
{ f.toInfHom.withBot with toSupHom := f.toSupHom.withBot }
#align lattice_hom.with_bot LatticeHom.withBot
--- porting note: `simps` doesn't generate those
+-- Porting note: `simps` doesn't generate those
@[simp, norm_cast]
lemma coe_withBot (f : LatticeHom α β) : ⇑f.withBot = Option.map f := rfl
@@ -1798,7 +1798,7 @@ theorem withBot_id : (LatticeHom.id α).withBot = LatticeHom.id _ :=
@[simp]
theorem withBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
--- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+-- Porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align lattice_hom.with_bot_comp LatticeHom.withBot_comp
@@ -1809,7 +1809,7 @@ def withTopWithBot (f : LatticeHom α β) :
⟨f.withBot.withTop, rfl, rfl⟩
#align lattice_hom.with_top_with_bot LatticeHom.withTopWithBot
--- porting note: `simps` doesn't generate those
+-- Porting note: `simps` doesn't generate those
@[simp, norm_cast]
lemma coe_withTopWithBot (f : LatticeHom α β) : ⇑f.withTopWithBot = Option.map (Option.map f) := rfl
The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun
instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike
is EquivLike
, since that has a custom coe_injective'
field that is easier to implement. All other classes should take FunLike
or EquivLike
as a parameter.
Previously, morphism classes would be Type
-valued and extend FunLike
:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
extends FunLike F A B :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
After this PR, they should be Prop
-valued and take FunLike
as a parameter:
/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
[FunLike F A B] : Prop :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))
(Note that A B
stay marked as outParam
even though they are not purely required to be so due to the FunLike
parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam
is slightly faster.)
Similarly, MyEquivClass
should take EquivLike
as a parameter.
As a result, every mention of [MyHomClass F A B]
should become [FunLike F A B] [MyHomClass F A B]
.
While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul
is more expensive. This is due to suboptimal processing of arguments. For example:
variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)
theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y
example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _
Before this PR, applying map_mul f
gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Since M
and N
are out_param
s, [MulHomClass F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found.
After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]
. Now [FunLike F ?M ?N]
is synthesized first, supplies values for ?M
and ?N
and then the Mul M
and Mul N
instances can be found, before trying MulHomClass F M N
which fails. Since the Mul
hierarchy is very big, this can be slow to fail, especially when there is no such Mul
instance.
A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul
to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N]
because MulHomClass
fails or succeeds much faster than the others.
As a consequence, the simpNF
linter is much slower since by design it tries and fails to apply many map_
lemmas. The same issue occurs a few times in existing calls to simp [map_mul]
, where map_mul
is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.
simp
not firing sometimesThis affects map_smulₛₗ
and related definitions. For simp
lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw
can find every argument to map_smulₛₗ
successfully but simp
can't: leanprover/lean4#3701.
Especially in the category theory library, we might sometimes have a type A
which is also accessible as a synonym (Bundled A hA).1
. Instance synthesis doesn't always work if we have f : A →* B
but x * y : (Bundled A hA).1
or vice versa. This seems to be mostly fixed by keeping A B
as outParam
s in MulHomClass F A B
. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1
instead of using the syntax in the discrimination tree.)
The timeouts can be worked around for now by specifying which map_mul
we mean, either as map_mul f
for some explicit f
, or as e.g. MonoidHomClass.map_mul
.
map_smulₛₗ
not firing as simp
lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulₛₗ
a simp
lemma instead of the generic map_smulₛₗ
. Writing simp [map_smulₛₗ _]
also works.
Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
@@ -99,8 +99,7 @@ section
/-- `SupHomClass F α β` states that `F` is a type of `⊔`-preserving morphisms.
You should extend this class when you extend `SupHom`. -/
-class SupHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] extends
- DFunLike F α fun _ => β where
+class SupHomClass (F α β : Type*) [Sup α] [Sup β] [FunLike F α β] : Prop where
/-- A `SupHomClass` morphism preserves suprema. -/
map_sup (f : F) (a b : α) : f (a ⊔ b) = f a ⊔ f b
#align sup_hom_class SupHomClass
@@ -108,8 +107,7 @@ class SupHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] exte
/-- `InfHomClass F α β` states that `F` is a type of `⊓`-preserving morphisms.
You should extend this class when you extend `InfHom`. -/
-class InfHomClass (F : Type*) (α β : outParam <| Type*) [Inf α] [Inf β] extends
- DFunLike F α fun _ => β where
+class InfHomClass (F α β : Type*) [Inf α] [Inf β] [FunLike F α β] : Prop where
/-- An `InfHomClass` morphism preserves infima. -/
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
#align inf_hom_class InfHomClass
@@ -117,8 +115,8 @@ class InfHomClass (F : Type*) (α β : outParam <| Type*) [Inf α] [Inf β] exte
/-- `SupBotHomClass F α β` states that `F` is a type of finitary supremum-preserving morphisms.
You should extend this class when you extend `SupBotHom`. -/
-class SupBotHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] [Bot α]
- [Bot β] extends SupHomClass F α β where
+class SupBotHomClass (F α β : Type*) [Sup α] [Sup β] [Bot α] [Bot β] [FunLike F α β]
+ extends SupHomClass F α β : Prop where
/-- A `SupBotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
#align sup_bot_hom_class SupBotHomClass
@@ -126,8 +124,8 @@ class SupBotHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] [
/-- `InfTopHomClass F α β` states that `F` is a type of finitary infimum-preserving morphisms.
You should extend this class when you extend `SupBotHom`. -/
-class InfTopHomClass (F : Type*) (α β : outParam <| Type*) [Inf α] [Inf β] [Top α]
- [Top β] extends InfHomClass F α β where
+class InfTopHomClass (F α β : Type*) [Inf α] [Inf β] [Top α] [Top β] [FunLike F α β]
+ extends InfHomClass F α β : Prop where
/-- An `InfTopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
#align inf_top_hom_class InfTopHomClass
@@ -135,8 +133,8 @@ class InfTopHomClass (F : Type*) (α β : outParam <| Type*) [Inf α] [Inf β] [
/-- `LatticeHomClass F α β` states that `F` is a type of lattice morphisms.
You should extend this class when you extend `LatticeHom`. -/
-class LatticeHomClass (F : Type*) (α β : outParam <| Type*) [Lattice α] [Lattice β] extends
- SupHomClass F α β where
+class LatticeHomClass (F α β : Type*) [Lattice α] [Lattice β] [FunLike F α β]
+ extends SupHomClass F α β : Prop where
/-- A `LatticeHomClass` morphism preserves infima. -/
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
#align lattice_hom_class LatticeHomClass
@@ -144,8 +142,8 @@ class LatticeHomClass (F : Type*) (α β : outParam <| Type*) [Lattice α] [Latt
/-- `BoundedLatticeHomClass F α β` states that `F` is a type of bounded lattice morphisms.
You should extend this class when you extend `BoundedLatticeHom`. -/
-class BoundedLatticeHomClass (F : Type*) (α β : outParam <| Type*) [Lattice α] [Lattice β]
- [BoundedOrder α] [BoundedOrder β] extends LatticeHomClass F α β where
+class BoundedLatticeHomClass (F α β : Type*) [Lattice α] [Lattice β] [BoundedOrder α]
+ [BoundedOrder β] [FunLike F α β] extends LatticeHomClass F α β : Prop where
/-- A `BoundedLatticeHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
/-- A `BoundedLatticeHomClass` morphism preserves the bottom element. -/
@@ -160,6 +158,10 @@ export InfHomClass (map_inf)
attribute [simp] map_top map_bot map_sup map_inf
+section Hom
+
+variable [FunLike F α β]
+
-- porting note: changes to the typeclass inference system mean that we need to
-- make a lot of changes here, adding `outParams`, changing `[]`s into `{}` and
-- so on.
@@ -216,6 +218,12 @@ instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattic
{ show OrderHomClass F α β from inferInstance, ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
+end Hom
+
+section Equiv
+
+variable [EquivLike F α β]
+
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
[OrderIsoClass F α β] : SupHomClass F α β :=
@@ -258,6 +266,12 @@ instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [
{ OrderIsoClass.toLatticeHomClass, OrderIsoClass.toBoundedOrderHomClass with }
#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClass
+end Equiv
+
+section OrderEmbedding
+
+variable [FunLike F α β]
+
/-- We can regard an injective map preserving binary infima as an order embedding. -/
@[simps! apply]
def orderEmbeddingOfInjective [SemilatticeInf α] [SemilatticeInf β] (f : F) [InfHomClass F α β]
@@ -266,10 +280,13 @@ def orderEmbeddingOfInjective [SemilatticeInf α] [SemilatticeInf β] (f : F) [I
refine ⟨fun h ↦ ?_, fun h ↦ OrderHomClass.mono f h⟩
rwa [← inf_eq_left, ← hf.eq_iff, map_inf, inf_eq_left])
+end OrderEmbedding
+
section BoundedLattice
-variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [BoundedLatticeHomClass F α β]
- (f : F) {a b : α}
+variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β]
+variable [FunLike F α β] [BoundedLatticeHomClass F α β]
+variable (f : F) {a b : α}
theorem Disjoint.map (h : Disjoint a b) : Disjoint (f a) (f b) := by
rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot]
@@ -287,7 +304,8 @@ end BoundedLattice
section BooleanAlgebra
-variable [BooleanAlgebra α] [BooleanAlgebra β] [BoundedLatticeHomClass F α β] (f : F)
+variable [BooleanAlgebra α] [BooleanAlgebra β] [FunLike F α β] [BoundedLatticeHomClass F α β]
+variable (f : F)
/-- Special case of `map_compl` for boolean algebras. -/
theorem map_compl' (a : α) : f aᶜ = (f a)ᶜ :=
@@ -307,6 +325,8 @@ theorem map_symmDiff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
end BooleanAlgebra
+variable [FunLike F α β]
+
instance [Sup α] [Sup β] [SupHomClass F α β] : CoeTC F (SupHom α β) :=
⟨fun f => ⟨f, map_sup f⟩⟩
@@ -343,16 +363,12 @@ section Sup
variable [Sup β] [Sup γ] [Sup δ]
-instance : SupHomClass (SupHom α β) α β where
+instance : FunLike (SupHom α β) α β where
coe := SupHom.toFun
coe_injective' f g h := by cases f; cases g; congr
- map_sup := SupHom.map_sup'
-/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
-directly. -/
--- porting note: replaced `CoeFun` with `FunLike` so that we use `DFunLike.coe` instead of `toFun`
-instance : FunLike (SupHom α β) α β :=
- SupHomClass.toDFunLike
+instance : SupHomClass (SupHom α β) α β where
+ map_sup := SupHom.map_sup'
@[simp] lemma toFun_eq_coe (f : SupHom α β) : f.toFun = f := rfl
#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coe
@@ -531,15 +547,12 @@ section Inf
variable [Inf β] [Inf γ] [Inf δ]
-instance : InfHomClass (InfHom α β) α β where
+instance : FunLike (InfHom α β) α β where
coe := InfHom.toFun
coe_injective' f g h := by cases f; cases g; congr
- map_inf := InfHom.map_inf'
-/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
-directly. -/
-instance : FunLike (InfHom α β) α β :=
- InfHomClass.toDFunLike
+instance : InfHomClass (InfHom α β) α β where
+ map_inf := InfHom.map_inf'
@[simp] lemma toFun_eq_coe (f : InfHom α β) : f.toFun = (f : α → β) := rfl
#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coe
@@ -723,20 +736,19 @@ def toBotHom (f : SupBotHom α β) : BotHom α β :=
{ f with }
#align sup_bot_hom.to_bot_hom SupBotHom.toBotHom
-instance : SupBotHomClass (SupBotHom α β) α β
+instance : FunLike (SupBotHom α β) α β
where
coe f := f.toFun
coe_injective' f g h := by
obtain ⟨⟨_, _⟩, _⟩ := f
obtain ⟨⟨_, _⟩, _⟩ := g
congr
+
+instance : SupBotHomClass (SupBotHom α β) α β
+ where
map_sup f := f.map_sup'
map_bot f := f.map_bot'
--- porting note: replaced `CoeFun` instance with `DFunLike` instance
-instance : FunLike (SupBotHom α β) α β :=
- SupHomClass.toDFunLike
-
lemma toFun_eq_coe (f : SupBotHom α β) : f.toFun = f := rfl
#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coe
@@ -878,21 +890,17 @@ def toTopHom (f : InfTopHom α β) : TopHom α β :=
{ f with }
#align inf_top_hom.to_top_hom InfTopHom.toTopHom
-instance : InfTopHomClass (InfTopHom α β) α β
- where
+instance : FunLike (InfTopHom α β) α β where
coe f := f.toFun
coe_injective' f g h := by
obtain ⟨⟨_, _⟩, _⟩ := f
obtain ⟨⟨_, _⟩, _⟩ := g
congr
+
+instance : InfTopHomClass (InfTopHom α β) α β where
map_inf f := f.map_inf'
map_top f := f.map_top'
-/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
-directly. -/
-instance : FunLike (InfTopHom α β) α β :=
- InfHomClass.toDFunLike
-
theorem toFun_eq_coe (f : InfTopHom α β) : f.toFun = f := rfl
#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coe
@@ -1030,18 +1038,14 @@ def toInfHom (f : LatticeHom α β) : InfHom α β :=
{ f with }
#align lattice_hom.to_inf_hom LatticeHom.toInfHom
-instance : LatticeHomClass (LatticeHom α β) α β
- where
+instance : FunLike (LatticeHom α β) α β where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f; obtain ⟨⟨_, _⟩, _⟩ := g; congr
+
+instance : LatticeHomClass (LatticeHom α β) α β where
map_sup f := f.map_sup'
map_inf f := f.map_inf'
-/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
-directly. -/
-instance : FunLike (LatticeHom α β) α β :=
- SupHomClass.toDFunLike
-
lemma toFun_eq_coe (f : LatticeHom α β) : f.toFun = f := rfl
#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coe
@@ -1163,7 +1167,7 @@ end LatticeHom
namespace OrderHomClass
-variable (α β) [LinearOrder α] [Lattice β] [OrderHomClass F α β]
+variable (α β) [LinearOrder α] [Lattice β] [FunLike F α β] [OrderHomClass F α β]
/-- An order homomorphism from a linear order is a lattice homomorphism. -/
-- porting note: made it an `instance` because we're no longer afraid of loops
@@ -1218,10 +1222,11 @@ def toBoundedOrderHom (f : BoundedLatticeHom α β) : BoundedOrderHom α β :=
{ f, (f.toLatticeHom : α →o β) with }
#align bounded_lattice_hom.to_bounded_order_hom BoundedLatticeHom.toBoundedOrderHom
-instance instBoundedLatticeHomClass : BoundedLatticeHomClass (BoundedLatticeHom α β) α β
- where
+instance instFunLike : FunLike (BoundedLatticeHom α β) α β where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f; obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g; congr
+
+instance instBoundedLatticeHomClass : BoundedLatticeHomClass (BoundedLatticeHom α β) α β where
map_sup f := f.map_sup'
map_inf f := f.map_inf'
map_top f := f.map_top'
@@ -258,6 +258,14 @@ instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [
{ OrderIsoClass.toLatticeHomClass, OrderIsoClass.toBoundedOrderHomClass with }
#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClass
+/-- We can regard an injective map preserving binary infima as an order embedding. -/
+@[simps! apply]
+def orderEmbeddingOfInjective [SemilatticeInf α] [SemilatticeInf β] (f : F) [InfHomClass F α β]
+ (hf : Injective f) : α ↪o β :=
+ OrderEmbedding.ofMapLEIff f (fun x y ↦ by
+ refine ⟨fun h ↦ ?_, fun h ↦ OrderHomClass.mono f h⟩
+ rwa [← inf_eq_left, ← hf.eq_iff, map_inf, inf_eq_left])
+
section BoundedLattice
variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [BoundedLatticeHomClass F α β]
Those notations are not scoped whereas the file is very low in the import hierarchy.
@@ -291,6 +291,7 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
rw [sdiff_eq, sdiff_eq, map_inf, map_compl']
#align map_sdiff' map_sdiff'
+open scoped symmDiff in
/-- Special case of `map_symmDiff` for boolean algebras. -/
theorem map_symmDiff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff']
FunLike
(#9833)
This follows up from #9785, which renamed FunLike
to DFunLike
, by introducing a new abbreviation FunLike F α β := DFunLike F α (fun _ => β)
, to make the non-dependent use of FunLike
easier.
I searched for the pattern DFunLike.*fun
and DFunLike.*λ
in all files to replace expressions of the form DFunLike F α (fun _ => β)
with FunLike F α β
. I did this everywhere except for extends
clauses for two reasons: it would conflict with #8386, and more importantly extends
must directly refer to a structure with no unfolding of def
s or abbrev
s.
@@ -341,8 +341,8 @@ instance : SupHomClass (SupHom α β) α β where
/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
--- porting note: replaced `CoeFun` with `DFunLike` so that we use `DFunLike.coe` instead of `toFun`
-instance : DFunLike (SupHom α β) α fun _ => β :=
+-- porting note: replaced `CoeFun` with `FunLike` so that we use `DFunLike.coe` instead of `toFun`
+instance : FunLike (SupHom α β) α β :=
SupHomClass.toDFunLike
@[simp] lemma toFun_eq_coe (f : SupHom α β) : f.toFun = f := rfl
@@ -529,7 +529,7 @@ instance : InfHomClass (InfHom α β) α β where
/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
-instance : DFunLike (InfHom α β) α fun _ => β :=
+instance : FunLike (InfHom α β) α β :=
InfHomClass.toDFunLike
@[simp] lemma toFun_eq_coe (f : InfHom α β) : f.toFun = (f : α → β) := rfl
@@ -725,7 +725,7 @@ instance : SupBotHomClass (SupBotHom α β) α β
map_bot f := f.map_bot'
-- porting note: replaced `CoeFun` instance with `DFunLike` instance
-instance : DFunLike (SupBotHom α β) α fun _ => β :=
+instance : FunLike (SupBotHom α β) α β :=
SupHomClass.toDFunLike
lemma toFun_eq_coe (f : SupBotHom α β) : f.toFun = f := rfl
@@ -881,7 +881,7 @@ instance : InfTopHomClass (InfTopHom α β) α β
/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
-instance : DFunLike (InfTopHom α β) α fun _ => β :=
+instance : FunLike (InfTopHom α β) α β :=
InfHomClass.toDFunLike
theorem toFun_eq_coe (f : InfTopHom α β) : f.toFun = f := rfl
@@ -1030,7 +1030,7 @@ instance : LatticeHomClass (LatticeHom α β) α β
/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
-instance : DFunLike (LatticeHom α β) α fun _ => β :=
+instance : FunLike (LatticeHom α β) α β :=
SupHomClass.toDFunLike
lemma toFun_eq_coe (f : LatticeHom α β) : f.toFun = f := rfl
FunLike
to DFunLike
(#9785)
This prepares for the introduction of a non-dependent synonym of FunLike, which helps a lot with keeping #8386 readable.
This is entirely search-and-replace in 680197f combined with manual fixes in 4145626, e900597 and b8428f8. The commands that generated this change:
sed -i 's/\bFunLike\b/DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoFunLike\b/toDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/import Mathlib.Data.DFunLike/import Mathlib.Data.FunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bHom_FunLike\b/Hom_DFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\binstFunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\bfunLike\b/instDFunLike/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
sed -i 's/\btoo many metavariables to apply `fun_like.has_coe_to_fun`/too many metavariables to apply `DFunLike.hasCoeToFun`/g' {Archive,Counterexamples,Mathlib,test}/**/*.lean
Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
@@ -13,7 +13,7 @@ import Mathlib.Order.SymmDiff
This file defines (bounded) lattice homomorphisms.
-We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
+We use the `DFunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
@@ -100,7 +100,7 @@ section
You should extend this class when you extend `SupHom`. -/
class SupHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] extends
- FunLike F α fun _ => β where
+ DFunLike F α fun _ => β where
/-- A `SupHomClass` morphism preserves suprema. -/
map_sup (f : F) (a b : α) : f (a ⊔ b) = f a ⊔ f b
#align sup_hom_class SupHomClass
@@ -109,7 +109,7 @@ class SupHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] exte
You should extend this class when you extend `InfHom`. -/
class InfHomClass (F : Type*) (α β : outParam <| Type*) [Inf α] [Inf β] extends
- FunLike F α fun _ => β where
+ DFunLike F α fun _ => β where
/-- An `InfHomClass` morphism preserves infima. -/
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
#align inf_hom_class InfHomClass
@@ -339,11 +339,11 @@ instance : SupHomClass (SupHom α β) α β where
coe_injective' f g h := by cases f; cases g; congr
map_sup := SupHom.map_sup'
-/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
+/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
--- porting note: replaced `CoeFun` with `FunLike` so that we use `FunLike.coe` instead of `toFun`
-instance : FunLike (SupHom α β) α fun _ => β :=
- SupHomClass.toFunLike
+-- porting note: replaced `CoeFun` with `DFunLike` so that we use `DFunLike.coe` instead of `toFun`
+instance : DFunLike (SupHom α β) α fun _ => β :=
+ SupHomClass.toDFunLike
@[simp] lemma toFun_eq_coe (f : SupHom α β) : f.toFun = f := rfl
#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coe
@@ -352,7 +352,7 @@ instance : FunLike (SupHom α β) α fun _ => β :=
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align sup_hom.ext SupHom.ext
/-- Copy of a `SupHom` with a new `toFun` equal to the old one. Useful to fix definitional
@@ -368,7 +368,7 @@ theorem coe_copy (f : SupHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
#align sup_hom.coe_copy SupHom.coe_copy
theorem copy_eq (f : SupHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align sup_hom.copy_eq SupHom.copy_eq
variable (α)
@@ -424,7 +424,7 @@ theorem comp_assoc (f : SupHom γ δ) (g : SupHom β γ) (h : SupHom α β) :
@[simp]
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => SupHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
+ ⟨fun h => SupHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align sup_hom.cancel_right SupHom.cancel_right
@[simp]
@@ -462,7 +462,7 @@ instance : Sup (SupHom α β) :=
exact sup_sup_sup_comm _ _ _ _⟩⟩
instance : SemilatticeSup (SupHom α β) :=
- (FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
+ (DFunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
instance [Bot β] : Bot (SupHom α β) :=
⟨SupHom.const α ⊥⟩
@@ -480,7 +480,7 @@ instance [BoundedOrder β] : BoundedOrder (SupHom α β) :=
BoundedOrder.lift ((↑) : _ → α → β) (fun _ _ => id) rfl rfl
@[simp]
-theorem coe_sup (f g : SupHom α β) : FunLike.coe (f ⊔ g) = f ⊔ g :=
+theorem coe_sup (f g : SupHom α β) : DFunLike.coe (f ⊔ g) = f ⊔ g :=
rfl
#align sup_hom.coe_sup SupHom.coe_sup
@@ -527,10 +527,10 @@ instance : InfHomClass (InfHom α β) α β where
coe_injective' f g h := by cases f; cases g; congr
map_inf := InfHom.map_inf'
-/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
+/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
-instance : FunLike (InfHom α β) α fun _ => β :=
- InfHomClass.toFunLike
+instance : DFunLike (InfHom α β) α fun _ => β :=
+ InfHomClass.toDFunLike
@[simp] lemma toFun_eq_coe (f : InfHom α β) : f.toFun = (f : α → β) := rfl
#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coe
@@ -539,7 +539,7 @@ instance : FunLike (InfHom α β) α fun _ => β :=
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align inf_hom.ext InfHom.ext
/-- Copy of an `InfHom` with a new `toFun` equal to the old one. Useful to fix definitional
@@ -556,7 +556,7 @@ theorem coe_copy (f : InfHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f
#align inf_hom.coe_copy InfHom.coe_copy
theorem copy_eq (f : InfHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align inf_hom.copy_eq InfHom.copy_eq
variable (α)
@@ -612,7 +612,7 @@ theorem comp_assoc (f : InfHom γ δ) (g : InfHom β γ) (h : InfHom α β) :
@[simp]
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => InfHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
+ ⟨fun h => InfHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align inf_hom.cancel_right InfHom.cancel_right
@[simp]
@@ -650,7 +650,7 @@ instance : Inf (InfHom α β) :=
exact inf_inf_inf_comm _ _ _ _⟩⟩
instance : SemilatticeInf (InfHom α β) :=
- (FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
+ (DFunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
instance [Bot β] : Bot (InfHom α β) :=
⟨InfHom.const α ⊥⟩
@@ -668,7 +668,7 @@ instance [BoundedOrder β] : BoundedOrder (InfHom α β) :=
BoundedOrder.lift ((↑) : _ → α → β) (fun _ _ => id) rfl rfl
@[simp]
-theorem coe_inf (f g : InfHom α β) : FunLike.coe (f ⊓ g) = f ⊓ g :=
+theorem coe_inf (f g : InfHom α β) : DFunLike.coe (f ⊓ g) = f ⊓ g :=
rfl
#align inf_hom.coe_inf InfHom.coe_inf
@@ -724,9 +724,9 @@ instance : SupBotHomClass (SupBotHom α β) α β
map_sup f := f.map_sup'
map_bot f := f.map_bot'
--- porting note: replaced `CoeFun` instance with `FunLike` instance
-instance : FunLike (SupBotHom α β) α fun _ => β :=
- SupHomClass.toFunLike
+-- porting note: replaced `CoeFun` instance with `DFunLike` instance
+instance : DFunLike (SupBotHom α β) α fun _ => β :=
+ SupHomClass.toDFunLike
lemma toFun_eq_coe (f : SupBotHom α β) : f.toFun = f := rfl
#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coe
@@ -737,7 +737,7 @@ lemma toFun_eq_coe (f : SupBotHom α β) : f.toFun = f := rfl
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align sup_bot_hom.ext SupBotHom.ext
/-- Copy of a `SupBotHom` with a new `toFun` equal to the old one. Useful to fix definitional
@@ -752,7 +752,7 @@ theorem coe_copy (f : SupBotHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
#align sup_bot_hom.coe_copy SupBotHom.coe_copy
theorem copy_eq (f : SupBotHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align sup_bot_hom.copy_eq SupBotHom.copy_eq
variable (α)
@@ -808,7 +808,7 @@ theorem comp_assoc (f : SupBotHom γ δ) (g : SupBotHom β γ) (h : SupBotHom α
@[simp]
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
+ ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align sup_bot_hom.cancel_right SupBotHom.cancel_right
@[simp]
@@ -825,14 +825,14 @@ instance : Sup (SupBotHom α β) :=
⟨fun f g => { f.toBotHom ⊔ g.toBotHom with toSupHom := f.toSupHom ⊔ g.toSupHom }⟩
instance : SemilatticeSup (SupBotHom α β) :=
- (FunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
+ (DFunLike.coe_injective.semilatticeSup _) fun _ _ => rfl
instance : OrderBot (SupBotHom α β) where
bot := ⟨⊥, rfl⟩
bot_le _ _ := bot_le
@[simp]
-theorem coe_sup (f g : SupBotHom α β) : FunLike.coe (f ⊔ g) = f ⊔ g :=
+theorem coe_sup (f g : SupBotHom α β) : DFunLike.coe (f ⊔ g) = f ⊔ g :=
rfl
#align sup_bot_hom.coe_sup SupBotHom.coe_sup
@@ -879,10 +879,10 @@ instance : InfTopHomClass (InfTopHom α β) α β
map_inf f := f.map_inf'
map_top f := f.map_top'
-/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
+/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
-instance : FunLike (InfTopHom α β) α fun _ => β :=
- InfHomClass.toFunLike
+instance : DFunLike (InfTopHom α β) α fun _ => β :=
+ InfHomClass.toDFunLike
theorem toFun_eq_coe (f : InfTopHom α β) : f.toFun = f := rfl
#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coe
@@ -893,7 +893,7 @@ theorem toFun_eq_coe (f : InfTopHom α β) : f.toFun = f := rfl
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align inf_top_hom.ext InfTopHom.ext
/-- Copy of an `InfTopHom` with a new `toFun` equal to the old one. Useful to fix definitional
@@ -908,7 +908,7 @@ theorem coe_copy (f : InfTopHom α β) (f' : α → β) (h : f' = f) : ⇑(f.cop
#align inf_top_hom.coe_copy InfTopHom.coe_copy
theorem copy_eq (f : InfTopHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align inf_top_hom.copy_eq InfTopHom.copy_eq
variable (α)
@@ -964,7 +964,7 @@ theorem comp_assoc (f : InfTopHom γ δ) (g : InfTopHom β γ) (h : InfTopHom α
@[simp]
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
+ ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align inf_top_hom.cancel_right InfTopHom.cancel_right
@[simp]
@@ -981,14 +981,14 @@ instance : Inf (InfTopHom α β) :=
⟨fun f g => { f.toTopHom ⊓ g.toTopHom with toInfHom := f.toInfHom ⊓ g.toInfHom }⟩
instance : SemilatticeInf (InfTopHom α β) :=
- (FunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
+ (DFunLike.coe_injective.semilatticeInf _) fun _ _ => rfl
instance : OrderTop (InfTopHom α β) where
top := ⟨⊤, rfl⟩
le_top _ _ := le_top
@[simp]
-theorem coe_inf (f g : InfTopHom α β) : FunLike.coe (f ⊓ g) = f ⊓ g :=
+theorem coe_inf (f g : InfTopHom α β) : DFunLike.coe (f ⊓ g) = f ⊓ g :=
rfl
#align inf_top_hom.coe_inf InfTopHom.coe_inf
@@ -1028,10 +1028,10 @@ instance : LatticeHomClass (LatticeHom α β) α β
map_sup f := f.map_sup'
map_inf f := f.map_inf'
-/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
+/-- Helper instance for when there's too many metavariables to apply `DFunLike.hasCoeToFun`
directly. -/
-instance : FunLike (LatticeHom α β) α fun _ => β :=
- SupHomClass.toFunLike
+instance : DFunLike (LatticeHom α β) α fun _ => β :=
+ SupHomClass.toDFunLike
lemma toFun_eq_coe (f : LatticeHom α β) : f.toFun = f := rfl
#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coe
@@ -1042,7 +1042,7 @@ lemma toFun_eq_coe (f : LatticeHom α β) : f.toFun = f := rfl
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align lattice_hom.ext LatticeHom.ext
/-- Copy of a `LatticeHom` with a new `toFun` equal to the old one. Useful to fix definitional
@@ -1057,7 +1057,7 @@ theorem coe_copy (f : LatticeHom α β) (f' : α → β) (h : f' = f) : ⇑(f.co
#align lattice_hom.coe_copy LatticeHom.coe_copy
theorem copy_eq (f : LatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align lattice_hom.copy_eq LatticeHom.copy_eq
variable (α)
@@ -1140,7 +1140,7 @@ theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
@[simp]
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => LatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
+ ⟨fun h => LatticeHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align lattice_hom.cancel_right LatticeHom.cancel_right
@[simp]
@@ -1229,7 +1229,7 @@ instance instBoundedLatticeHomClass : BoundedLatticeHomClass (BoundedLatticeHom
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
- FunLike.ext f g h
+ DFunLike.ext f g h
#align bounded_lattice_hom.ext BoundedLatticeHom.ext
/-- Copy of a `BoundedLatticeHom` with a new `toFun` equal to the old one. Useful to fix
@@ -1244,7 +1244,7 @@ theorem coe_copy (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) :
#align bounded_lattice_hom.coe_copy BoundedLatticeHom.coe_copy
theorem copy_eq (f : BoundedLatticeHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f :=
- FunLike.ext' h
+ DFunLike.ext' h
#align bounded_lattice_hom.copy_eq BoundedLatticeHom.copy_eq
variable (α)
@@ -1335,7 +1335,7 @@ theorem comp_assoc (f : BoundedLatticeHom γ δ) (g : BoundedLatticeHom β γ)
@[simp]
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
- ⟨fun h => BoundedLatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h,
+ ⟨fun h => BoundedLatticeHom.ext <| hf.forall.2 <| DFunLike.ext_iff.1 h,
fun h => congr_arg₂ _ h rfl⟩
#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_right
@@ -1597,14 +1597,14 @@ protected def withTop (f : SupHom α β) : SupHom (WithTop α) (WithTop β) wher
#align sup_hom.with_top SupHom.withTop
@[simp]
-theorem withTop_id : (SupHom.id α).withTop = SupHom.id _ := FunLike.coe_injective Option.map_id
+theorem withTop_id : (SupHom.id α).withTop = SupHom.id _ := DFunLike.coe_injective Option.map_id
#align sup_hom.with_top_id SupHom.withTop_id
@[simp]
theorem withTop_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
--- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
+-- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+ DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align sup_hom.with_top_comp SupHom.withTop_comp
/-- Adjoins a `⊥` to the domain and codomain of a `SupHom`. -/
@@ -1621,14 +1621,14 @@ protected def withBot (f : SupHom α β) : SupBotHom (WithBot α) (WithBot β) w
#align sup_hom.with_bot SupHom.withBot
@[simp]
-theorem withBot_id : (SupHom.id α).withBot = SupBotHom.id _ := FunLike.coe_injective Option.map_id
+theorem withBot_id : (SupHom.id α).withBot = SupBotHom.id _ := DFunLike.coe_injective Option.map_id
#align sup_hom.with_bot_id SupHom.withBot_id
@[simp]
theorem withBot_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
--- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
+-- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+ DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align sup_hom.with_bot_comp SupHom.withBot_comp
/-- Adjoins a `⊤` to the codomain of a `SupHom`. -/
@@ -1676,14 +1676,14 @@ protected def withTop (f : InfHom α β) : InfTopHom (WithTop α) (WithTop β) w
#align inf_hom.with_top InfHom.withTop
@[simp]
-theorem withTop_id : (InfHom.id α).withTop = InfTopHom.id _ := FunLike.coe_injective Option.map_id
+theorem withTop_id : (InfHom.id α).withTop = InfTopHom.id _ := DFunLike.coe_injective Option.map_id
#align inf_hom.with_top_id InfHom.withTop_id
@[simp]
theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
--- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
+-- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+ DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align inf_hom.with_top_comp InfHom.withTop_comp
/-- Adjoins a `⊥` to the domain and codomain of an `InfHom`. -/
@@ -1699,14 +1699,14 @@ protected def withBot (f : InfHom α β) : InfHom (WithBot α) (WithBot β) wher
#align inf_hom.with_bot InfHom.withBot
@[simp]
-theorem withBot_id : (InfHom.id α).withBot = InfHom.id _ := FunLike.coe_injective Option.map_id
+theorem withBot_id : (InfHom.id α).withBot = InfHom.id _ := DFunLike.coe_injective Option.map_id
#align inf_hom.with_bot_id InfHom.withBot_id
@[simp]
theorem withBot_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
--- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
+-- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+ DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align inf_hom.with_bot_comp InfHom.withBot_comp
/-- Adjoins a `⊤` to the codomain of an `InfHom`. -/
@@ -1754,14 +1754,14 @@ lemma withTop_apply (f : LatticeHom α β) (a : WithTop α) : f.withTop a = a.ma
@[simp]
theorem withTop_id : (LatticeHom.id α).withTop = LatticeHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align lattice_hom.with_top_id LatticeHom.withTop_id
@[simp]
theorem withTop_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
--- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
+-- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+ DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align lattice_hom.with_top_comp LatticeHom.withTop_comp
/-- Adjoins a `⊥` to the domain and codomain of a `LatticeHom`. -/
@@ -1778,14 +1778,14 @@ lemma withBot_apply (f : LatticeHom α β) (a : WithBot α) : f.withBot a = a.ma
@[simp]
theorem withBot_id : (LatticeHom.id α).withBot = LatticeHom.id _ :=
- FunLike.coe_injective Option.map_id
+ DFunLike.coe_injective Option.map_id
#align lattice_hom.with_bot_id LatticeHom.withBot_id
@[simp]
theorem withBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
--- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
+-- porting note: Proof was `DFunLike.coe_injective (Option.map_comp_map _ _).symm`
+ DFunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align lattice_hom.with_bot_comp LatticeHom.withBot_comp
/-- Adjoins a `⊤` and `⊥` to the domain and codomain of a `LatticeHom`. -/
@@ -1804,7 +1804,7 @@ lemma withTopWithBot_apply (f : LatticeHom α β) (a : WithTop <| WithBot α) :
@[simp]
theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHom.id _ :=
- FunLike.coe_injective <| by
+ DFunLike.coe_injective <| by
refine' (congr_arg Option.map _).trans Option.map_id
rw [withBot_id]
rfl
$
with <|
(#9319)
See Zulip thread for the discussion.
@@ -1804,7 +1804,7 @@ lemma withTopWithBot_apply (f : LatticeHom α β) (a : WithTop <| WithBot α) :
@[simp]
theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHom.id _ :=
- FunLike.coe_injective $ by
+ FunLike.coe_injective <| by
refine' (congr_arg Option.map _).trans Option.map_id
rw [withBot_id]
rfl
@@ -1831,7 +1831,7 @@ def withBot' [OrderBot β] (f : LatticeHom α β) : LatticeHom (WithBot α) β :
/-- Adjoins a `⊤` and `⊥` to the codomain of a `LatticeHom`. -/
@[simps]
def withTopWithBot' [BoundedOrder β] (f : LatticeHom α β) :
- BoundedLatticeHom (WithTop $ WithBot α) β where
+ BoundedLatticeHom (WithTop <| WithBot α) β where
toLatticeHom := f.withBot'.withTop'
map_top' := rfl
map_bot' := rfl
These are a number of small fixes of coercions of lattices and complete lattices, made by Yaël Dillies in the context of a larger refactor of the branch frametopadjunction
.
Co-authored by: Yaël Dillies
@@ -345,11 +345,11 @@ directly. -/
instance : FunLike (SupHom α β) α fun _ => β :=
SupHomClass.toFunLike
-@[simp]
-theorem toFun_eq_coe {f : SupHom α β} : f.toFun = (f : α → β) :=
- rfl
+@[simp] lemma toFun_eq_coe (f : SupHom α β) : f.toFun = f := rfl
#align sup_hom.to_fun_eq_coe SupHom.toFun_eq_coe
+@[simp, norm_cast] lemma coe_mk (f : α → β) (hf) : ⇑(mk f hf) = f := rfl
+
@[ext]
theorem ext {f g : SupHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -532,11 +532,11 @@ directly. -/
instance : FunLike (InfHom α β) α fun _ => β :=
InfHomClass.toFunLike
-@[simp]
-theorem toFun_eq_coe {f : InfHom α β} : f.toFun = (f : α → β) :=
- rfl
+@[simp] lemma toFun_eq_coe (f : InfHom α β) : f.toFun = (f : α → β) := rfl
#align inf_hom.to_fun_eq_coe InfHom.toFun_eq_coe
+@[simp, norm_cast] lemma coe_mk (f : α → β) (hf) : ⇑(mk f hf) = f := rfl
+
@[ext]
theorem ext {f g : InfHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -728,20 +728,13 @@ instance : SupBotHomClass (SupBotHom α β) α β
instance : FunLike (SupBotHom α β) α fun _ => β :=
SupHomClass.toFunLike
--- porting note: this is the `simp`-normal version of `toFun_eq_coe`
-@[simp]
-theorem coe_toSupHom {f : SupBotHom α β} : (f.toSupHom : α → β) = (f : α → β) :=
- rfl
-
--- porting note: adding this since we also added `coe_toSupHom`
-@[simp]
-theorem coe_toBotHom {f : SupBotHom α β} : (f.toBotHom : α → β) = (f : α → β) :=
- rfl
-
-theorem toFun_eq_coe {f : SupBotHom α β} : f.toFun = (f : α → β) :=
- rfl
+lemma toFun_eq_coe (f : SupBotHom α β) : f.toFun = f := rfl
#align sup_bot_hom.to_fun_eq_coe SupBotHom.toFun_eq_coe
+@[simp] lemma coe_toSupHom (f : SupBotHom α β) : ⇑f.toSupHom = f := rfl
+@[simp] lemma coe_toBotHom (f : SupBotHom α β) : ⇑f.toBotHom = f := rfl
+@[simp] lemma coe_mk (f : SupHom α β) (hf) : ⇑(mk f hf) = f := rfl
+
@[ext]
theorem ext {f g : SupBotHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -891,19 +884,13 @@ directly. -/
instance : FunLike (InfTopHom α β) α fun _ => β :=
InfHomClass.toFunLike
--- porting note: this is the `simp`-normal version of `toFun_eq_coe`
-@[simp]
-theorem coe_toInfHom {f : InfTopHom α β} : (f.toInfHom : α → β) = (f : α → β) :=
- rfl
-
--- porting note: adding this since we also added `coe_toInfHom`
-@[simp]
-theorem coe_toTopHom {f : InfTopHom α β} : (f.toTopHom : α → β) = (f : α → β) :=
- rfl
-
-theorem toFun_eq_coe {f : InfTopHom α β} : f.toFun = (f : α → β) := rfl
+theorem toFun_eq_coe (f : InfTopHom α β) : f.toFun = f := rfl
#align inf_top_hom.to_fun_eq_coe InfTopHom.toFun_eq_coe
+@[simp] lemma coe_toInfHom (f : InfTopHom α β) : ⇑f.toInfHom = f := rfl
+@[simp] lemma coe_toTopHom (f : InfTopHom α β) : ⇑f.toTopHom = f := rfl
+@[simp] lemma coe_mk (f : InfHom α β) (hf) : ⇑(mk f hf) = f := rfl
+
@[ext]
theorem ext {f g : InfTopHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -1046,19 +1033,13 @@ directly. -/
instance : FunLike (LatticeHom α β) α fun _ => β :=
SupHomClass.toFunLike
--- porting note: this is the `simp`-normal version of `toFun_eq_coe`
-@[simp]
-theorem coe_toSupHom {f : LatticeHom α β} : (f.toSupHom : α → β) = (f : α → β) :=
- rfl
-
--- porting note: adding this since we also added `coe_toSupHom`
-@[simp]
-theorem coe_toInfHom {f : LatticeHom α β} : (f.toInfHom : α → β) = (f : α → β) :=
- rfl
-
-theorem toFun_eq_coe {f : LatticeHom α β} : f.toFun = (f : α → β) := rfl
+lemma toFun_eq_coe (f : LatticeHom α β) : f.toFun = f := rfl
#align lattice_hom.to_fun_eq_coe LatticeHom.toFun_eq_coe
+@[simp] lemma coe_toSupHom (f : LatticeHom α β) : ⇑f.toSupHom = f := rfl
+@[simp] lemma coe_toInfHom (f : LatticeHom α β) : ⇑f.toInfHom = f := rfl
+@[simp] lemma coe_mk (f : SupHom α β) (hf) : ⇑(mk f hf) = f := rfl
+
@[ext]
theorem ext {f g : LatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -1237,16 +1218,15 @@ instance instBoundedLatticeHomClass : BoundedLatticeHomClass (BoundedLatticeHom
map_top f := f.map_top'
map_bot f := f.map_bot'
--- porting note: this is the `simp`-normal version of `toFun_eq_coe`
-@[simp]
-theorem coe_toLatticeHom {f : BoundedLatticeHom α β} : (f.toLatticeHom : α → β) = (f : α → β) :=
- rfl
-
-@[simp]
-theorem toFun_eq_coe {f : BoundedLatticeHom α β} : f.toFun = (f : α → β) :=
- rfl
+@[simp] lemma toFun_eq_coe (f : BoundedLatticeHom α β) : f.toFun = f := rfl
#align bounded_lattice_hom.to_fun_eq_coe BoundedLatticeHom.toFun_eq_coe
+@[simp] lemma coe_toLatticeHom (f : BoundedLatticeHom α β) : ⇑f.toLatticeHom = f := rfl
+@[simp] lemma coe_toSupBotHom (f : BoundedLatticeHom α β) : ⇑f.toSupBotHom = f := rfl
+@[simp] lemma coe_toInfTopHom (f : BoundedLatticeHom α β) : ⇑f.toInfTopHom = f := rfl
+@[simp] lemma coe_toBoundedOrderHom (f : BoundedLatticeHom α β) : ⇑f.toBoundedOrderHom = f := rfl
+@[simp] lemma coe_mk (f : LatticeHom α β) (hf hf') : ⇑(mk f hf hf') = f := rfl
+
@[ext]
theorem ext {f g : BoundedLatticeHom α β} (h : ∀ a, f a = g a) : f = g :=
FunLike.ext f g h
@@ -421,11 +421,13 @@ theorem comp_assoc (f : SupHom γ δ) (g : SupHom β γ) (h : SupHom α β) :
@[simp] theorem id_comp (f : SupHom α β) : (SupHom.id β).comp f = f := rfl
#align sup_hom.id_comp SupHom.id_comp
+@[simp]
theorem cancel_right {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => SupHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align sup_hom.cancel_right SupHom.cancel_right
+@[simp]
theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => SupHom.ext fun a => hg <| by rw [← SupHom.comp_apply, h, SupHom.comp_apply],
@@ -607,11 +609,13 @@ theorem comp_assoc (f : InfHom γ δ) (g : InfHom β γ) (h : InfHom α β) :
@[simp] theorem id_comp (f : InfHom α β) : (InfHom.id β).comp f = f := rfl
#align inf_hom.id_comp InfHom.id_comp
+@[simp]
theorem cancel_right {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => InfHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align inf_hom.cancel_right InfHom.cancel_right
+@[simp]
theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => InfHom.ext fun a => hg <| by rw [← InfHom.comp_apply, h, InfHom.comp_apply],
@@ -808,11 +812,13 @@ theorem comp_assoc (f : SupBotHom γ δ) (g : SupBotHom β γ) (h : SupBotHom α
@[simp] theorem id_comp (f : SupBotHom α β) : (SupBotHom.id β).comp f = f := rfl
#align sup_bot_hom.id_comp SupBotHom.id_comp
+@[simp]
theorem cancel_right {g₁ g₂ : SupBotHom β γ} {f : SupBotHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align sup_bot_hom.cancel_right SupBotHom.cancel_right
+@[simp]
theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => SupBotHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
@@ -968,11 +974,13 @@ theorem comp_assoc (f : InfTopHom γ δ) (g : InfTopHom β γ) (h : InfTopHom α
@[simp] theorem id_comp (f : InfTopHom α β) : (InfTopHom.id β).comp f = f := rfl
#align inf_top_hom.id_comp InfTopHom.id_comp
+@[simp]
theorem cancel_right {g₁ g₂ : InfTopHom β γ} {f : InfTopHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align inf_top_hom.cancel_right InfTopHom.cancel_right
+@[simp]
theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => InfTopHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
@@ -1148,11 +1156,13 @@ theorem id_comp (f : LatticeHom α β) : (LatticeHom.id β).comp f = f :=
LatticeHom.ext fun _ => rfl
#align lattice_hom.id_comp LatticeHom.id_comp
+@[simp]
theorem cancel_right {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Surjective f) :
g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => LatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩
#align lattice_hom.cancel_right LatticeHom.cancel_right
+@[simp]
theorem cancel_left {g : LatticeHom β γ} {f₁ f₂ : LatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => LatticeHom.ext fun a => hg <| by rw [← LatticeHom.comp_apply, h, LatticeHom.comp_apply],
@@ -1342,12 +1352,14 @@ theorem comp_assoc (f : BoundedLatticeHom γ δ) (g : BoundedLatticeHom β γ)
@[simp] theorem id_comp (f : BoundedLatticeHom α β) : (BoundedLatticeHom.id β).comp f = f := rfl
#align bounded_lattice_hom.id_comp BoundedLatticeHom.id_comp
+@[simp]
theorem cancel_right {g₁ g₂ : BoundedLatticeHom β γ} {f : BoundedLatticeHom α β}
(hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ :=
⟨fun h => BoundedLatticeHom.ext <| hf.forall.2 <| FunLike.ext_iff.1 h,
fun h => congr_arg₂ _ h rfl⟩
#align bounded_lattice_hom.cancel_right BoundedLatticeHom.cancel_right
+@[simp]
theorem cancel_left {g : BoundedLatticeHom β γ} {f₁ f₂ : BoundedLatticeHom α β} (hg : Injective g) :
g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ :=
⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -42,10 +42,10 @@ Do we need more intersections between `BotHom`, `TopHom` and lattice homomorphis
open Function OrderDual
-variable {F ι α β γ δ : Type _}
+variable {F ι α β γ δ : Type*}
/-- The type of `⊔`-preserving functions from `α` to `β`. -/
-structure SupHom (α β : Type _) [Sup α] [Sup β] where
+structure SupHom (α β : Type*) [Sup α] [Sup β] where
/-- The underlying function of a `SupHom` -/
toFun : α → β
/-- A `SupHom` preserves suprema. -/
@@ -53,7 +53,7 @@ structure SupHom (α β : Type _) [Sup α] [Sup β] where
#align sup_hom SupHom
/-- The type of `⊓`-preserving functions from `α` to `β`. -/
-structure InfHom (α β : Type _) [Inf α] [Inf β] where
+structure InfHom (α β : Type*) [Inf α] [Inf β] where
/-- The underlying function of an `InfHom` -/
toFun : α → β
/-- An `InfHom` preserves infima. -/
@@ -61,25 +61,25 @@ structure InfHom (α β : Type _) [Inf α] [Inf β] where
#align inf_hom InfHom
/-- The type of finitary supremum-preserving homomorphisms from `α` to `β`. -/
-structure SupBotHom (α β : Type _) [Sup α] [Sup β] [Bot α] [Bot β] extends SupHom α β where
+structure SupBotHom (α β : Type*) [Sup α] [Sup β] [Bot α] [Bot β] extends SupHom α β where
/-- A `SupBotHom` preserves the bottom element. -/
map_bot' : toFun ⊥ = ⊥
#align sup_bot_hom SupBotHom
/-- The type of finitary infimum-preserving homomorphisms from `α` to `β`. -/
-structure InfTopHom (α β : Type _) [Inf α] [Inf β] [Top α] [Top β] extends InfHom α β where
+structure InfTopHom (α β : Type*) [Inf α] [Inf β] [Top α] [Top β] extends InfHom α β where
/-- An `InfTopHom` preserves the top element. -/
map_top' : toFun ⊤ = ⊤
#align inf_top_hom InfTopHom
/-- The type of lattice homomorphisms from `α` to `β`. -/
-structure LatticeHom (α β : Type _) [Lattice α] [Lattice β] extends SupHom α β where
+structure LatticeHom (α β : Type*) [Lattice α] [Lattice β] extends SupHom α β where
/-- A `LatticeHom` preserves infima. -/
map_inf' (a b : α) : toFun (a ⊓ b) = toFun a ⊓ toFun b
#align lattice_hom LatticeHom
/-- The type of bounded lattice homomorphisms from `α` to `β`. -/
-structure BoundedLatticeHom (α β : Type _) [Lattice α] [Lattice β] [BoundedOrder α]
+structure BoundedLatticeHom (α β : Type*) [Lattice α] [Lattice β] [BoundedOrder α]
[BoundedOrder β] extends LatticeHom α β where
/-- A `BoundedLatticeHom` preserves the top element. -/
map_top' : toFun ⊤ = ⊤
@@ -99,7 +99,7 @@ section
/-- `SupHomClass F α β` states that `F` is a type of `⊔`-preserving morphisms.
You should extend this class when you extend `SupHom`. -/
-class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] extends
+class SupHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] extends
FunLike F α fun _ => β where
/-- A `SupHomClass` morphism preserves suprema. -/
map_sup (f : F) (a b : α) : f (a ⊔ b) = f a ⊔ f b
@@ -108,7 +108,7 @@ class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] ex
/-- `InfHomClass F α β` states that `F` is a type of `⊓`-preserving morphisms.
You should extend this class when you extend `InfHom`. -/
-class InfHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] extends
+class InfHomClass (F : Type*) (α β : outParam <| Type*) [Inf α] [Inf β] extends
FunLike F α fun _ => β where
/-- An `InfHomClass` morphism preserves infima. -/
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
@@ -117,7 +117,7 @@ class InfHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] ex
/-- `SupBotHomClass F α β` states that `F` is a type of finitary supremum-preserving morphisms.
You should extend this class when you extend `SupBotHom`. -/
-class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] [Bot α]
+class SupBotHomClass (F : Type*) (α β : outParam <| Type*) [Sup α] [Sup β] [Bot α]
[Bot β] extends SupHomClass F α β where
/-- A `SupBotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
@@ -126,7 +126,7 @@ class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β]
/-- `InfTopHomClass F α β` states that `F` is a type of finitary infimum-preserving morphisms.
You should extend this class when you extend `SupBotHom`. -/
-class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] [Top α]
+class InfTopHomClass (F : Type*) (α β : outParam <| Type*) [Inf α] [Inf β] [Top α]
[Top β] extends InfHomClass F α β where
/-- An `InfTopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
@@ -135,7 +135,7 @@ class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β]
/-- `LatticeHomClass F α β` states that `F` is a type of lattice morphisms.
You should extend this class when you extend `LatticeHom`. -/
-class LatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [Lattice β] extends
+class LatticeHomClass (F : Type*) (α β : outParam <| Type*) [Lattice α] [Lattice β] extends
SupHomClass F α β where
/-- A `LatticeHomClass` morphism preserves infima. -/
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
@@ -144,7 +144,7 @@ class LatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [La
/-- `BoundedLatticeHomClass F α β` states that `F` is a type of bounded lattice morphisms.
You should extend this class when you extend `BoundedLatticeHom`. -/
-class BoundedLatticeHomClass (F : Type _) (α β : outParam <| Type _) [Lattice α] [Lattice β]
+class BoundedLatticeHomClass (F : Type*) (α β : outParam <| Type*) [Lattice α] [Lattice β]
[BoundedOrder α] [BoundedOrder β] extends LatticeHomClass F α β where
/-- A `BoundedLatticeHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
MeasureTheory.MeasurePreserving.measure_symmDiff_preimage_iterate_le
(#6175)
Also some minor loosely-related other changes.
@@ -292,9 +292,9 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
#align map_sdiff' map_sdiff'
/-- Special case of `map_symmDiff` for boolean algebras. -/
-theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
+theorem map_symmDiff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff']
-#align map_symm_diff' map_symm_diff'
+#align map_symm_diff' map_symmDiff'
end BooleanAlgebra
@@ -2,15 +2,12 @@
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.hom.lattice
-! leanprover-community/mathlib commit 7581030920af3dcb241d1df0e36f6ec8289dd6be
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Order.Hom.Bounded
import Mathlib.Order.SymmDiff
+#align_import order.hom.lattice from "leanprover-community/mathlib"@"7581030920af3dcb241d1df0e36f6ec8289dd6be"
+
/-!
# Lattice homomorphisms
@@ -285,7 +285,7 @@ section BooleanAlgebra
variable [BooleanAlgebra α] [BooleanAlgebra β] [BoundedLatticeHomClass F α β] (f : F)
/-- Special case of `map_compl` for boolean algebras. -/
-theorem map_compl' (a : α) : f (aᶜ) = f aᶜ :=
+theorem map_compl' (a : α) : f aᶜ = (f a)ᶜ :=
(isCompl_compl.map _).compl_eq.symm
#align map_compl' map_compl'
@@ -1221,7 +1221,7 @@ def toBoundedOrderHom (f : BoundedLatticeHom α β) : BoundedOrderHom α β :=
{ f, (f.toLatticeHom : α →o β) with }
#align bounded_lattice_hom.to_bounded_order_hom BoundedLatticeHom.toBoundedOrderHom
-instance : BoundedLatticeHomClass (BoundedLatticeHom α β) α β
+instance instBoundedLatticeHomClass : BoundedLatticeHomClass (BoundedLatticeHom α β) α β
where
coe f := f.toFun
coe_injective' f g h := by obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f; obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g; congr
@@ -1615,7 +1615,7 @@ theorem withTop_id : (SupHom.id α).withTop = SupHom.id _ := FunLike.coe_injecti
theorem withTop_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+ FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align sup_hom.with_top_comp SupHom.withTop_comp
/-- Adjoins a `⊥` to the domain and codomain of a `SupHom`. -/
@@ -1639,7 +1639,7 @@ theorem withBot_id : (SupHom.id α).withBot = SupBotHom.id _ := FunLike.coe_inje
theorem withBot_comp (f : SupHom β γ) (g : SupHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+ FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align sup_hom.with_bot_comp SupHom.withBot_comp
/-- Adjoins a `⊤` to the codomain of a `SupHom`. -/
@@ -1694,7 +1694,7 @@ theorem withTop_id : (InfHom.id α).withTop = InfTopHom.id _ := FunLike.coe_inje
theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+ FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align inf_hom.with_top_comp InfHom.withTop_comp
/-- Adjoins a `⊥` to the domain and codomain of an `InfHom`. -/
@@ -1717,7 +1717,7 @@ theorem withBot_id : (InfHom.id α).withBot = InfHom.id _ := FunLike.coe_injecti
theorem withBot_comp (f : InfHom β γ) (g : InfHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+ FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align inf_hom.with_bot_comp InfHom.withBot_comp
/-- Adjoins a `⊤` to the codomain of an `InfHom`. -/
@@ -1772,7 +1772,7 @@ theorem withTop_id : (LatticeHom.id α).withTop = LatticeHom.id _ :=
theorem withTop_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withTop = f.withTop.comp g.withTop :=
-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+ FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align lattice_hom.with_top_comp LatticeHom.withTop_comp
/-- Adjoins a `⊥` to the domain and codomain of a `LatticeHom`. -/
@@ -1796,7 +1796,7 @@ theorem withBot_id : (LatticeHom.id α).withBot = LatticeHom.id _ :=
theorem withBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
(f.comp g).withBot = f.withBot.comp g.withBot :=
-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
- FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+ FunLike.coe_injective <| Eq.symm <| Option.map_comp_map _ _
#align lattice_hom.with_bot_comp LatticeHom.withBot_comp
/-- Adjoins a `⊤` and `⊥` to the domain and codomain of a `LatticeHom`. -/
@@ -1810,7 +1810,7 @@ def withTopWithBot (f : LatticeHom α β) :
@[simp, norm_cast]
lemma coe_withTopWithBot (f : LatticeHom α β) : ⇑f.withTopWithBot = Option.map (Option.map f) := rfl
-lemma withTopWithBot_apply (f : LatticeHom α β) (a : WithTop $ WithBot α) :
+lemma withTopWithBot_apply (f : LatticeHom α β) (a : WithTop <| WithBot α) :
f.withTopWithBot a = a.map (Option.map f) := rfl
@[simp]
I wrote a script to find lines that contain an odd number of backticks
@@ -1697,7 +1697,7 @@ theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
#align inf_hom.with_top_comp InfHom.withTop_comp
-/-- Adjoins a `⊥ to the domain and codomain of an `InfHom`. -/
+/-- Adjoins a `⊥` to the domain and codomain of an `InfHom`. -/
@[simps]
protected def withBot (f : InfHom α β) : InfHom (WithBot α) (WithBot β) where
toFun := Option.map f
Match https://github.com/leanprover-community/mathlib/pull/18949
order.hom.lattice
@9d684a893c52e1d6692a504a118bfccbae04feeb
..7581030920af3dcb241d1df0e36f6ec8289dd6be
Co-authored-by: Jon Eugster <eugster.jon@gmail.com>
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
! This file was ported from Lean 3 source module order.hom.lattice
-! leanprover-community/mathlib commit 9d684a893c52e1d6692a504a118bfccbae04feeb
+! leanprover-community/mathlib commit 7581030920af3dcb241d1df0e36f6ec8289dd6be
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -1588,3 +1588,264 @@ theorem symm_dual_comp (g : BoundedLatticeHom βᵒᵈ γᵒᵈ) (f : BoundedLat
#align bounded_lattice_hom.symm_dual_comp BoundedLatticeHom.symm_dual_comp
end BoundedLatticeHom
+
+/-! ### `WithTop`, `WithBot` -/
+
+namespace SupHom
+variable [SemilatticeSup α] [SemilatticeSup β] [SemilatticeSup γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of a `SupHom`. -/
+@[simps]
+protected def withTop (f : SupHom α β) : SupHom (WithTop α) (WithTop β) where
+ -- porting note: this was `Option.map f`
+ toFun := WithTop.map f
+ map_sup' a b :=
+ match a, b with
+ | ⊤, ⊤ => rfl
+ | ⊤, (b : α) => rfl
+ | (a : α), ⊤ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_sup' _ _)
+#align sup_hom.with_top SupHom.withTop
+
+@[simp]
+theorem withTop_id : (SupHom.id α).withTop = SupHom.id _ := FunLike.coe_injective Option.map_id
+#align sup_hom.with_top_id SupHom.withTop_id
+
+@[simp]
+theorem withTop_comp (f : SupHom β γ) (g : SupHom α β) :
+ (f.comp g).withTop = f.withTop.comp g.withTop :=
+-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
+ FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+#align sup_hom.with_top_comp SupHom.withTop_comp
+
+/-- Adjoins a `⊥` to the domain and codomain of a `SupHom`. -/
+@[simps]
+protected def withBot (f : SupHom α β) : SupBotHom (WithBot α) (WithBot β) where
+ toFun := Option.map f
+ map_sup' a b :=
+ match a, b with
+ | ⊥, ⊥ => rfl
+ | ⊥, (b : α) => rfl
+ | (a : α), ⊥ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_sup' _ _)
+ map_bot' := rfl
+#align sup_hom.with_bot SupHom.withBot
+
+@[simp]
+theorem withBot_id : (SupHom.id α).withBot = SupBotHom.id _ := FunLike.coe_injective Option.map_id
+#align sup_hom.with_bot_id SupHom.withBot_id
+
+@[simp]
+theorem withBot_comp (f : SupHom β γ) (g : SupHom α β) :
+ (f.comp g).withBot = f.withBot.comp g.withBot :=
+-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
+ FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+#align sup_hom.with_bot_comp SupHom.withBot_comp
+
+/-- Adjoins a `⊤` to the codomain of a `SupHom`. -/
+@[simps]
+def withTop' [OrderTop β] (f : SupHom α β) : SupHom (WithTop α) β where
+ toFun a := a.elim ⊤ f
+ map_sup' a b :=
+ match a, b with
+ | ⊤, ⊤ => top_sup_eq.symm
+ | ⊤, (b : α) => top_sup_eq.symm
+ | (a : α), ⊤ => sup_top_eq.symm
+ | (a : α), (b : α) => f.map_sup' _ _
+#align sup_hom.with_top' SupHom.withTop'
+
+/-- Adjoins a `⊥` to the domain of a `SupHom`. -/
+@[simps]
+def withBot' [OrderBot β] (f : SupHom α β) : SupBotHom (WithBot α) β where
+ toFun a := a.elim ⊥ f
+ map_sup' a b :=
+ match a, b with
+ | ⊥, ⊥ => bot_sup_eq.symm
+ | ⊥, (b : α) => bot_sup_eq.symm
+ | (a : α), ⊥ => sup_bot_eq.symm
+ | (a : α), (b : α) => f.map_sup' _ _
+ map_bot' := rfl
+#align sup_hom.with_bot' SupHom.withBot'
+
+end SupHom
+
+namespace InfHom
+
+variable [SemilatticeInf α] [SemilatticeInf β] [SemilatticeInf γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of an `InfHom`. -/
+@[simps]
+protected def withTop (f : InfHom α β) : InfTopHom (WithTop α) (WithTop β) where
+ toFun := Option.map f
+ map_inf' a b :=
+ match a, b with
+ | ⊤, ⊤ => rfl
+ | ⊤, (b : α) => rfl
+ | (a : α), ⊤ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_inf' _ _)
+ map_top' := rfl
+#align inf_hom.with_top InfHom.withTop
+
+@[simp]
+theorem withTop_id : (InfHom.id α).withTop = InfTopHom.id _ := FunLike.coe_injective Option.map_id
+#align inf_hom.with_top_id InfHom.withTop_id
+
+@[simp]
+theorem withTop_comp (f : InfHom β γ) (g : InfHom α β) :
+ (f.comp g).withTop = f.withTop.comp g.withTop :=
+-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
+ FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+#align inf_hom.with_top_comp InfHom.withTop_comp
+
+/-- Adjoins a `⊥ to the domain and codomain of an `InfHom`. -/
+@[simps]
+protected def withBot (f : InfHom α β) : InfHom (WithBot α) (WithBot β) where
+ toFun := Option.map f
+ map_inf' a b :=
+ match a, b with
+ | ⊥, ⊥ => rfl
+ | ⊥, (b : α) => rfl
+ | (a : α), ⊥ => rfl
+ | (a : α), (b : α) => congr_arg _ (f.map_inf' _ _)
+#align inf_hom.with_bot InfHom.withBot
+
+@[simp]
+theorem withBot_id : (InfHom.id α).withBot = InfHom.id _ := FunLike.coe_injective Option.map_id
+#align inf_hom.with_bot_id InfHom.withBot_id
+
+@[simp]
+theorem withBot_comp (f : InfHom β γ) (g : InfHom α β) :
+ (f.comp g).withBot = f.withBot.comp g.withBot :=
+-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
+ FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+#align inf_hom.with_bot_comp InfHom.withBot_comp
+
+/-- Adjoins a `⊤` to the codomain of an `InfHom`. -/
+@[simps]
+def withTop' [OrderTop β] (f : InfHom α β) : InfTopHom (WithTop α) β where
+ toFun a := a.elim ⊤ f
+ map_inf' a b :=
+ match a, b with
+ | ⊤, ⊤ => top_inf_eq.symm
+ | ⊤, (b : α) => top_inf_eq.symm
+ | (a : α), ⊤ => inf_top_eq.symm
+ | (a : α), (b : α) => f.map_inf' _ _
+ map_top' := rfl
+#align inf_hom.with_top' InfHom.withTop'
+
+/-- Adjoins a `⊥` to the codomain of an `InfHom`. -/
+@[simps]
+def withBot' [OrderBot β] (f : InfHom α β) : InfHom (WithBot α) β where
+ toFun a := a.elim ⊥ f
+ map_inf' a b :=
+ match a, b with
+ | ⊥, ⊥ => bot_inf_eq.symm
+ | ⊥, (b : α) => bot_inf_eq.symm
+ | (a : α), ⊥ => inf_bot_eq.symm
+ | (a : α), (b : α) => f.map_inf' _ _
+#align inf_hom.with_bot' InfHom.withBot'
+
+end InfHom
+
+namespace LatticeHom
+
+variable [Lattice α] [Lattice β] [Lattice γ]
+
+/-- Adjoins a `⊤` to the domain and codomain of a `LatticeHom`. -/
+@[simps]
+protected def withTop (f : LatticeHom α β) : LatticeHom (WithTop α) (WithTop β) :=
+ { f.toInfHom.withTop with toSupHom := f.toSupHom.withTop }
+#align lattice_hom.with_top LatticeHom.withTop
+
+-- porting note: `simps` doesn't generate those
+@[simp, norm_cast]
+lemma coe_withTop (f : LatticeHom α β) : ⇑f.withTop = WithTop.map f := rfl
+
+lemma withTop_apply (f : LatticeHom α β) (a : WithTop α) : f.withTop a = a.map f := rfl
+
+@[simp]
+theorem withTop_id : (LatticeHom.id α).withTop = LatticeHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align lattice_hom.with_top_id LatticeHom.withTop_id
+
+@[simp]
+theorem withTop_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
+ (f.comp g).withTop = f.withTop.comp g.withTop :=
+-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
+ FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+#align lattice_hom.with_top_comp LatticeHom.withTop_comp
+
+/-- Adjoins a `⊥` to the domain and codomain of a `LatticeHom`. -/
+@[simps]
+protected def withBot (f : LatticeHom α β) : LatticeHom (WithBot α) (WithBot β) :=
+ { f.toInfHom.withBot with toSupHom := f.toSupHom.withBot }
+#align lattice_hom.with_bot LatticeHom.withBot
+
+-- porting note: `simps` doesn't generate those
+@[simp, norm_cast]
+lemma coe_withBot (f : LatticeHom α β) : ⇑f.withBot = Option.map f := rfl
+
+lemma withBot_apply (f : LatticeHom α β) (a : WithBot α) : f.withBot a = a.map f := rfl
+
+@[simp]
+theorem withBot_id : (LatticeHom.id α).withBot = LatticeHom.id _ :=
+ FunLike.coe_injective Option.map_id
+#align lattice_hom.with_bot_id LatticeHom.withBot_id
+
+@[simp]
+theorem withBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
+ (f.comp g).withBot = f.withBot.comp g.withBot :=
+-- porting note: Proof was `FunLike.coe_injective (Option.map_comp_map _ _).symm`
+ FunLike.coe_injective $ Eq.symm $ Option.map_comp_map _ _
+#align lattice_hom.with_bot_comp LatticeHom.withBot_comp
+
+/-- Adjoins a `⊤` and `⊥` to the domain and codomain of a `LatticeHom`. -/
+@[simps]
+def withTopWithBot (f : LatticeHom α β) :
+ BoundedLatticeHom (WithTop <| WithBot α) (WithTop <| WithBot β) :=
+ ⟨f.withBot.withTop, rfl, rfl⟩
+#align lattice_hom.with_top_with_bot LatticeHom.withTopWithBot
+
+-- porting note: `simps` doesn't generate those
+@[simp, norm_cast]
+lemma coe_withTopWithBot (f : LatticeHom α β) : ⇑f.withTopWithBot = Option.map (Option.map f) := rfl
+
+lemma withTopWithBot_apply (f : LatticeHom α β) (a : WithTop $ WithBot α) :
+ f.withTopWithBot a = a.map (Option.map f) := rfl
+
+@[simp]
+theorem withTopWithBot_id : (LatticeHom.id α).withTopWithBot = BoundedLatticeHom.id _ :=
+ FunLike.coe_injective $ by
+ refine' (congr_arg Option.map _).trans Option.map_id
+ rw [withBot_id]
+ rfl
+#align lattice_hom.with_top_with_bot_id LatticeHom.withTopWithBot_id
+
+@[simp]
+theorem withTopWithBot_comp (f : LatticeHom β γ) (g : LatticeHom α β) :
+ (f.comp g).withTopWithBot = f.withTopWithBot.comp g.withTopWithBot := by
+ ext; simp
+#align lattice_hom.with_top_with_bot_comp LatticeHom.withTopWithBot_comp
+
+/-- Adjoins a `⊥` to the codomain of a `LatticeHom`. -/
+@[simps]
+def withTop' [OrderTop β] (f : LatticeHom α β) : LatticeHom (WithTop α) β :=
+ { f.toSupHom.withTop', f.toInfHom.withTop' with }
+#align lattice_hom.with_top' LatticeHom.withTop'
+
+/-- Adjoins a `⊥` to the domain and codomain of a `LatticeHom`. -/
+@[simps]
+def withBot' [OrderBot β] (f : LatticeHom α β) : LatticeHom (WithBot α) β :=
+ { f.toSupHom.withBot', f.toInfHom.withBot' with }
+#align lattice_hom.with_bot' LatticeHom.withBot'
+
+/-- Adjoins a `⊤` and `⊥` to the codomain of a `LatticeHom`. -/
+@[simps]
+def withTopWithBot' [BoundedOrder β] (f : LatticeHom α β) :
+ BoundedLatticeHom (WithTop $ WithBot α) β where
+ toLatticeHom := f.withBot'.withTop'
+ map_top' := rfl
+ map_bot' := rfl
+#align lattice_hom.with_top_with_bot' LatticeHom.withTopWithBot'
+
+end LatticeHom
fix-comments.py
on all files.@@ -16,7 +16,7 @@ import Mathlib.Order.SymmDiff
This file defines (bounded) lattice homomorphisms.
-We use the `fun_like` design, so each type of morphisms has a companion typeclass which is meant to
+We use the `FunLike` design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
## Types of morphisms
@@ -294,7 +294,7 @@ theorem map_sdiff' (a b : α) : f (a \ b) = f a \ f b := by
rw [sdiff_eq, sdiff_eq, map_inf, map_compl']
#align map_sdiff' map_sdiff'
-/-- Special case of `map_symm_diff` for boolean algebras. -/
+/-- Special case of `map_symmDiff` for boolean algebras. -/
theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff']
#align map_symm_diff' map_symm_diff'
finset
lemmas around (#3748)
Match https://github.com/leanprover-community/mathlib/pull/18900
Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -4,11 +4,10 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
! This file was ported from Lean 3 source module order.hom.lattice
-! leanprover-community/mathlib commit 9003f28797c0664a49e4179487267c494477d853
+! leanprover-community/mathlib commit 9d684a893c52e1d6692a504a118bfccbae04feeb
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
-import Mathlib.Data.Finset.Lattice
import Mathlib.Order.Hom.Bounded
import Mathlib.Order.SymmDiff
@@ -262,20 +261,6 @@ instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [
{ OrderIsoClass.toLatticeHomClass, OrderIsoClass.toBoundedOrderHomClass with }
#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClass
-@[simp]
-theorem map_finset_sup [SemilatticeSup α] [OrderBot α] [SemilatticeSup β] [OrderBot β]
- [SupBotHomClass F α β] (f : F) (s : Finset ι) (g : ι → α) : f (s.sup g) = s.sup (f ∘ g) :=
- Finset.cons_induction_on s (map_bot f) fun i s _ h => by
- rw [Finset.sup_cons, Finset.sup_cons, map_sup, h, Function.comp_apply]
-#align map_finset_sup map_finset_sup
-
-@[simp]
-theorem map_finset_inf [SemilatticeInf α] [OrderTop α] [SemilatticeInf β] [OrderTop β]
- [InfTopHomClass F α β] (f : F) (s : Finset ι) (g : ι → α) : f (s.inf g) = s.inf (f ∘ g) :=
- Finset.cons_induction_on s (map_top f) fun i s _ h => by
- rw [Finset.inf_cons, Finset.inf_cons, map_inf, h, Function.comp_apply]
-#align map_finset_inf map_finset_inf
-
section BoundedLattice
variable [Lattice α] [BoundedOrder α] [Lattice β] [BoundedOrder β] [BoundedLatticeHomClass F α β]
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -218,8 +218,7 @@ instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattic
[Lattice β] [BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] :
BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, ‹BoundedLatticeHomClass F α β› with }
-#align
- bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
+#align bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
-- See note [lower instance priority]
instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
@@ -168,61 +168,61 @@ attribute [simp] map_top map_bot map_sup map_inf
-- make a lot of changes here, adding `outParams`, changing `[]`s into `{}` and
-- so on.
-- See note [lower instance priority]
-instance (priority := 100) SupHomClass.toOrderHomClass {_ : SemilatticeSup α} {_ : SemilatticeSup β}
+instance (priority := 100) SupHomClass.toOrderHomClass [SemilatticeSup α] [SemilatticeSup β]
[SupHomClass F α β] : OrderHomClass F α β :=
{ ‹SupHomClass F α β› with
map_rel := fun f a b h => by rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h] }
#align sup_hom_class.to_order_hom_class SupHomClass.toOrderHomClass
-- See note [lower instance priority]
-instance (priority := 100) InfHomClass.toOrderHomClass {_ : SemilatticeInf α} {_ : SemilatticeInf β}
+instance (priority := 100) InfHomClass.toOrderHomClass [SemilatticeInf α] [SemilatticeInf β]
[InfHomClass F α β] : OrderHomClass F α β :=
{ ‹InfHomClass F α β› with
map_rel := fun f a b h => by rw [← inf_eq_left, ← map_inf, inf_eq_left.2 h] }
#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClass
-- See note [lower instance priority]
-instance (priority := 100) SupBotHomClass.toBotHomClass {_ : Sup α} {_ : Sup β} {_ : Bot α}
- {_ : Bot β} [SupBotHomClass F α β] : BotHomClass F α β :=
+instance (priority := 100) SupBotHomClass.toBotHomClass [Sup α] [Sup β] [Bot α]
+ [Bot β] [SupBotHomClass F α β] : BotHomClass F α β :=
{ ‹SupBotHomClass F α β› with }
#align sup_bot_hom_class.to_bot_hom_class SupBotHomClass.toBotHomClass
-- See note [lower instance priority]
-instance (priority := 100) InfTopHomClass.toTopHomClass {_ : Inf α} {_ : Inf β} {_ : Top α}
- {_ : Top β} [InfTopHomClass F α β] : TopHomClass F α β :=
+instance (priority := 100) InfTopHomClass.toTopHomClass [Inf α] [Inf β] [Top α]
+ [Top β] [InfTopHomClass F α β] : TopHomClass F α β :=
{ ‹InfTopHomClass F α β› with }
#align inf_top_hom_class.to_top_hom_class InfTopHomClass.toTopHomClass
-- See note [lower instance priority]
-instance (priority := 100) LatticeHomClass.toInfHomClass {_ : Lattice α} {_ : Lattice β}
+instance (priority := 100) LatticeHomClass.toInfHomClass [Lattice α] [Lattice β]
[LatticeHomClass F α β] : InfHomClass F α β :=
{ ‹LatticeHomClass F α β› with }
#align lattice_hom_class.to_inf_hom_class LatticeHomClass.toInfHomClass
-- See note [lower instance priority]
-instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass {_ : Lattice α} {_ : Lattice β}
- {_ : BoundedOrder α} {_ : BoundedOrder β} [BoundedLatticeHomClass F α β] :
+instance (priority := 100) BoundedLatticeHomClass.toSupBotHomClass [Lattice α] [Lattice β]
+ [BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] :
SupBotHomClass F α β :=
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_sup_bot_hom_class BoundedLatticeHomClass.toSupBotHomClass
-- See note [lower instance priority]
-instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass {_ : Lattice α} {_ : Lattice β}
- {_ : BoundedOrder α} {_ : BoundedOrder β} [BoundedLatticeHomClass F α β] :
+instance (priority := 100) BoundedLatticeHomClass.toInfTopHomClass [Lattice α] [Lattice β]
+ [BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] :
InfTopHomClass F α β :=
{ ‹BoundedLatticeHomClass F α β› with }
#align bounded_lattice_hom_class.to_inf_top_hom_class BoundedLatticeHomClass.toInfTopHomClass
-- See note [lower instance priority]
-instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass {_ : Lattice α}
- {_ : Lattice β} {_ : BoundedOrder α} {_ : BoundedOrder β} [BoundedLatticeHomClass F α β] :
+instance (priority := 100) BoundedLatticeHomClass.toBoundedOrderHomClass [Lattice α]
+ [Lattice β] [BoundedOrder α] [BoundedOrder β] [BoundedLatticeHomClass F α β] :
BoundedOrderHomClass F α β :=
{ show OrderHomClass F α β from inferInstance, ‹BoundedLatticeHomClass F α β› with }
#align
bounded_lattice_hom_class.to_bounded_order_hom_class BoundedLatticeHomClass.toBoundedOrderHomClass
-- See note [lower instance priority]
-instance (priority := 100) OrderIsoClass.toSupHomClass {_ : SemilatticeSup α} {_ : SemilatticeSup β}
+instance (priority := 100) OrderIsoClass.toSupHomClass [SemilatticeSup α] [SemilatticeSup β]
[OrderIsoClass F α β] : SupHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_sup := fun f a b =>
@@ -231,46 +231,34 @@ instance (priority := 100) OrderIsoClass.toSupHomClass {_ : SemilatticeSup α} {
-- See note [lower instance priority]
-instance (priority := 100) OrderIsoClass.toInfHomClass {_ : SemilatticeInf α} {_ : SemilatticeInf β}
+instance (priority := 100) OrderIsoClass.toInfHomClass [SemilatticeInf α] [SemilatticeInf β]
[OrderIsoClass F α β] : InfHomClass F α β :=
{ show OrderHomClass F α β from inferInstance with
map_inf := fun f a b =>
eq_of_forall_le_iff fun c => by simp only [← map_inv_le_iff, le_inf_iff] }
#align order_iso_class.to_inf_hom_class OrderIsoClass.toInfHomClass
-/- The `SemilatticeSup` parameters can't be `[]` because `outParam`s would make them metavariables,
-and can't be `{}` because they don't appear in the goal or the `OrderIsoClass` parameter.
-We choose `{}` since it fails faster. -/
-@[nolint dangerousInstance]
-- See note [lower instance priority]
-instance (priority := 100) OrderIsoClass.toSupBotHomClass {_ : SemilatticeSup α} {_ : OrderBot α}
- {_ : SemilatticeSup β} {_ : OrderBot β} [OrderIsoClass F α β] : SupBotHomClass F α β :=
+instance (priority := 100) OrderIsoClass.toSupBotHomClass [SemilatticeSup α] [OrderBot α]
+ [SemilatticeSup β] [OrderBot β] [OrderIsoClass F α β] : SupBotHomClass F α β :=
{ OrderIsoClass.toSupHomClass, OrderIsoClass.toBotHomClass with }
#align order_iso_class.to_sup_bot_hom_class OrderIsoClass.toSupBotHomClass
-/- The `SemilatticeInf` parameters can't be `[]` because `outParam`s would make them metavariables,
-and can't be `{}` because they don't appear in the goal or the `OrderIsoClass` parameter.
-We choose `{}` since it fails faster. -/
-@[nolint dangerousInstance]
-- See note [lower instance priority]
-instance (priority := 100) OrderIsoClass.toInfTopHomClass {_ : SemilatticeInf α} {_ : OrderTop α}
- {_ : SemilatticeInf β} {_ : OrderTop β} [OrderIsoClass F α β] : InfTopHomClass F α β :=
+instance (priority := 100) OrderIsoClass.toInfTopHomClass [SemilatticeInf α] [OrderTop α]
+ [SemilatticeInf β] [OrderTop β] [OrderIsoClass F α β] : InfTopHomClass F α β :=
{ OrderIsoClass.toInfHomClass, OrderIsoClass.toTopHomClass with }
#align order_iso_class.to_inf_top_hom_class OrderIsoClass.toInfTopHomClass
-- See note [lower instance priority]
-instance (priority := 100) OrderIsoClass.toLatticeHomClass {_ : Lattice α} {_ : Lattice β}
+instance (priority := 100) OrderIsoClass.toLatticeHomClass [Lattice α] [Lattice β]
[OrderIsoClass F α β] : LatticeHomClass F α β :=
{ OrderIsoClass.toSupHomClass, OrderIsoClass.toInfHomClass with }
#align order_iso_class.to_lattice_hom_class OrderIsoClass.toLatticeHomClass
-/- The `Lattice` parameters can't be `[]` because `outParam`s would make them metavariables,
-and can't be `{}` because they don't appear in the goal or the `OrderIsoClass` parameter.
-We choose `{}` since it fails faster. -/
-@[nolint dangerousInstance]
-- See note [lower instance priority]
-instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass {_ : Lattice α} {_ : Lattice β}
- {_ : BoundedOrder α} {_ : BoundedOrder β} [OrderIsoClass F α β] :
+instance (priority := 100) OrderIsoClass.toBoundedLatticeHomClass [Lattice α] [Lattice β]
+ [BoundedOrder α] [BoundedOrder β] [OrderIsoClass F α β] :
BoundedLatticeHomClass F α β :=
{ OrderIsoClass.toLatticeHomClass, OrderIsoClass.toBoundedOrderHomClass with }
#align order_iso_class.to_bounded_lattice_hom_class OrderIsoClass.toBoundedLatticeHomClass
@@ -1197,13 +1185,8 @@ namespace OrderHomClass
variable (α β) [LinearOrder α] [Lattice β] [OrderHomClass F α β]
/-- An order homomorphism from a linear order is a lattice homomorphism. -/
-/- The `Lattice` parameter can't be `[]` because `outParam`s would make them metavariables,
-and can't be `{}` because they don't appear in the goal or the `OrderIsoClass` parameter.
-We choose `{}` since it fails faster. -/
-@[nolint dangerousInstance]
-- porting note: made it an `instance` because we're no longer afraid of loops
-instance (priority := 100) toLatticeHomClass {_ : LinearOrder α} {_ : Lattice β}
- [OrderHomClass F α β] : LatticeHomClass F α β :=
+instance (priority := 100) toLatticeHomClass : LatticeHomClass F α β :=
{ ‹OrderHomClass F α β› with
map_sup := fun f a b => by
obtain h | h := le_total a b
initialize_simps_projections
now by default generates all projections of all parent structures, and doesn't generate the projections to those parent structures.TwoPointed
)Internal changes:
ParsedProjectionData
to avoid the bug reported here (and to another bug where it seemed that the wrong data was inserted in ParsedProjectionData
, but it was hard to minimize because of all the crashes). If we manage to fix the bug in that Zulip thread, I'll see if I can track down the other bug in commit 97454284Co-authored-by: Johan Commelin <johan@commelin.net>
@@ -91,6 +91,13 @@ structure BoundedLatticeHom (α β : Type _) [Lattice α] [Lattice β] [BoundedO
map_bot' : toFun ⊥ = ⊥
#align bounded_lattice_hom BoundedLatticeHom
+-- Porting note: todo: remove this configuration and use the default configuration.
+-- We keep this to be consistent with Lean 3.
+initialize_simps_projections SupBotHom (+toSupHom, -toFun)
+initialize_simps_projections InfTopHom (+toInfHom, -toFun)
+initialize_simps_projections LatticeHom (+toSupHom, -toFun)
+initialize_simps_projections BoundedLatticeHom (+toLatticeHom, -toFun)
+
section
/-- `SupHomClass F α β` states that `F` is a type of `⊔`-preserving morphisms.
@@ -49,7 +49,7 @@ open Function OrderDual
variable {F ι α β γ δ : Type _}
/-- The type of `⊔`-preserving functions from `α` to `β`. -/
-structure SupHom (α β : Type _) [HasSup α] [HasSup β] where
+structure SupHom (α β : Type _) [Sup α] [Sup β] where
/-- The underlying function of a `SupHom` -/
toFun : α → β
/-- A `SupHom` preserves suprema. -/
@@ -57,7 +57,7 @@ structure SupHom (α β : Type _) [HasSup α] [HasSup β] where
#align sup_hom SupHom
/-- The type of `⊓`-preserving functions from `α` to `β`. -/
-structure InfHom (α β : Type _) [HasInf α] [HasInf β] where
+structure InfHom (α β : Type _) [Inf α] [Inf β] where
/-- The underlying function of an `InfHom` -/
toFun : α → β
/-- An `InfHom` preserves infima. -/
@@ -65,13 +65,13 @@ structure InfHom (α β : Type _) [HasInf α] [HasInf β] where
#align inf_hom InfHom
/-- The type of finitary supremum-preserving homomorphisms from `α` to `β`. -/
-structure SupBotHom (α β : Type _) [HasSup α] [HasSup β] [Bot α] [Bot β] extends SupHom α β where
+structure SupBotHom (α β : Type _) [Sup α] [Sup β] [Bot α] [Bot β] extends SupHom α β where
/-- A `SupBotHom` preserves the bottom element. -/
map_bot' : toFun ⊥ = ⊥
#align sup_bot_hom SupBotHom
/-- The type of finitary infimum-preserving homomorphisms from `α` to `β`. -/
-structure InfTopHom (α β : Type _) [HasInf α] [HasInf β] [Top α] [Top β] extends InfHom α β where
+structure InfTopHom (α β : Type _) [Inf α] [Inf β] [Top α] [Top β] extends InfHom α β where
/-- An `InfTopHom` preserves the top element. -/
map_top' : toFun ⊤ = ⊤
#align inf_top_hom InfTopHom
@@ -96,7 +96,7 @@ section
/-- `SupHomClass F α β` states that `F` is a type of `⊔`-preserving morphisms.
You should extend this class when you extend `SupHom`. -/
-class SupHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasSup β] extends
+class SupHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] extends
FunLike F α fun _ => β where
/-- A `SupHomClass` morphism preserves suprema. -/
map_sup (f : F) (a b : α) : f (a ⊔ b) = f a ⊔ f b
@@ -105,7 +105,7 @@ class SupHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasSup
/-- `InfHomClass F α β` states that `F` is a type of `⊓`-preserving morphisms.
You should extend this class when you extend `InfHom`. -/
-class InfHomClass (F : Type _) (α β : outParam <| Type _) [HasInf α] [HasInf β] extends
+class InfHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] extends
FunLike F α fun _ => β where
/-- An `InfHomClass` morphism preserves infima. -/
map_inf (f : F) (a b : α) : f (a ⊓ b) = f a ⊓ f b
@@ -114,7 +114,7 @@ class InfHomClass (F : Type _) (α β : outParam <| Type _) [HasInf α] [HasInf
/-- `SupBotHomClass F α β` states that `F` is a type of finitary supremum-preserving morphisms.
You should extend this class when you extend `SupBotHom`. -/
-class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasSup β] [Bot α]
+class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [Sup α] [Sup β] [Bot α]
[Bot β] extends SupHomClass F α β where
/-- A `SupBotHomClass` morphism preserves the bottom element. -/
map_bot (f : F) : f ⊥ = ⊥
@@ -123,7 +123,7 @@ class SupBotHomClass (F : Type _) (α β : outParam <| Type _) [HasSup α] [HasS
/-- `InfTopHomClass F α β` states that `F` is a type of finitary infimum-preserving morphisms.
You should extend this class when you extend `SupBotHom`. -/
-class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [HasInf α] [HasInf β] [Top α]
+class InfTopHomClass (F : Type _) (α β : outParam <| Type _) [Inf α] [Inf β] [Top α]
[Top β] extends InfHomClass F α β where
/-- An `InfTopHomClass` morphism preserves the top element. -/
map_top (f : F) : f ⊤ = ⊤
@@ -175,13 +175,13 @@ instance (priority := 100) InfHomClass.toOrderHomClass {_ : SemilatticeInf α} {
#align inf_hom_class.to_order_hom_class InfHomClass.toOrderHomClass
-- See note [lower instance priority]
-instance (priority := 100) SupBotHomClass.toBotHomClass {_ : HasSup α} {_ : HasSup β} {_ : Bot α}
+instance (priority := 100) SupBotHomClass.toBotHomClass {_ : Sup α} {_ : Sup β} {_ : Bot α}
{_ : Bot β} [SupBotHomClass F α β] : BotHomClass F α β :=
{ ‹SupBotHomClass F α β› with }
#align sup_bot_hom_class.to_bot_hom_class SupBotHomClass.toBotHomClass
-- See note [lower instance priority]
-instance (priority := 100) InfTopHomClass.toTopHomClass {_ : HasInf α} {_ : HasInf β} {_ : Top α}
+instance (priority := 100) InfTopHomClass.toTopHomClass {_ : Inf α} {_ : Inf β} {_ : Top α}
{_ : Top β} [InfTopHomClass F α β] : TopHomClass F α β :=
{ ‹InfTopHomClass F α β› with }
#align inf_top_hom_class.to_top_hom_class InfTopHomClass.toTopHomClass
@@ -322,16 +322,16 @@ theorem map_symm_diff' (a b : α) : f (a ∆ b) = f a ∆ f b := by
end BooleanAlgebra
-instance [HasSup α] [HasSup β] [SupHomClass F α β] : CoeTC F (SupHom α β) :=
+instance [Sup α] [Sup β] [SupHomClass F α β] : CoeTC F (SupHom α β) :=
⟨fun f => ⟨f, map_sup f⟩⟩
-instance [HasInf α] [HasInf β] [InfHomClass F α β] : CoeTC F (InfHom α β) :=
+instance [Inf α] [Inf β] [InfHomClass F α β] : CoeTC F (InfHom α β) :=
⟨fun f => ⟨f, map_inf f⟩⟩
-instance [HasSup α] [HasSup β] [Bot α] [Bot β] [SupBotHomClass F α β] : CoeTC F (SupBotHom α β) :=
+instance [Sup α] [Sup β] [Bot α] [Bot β] [SupBotHomClass F α β] : CoeTC F (SupBotHom α β) :=
⟨fun f => ⟨f, map_bot f⟩⟩
-instance [HasInf α] [HasInf β] [Top α] [Top β] [InfTopHomClass F α β] : CoeTC F (InfTopHom α β) :=
+instance [Inf α] [Inf β] [Top α] [Top β] [InfTopHomClass F α β] : CoeTC F (InfTopHom α β) :=
⟨fun f => ⟨f, map_top f⟩⟩
instance [Lattice α] [Lattice β] [LatticeHomClass F α β] : CoeTC F (LatticeHom α β) :=
@@ -352,11 +352,11 @@ instance [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] [BoundedL
namespace SupHom
-variable [HasSup α]
+variable [Sup α]
-section HasSup
+section Sup
-variable [HasSup β] [HasSup γ] [HasSup δ]
+variable [Sup β] [Sup γ] [Sup δ]
instance : SupHomClass (SupHom α β) α β where
coe := SupHom.toFun
@@ -456,7 +456,7 @@ theorem cancel_left {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Injectiv
congr_arg _⟩
#align sup_hom.cancel_left SupHom.cancel_left
-end HasSup
+end Sup
variable (α) [SemilatticeSup β]
@@ -477,7 +477,7 @@ theorem const_apply (b : β) (a : α) : const α b a = b :=
variable {α}
-instance : HasSup (SupHom α β) :=
+instance : Sup (SupHom α β) :=
⟨fun f g =>
⟨f ⊔ g, fun a b => by
rw [Pi.sup_apply, map_sup, map_sup]
@@ -538,11 +538,11 @@ end SupHom
namespace InfHom
-variable [HasInf α]
+variable [Inf α]
-section HasInf
+section Inf
-variable [HasInf β] [HasInf γ] [HasInf δ]
+variable [Inf β] [Inf γ] [Inf δ]
instance : InfHomClass (InfHom α β) α β where
coe := InfHom.toFun
@@ -642,7 +642,7 @@ theorem cancel_left {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Injectiv
congr_arg _⟩
#align inf_hom.cancel_left InfHom.cancel_left
-end HasInf
+end Inf
variable (α) [SemilatticeInf β]
@@ -663,7 +663,7 @@ theorem const_apply (b : β) (a : α) : const α b a = b :=
variable {α}
-instance : HasInf (InfHom α β) :=
+instance : Inf (InfHom α β) :=
⟨fun f g =>
⟨f ⊓ g, fun a b => by
rw [Pi.inf_apply, map_inf, map_inf]
@@ -723,11 +723,11 @@ end InfHom
namespace SupBotHom
-variable [HasSup α] [Bot α]
+variable [Sup α] [Bot α]
-section HasSup
+section Sup
-variable [HasSup β] [Bot β] [HasSup γ] [Bot γ] [HasSup δ] [Bot δ]
+variable [Sup β] [Bot β] [Sup γ] [Bot γ] [Sup δ] [Bot δ]
/-- Reinterpret a `SupBotHom` as a `BotHom`. -/
def toBotHom (f : SupBotHom α β) : BotHom α β :=
@@ -842,11 +842,11 @@ theorem cancel_left {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β} (hg : In
⟨fun h => SupBotHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align sup_bot_hom.cancel_left SupBotHom.cancel_left
-end HasSup
+end Sup
variable [SemilatticeSup β] [OrderBot β]
-instance : HasSup (SupBotHom α β) :=
+instance : Sup (SupBotHom α β) :=
⟨fun f g => { f.toBotHom ⊔ g.toBotHom with toSupHom := f.toSupHom ⊔ g.toSupHom }⟩
instance : SemilatticeSup (SupBotHom α β) :=
@@ -883,11 +883,11 @@ end SupBotHom
namespace InfTopHom
-variable [HasInf α] [Top α]
+variable [Inf α] [Top α]
-section HasInf
+section Inf
-variable [HasInf β] [Top β] [HasInf γ] [Top γ] [HasInf δ] [Top δ]
+variable [Inf β] [Top β] [Inf γ] [Top γ] [Inf δ] [Top δ]
/-- Reinterpret an `InfTopHom` as a `TopHom`. -/
def toTopHom (f : InfTopHom α β) : TopHom α β :=
@@ -1002,11 +1002,11 @@ theorem cancel_left {g : InfTopHom β γ} {f₁ f₂ : InfTopHom α β} (hg : In
⟨fun h => InfTopHom.ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
#align inf_top_hom.cancel_left InfTopHom.cancel_left
-end HasInf
+end Inf
variable [SemilatticeInf β] [OrderTop β]
-instance : HasInf (InfTopHom α β) :=
+instance : Inf (InfTopHom α β) :=
⟨fun f g => { f.toTopHom ⊓ g.toTopHom with toInfHom := f.toInfHom ⊓ g.toInfHom }⟩
instance : SemilatticeInf (InfTopHom α β) :=
@@ -1388,7 +1388,7 @@ end BoundedLatticeHom
namespace SupHom
-variable [HasSup α] [HasSup β] [HasSup γ]
+variable [Sup α] [Sup β] [Sup γ]
/-- Reinterpret a supremum homomorphism as an infimum homomorphism between the dual lattices. -/
@[simps]
@@ -1426,7 +1426,7 @@ end SupHom
namespace InfHom
-variable [HasInf α] [HasInf β] [HasInf γ]
+variable [Inf α] [Inf β] [Inf γ]
/-- Reinterpret an infimum homomorphism as a supremum homomorphism between the dual lattices. -/
@[simps]
@@ -1464,7 +1464,7 @@ end InfHom
namespace SupBotHom
-variable [HasSup α] [Bot α] [HasSup β] [Bot β] [HasSup γ] [Bot γ]
+variable [Sup α] [Bot α] [Sup β] [Bot β] [Sup γ] [Bot γ]
/-- Reinterpret a finitary supremum homomorphism as a finitary infimum homomorphism between the dual
lattices. -/
@@ -1500,7 +1500,7 @@ end SupBotHom
namespace InfTopHom
-variable [HasInf α] [Top α] [HasInf β] [Top β] [HasInf γ] [Top γ]
+variable [Inf α] [Top α] [Inf β] [Top β] [Inf γ] [Top γ]
/-- Reinterpret a finitary infimum homomorphism as a finitary supremum homomorphism between the dual
lattices. -/
All dependencies are ported!