order.hom.orderMathlib.Order.Hom.Order

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Anne Baanen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin, Anne Baanen
 -/
-import Mathbin.Logic.Function.Iterate
-import Mathbin.Order.GaloisConnection
-import Mathbin.Order.Hom.Basic
+import Logic.Function.Iterate
+import Order.GaloisConnection
+import Order.Hom.Basic
 
 #align_import order.hom.order from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Anne Baanen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin, Anne Baanen
-
-! This file was ported from Lean 3 source module order.hom.order
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Logic.Function.Iterate
 import Mathbin.Order.GaloisConnection
 import Mathbin.Order.Hom.Basic
 
+#align_import order.hom.order from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Lattice structure on order homomorphisms
 
Diff
@@ -78,40 +78,52 @@ instance [Preorder β] [OrderTop β] : OrderTop (α →o β)
 instance [CompleteLattice β] : InfSet (α →o β)
     where sInf s := ⟨fun x => ⨅ f ∈ s, (f : _) x, fun x y h => iInf₂_mono fun f _ => f.mono h⟩
 
+#print OrderHom.sInf_apply /-
 @[simp]
 theorem sInf_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : sInf s x = ⨅ f ∈ s, (f : _) x :=
   rfl
 #align order_hom.Inf_apply OrderHom.sInf_apply
+-/
 
+#print OrderHom.iInf_apply /-
 theorem iInf_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨅ i, f i) x = ⨅ i, f i x :=
   (sInf_apply _ _).trans iInf_range
 #align order_hom.infi_apply OrderHom.iInf_apply
+-/
 
+#print OrderHom.coe_iInf /-
 @[simp, norm_cast]
 theorem coe_iInf {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨅ i, f i : α →o β) : α → β) = ⨅ i, f i :=
   funext fun x => (iInf_apply f x).trans (@iInf_apply _ _ _ _ (fun i => f i) _).symm
 #align order_hom.coe_infi OrderHom.coe_iInf
+-/
 
 instance [CompleteLattice β] : SupSet (α →o β)
     where sSup s := ⟨fun x => ⨆ f ∈ s, (f : _) x, fun x y h => iSup₂_mono fun f _ => f.mono h⟩
 
+#print OrderHom.sSup_apply /-
 @[simp]
 theorem sSup_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : sSup s x = ⨆ f ∈ s, (f : _) x :=
   rfl
 #align order_hom.Sup_apply OrderHom.sSup_apply
+-/
 
+#print OrderHom.iSup_apply /-
 theorem iSup_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨆ i, f i) x = ⨆ i, f i x :=
   (sSup_apply _ _).trans iSup_range
 #align order_hom.supr_apply OrderHom.iSup_apply
+-/
 
+#print OrderHom.coe_iSup /-
 @[simp, norm_cast]
 theorem coe_iSup {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨆ i, f i : α →o β) : α → β) = ⨆ i, f i :=
   funext fun x => (iSup_apply f x).trans (@iSup_apply _ _ _ _ (fun i => f i) _).symm
 #align order_hom.coe_supr OrderHom.coe_iSup
+-/
 
 instance [CompleteLattice β] : CompleteLattice (α →o β) :=
   { (_ : Lattice (α →o β)), OrderHom.orderTop,
@@ -123,6 +135,7 @@ instance [CompleteLattice β] : CompleteLattice (α →o β) :=
     le_inf := fun s f hf x => le_iInf₂ fun g hg => hf g hg x
     inf_le := fun s f hf x => iInf_le_of_le f (iInf_le _ hf) }
 
+#print OrderHom.iterate_sup_le_sup_iff /-
 theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α) :
     (∀ n₁ n₂ a₁ a₂, (f^[n₁ + n₂]) (a₁ ⊔ a₂) ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂) ↔
       ∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ f a₁ ⊔ a₂ :=
@@ -148,6 +161,7 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
       _ = (f^[n₁]) (a₁ ⊔ (f^[n₂]) a₂) := by rw [sup_comm]
       _ ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂ := h' n₁ a₁ _
 #align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iff
+-/
 
 end Preorder
 
Diff
@@ -140,7 +140,6 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
           _ ≤ (f^[n]) (f a₁ ⊔ a₂) := (f.mono.iterate n (h a₁ a₂))
           _ ≤ (f^[n]) (f a₁) ⊔ a₂ := (ih _ _)
           _ = (f^[n + 1]) a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply]
-          
     calc
       (f^[n₁ + n₂]) (a₁ ⊔ a₂) = (f^[n₁]) ((f^[n₂]) (a₁ ⊔ a₂)) :=
         Function.iterate_add_apply f n₁ n₂ _
@@ -148,7 +147,6 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
       _ ≤ (f^[n₁]) ((f^[n₂]) a₂ ⊔ a₁) := (f.mono.iterate n₁ (h' n₂ _ _))
       _ = (f^[n₁]) (a₁ ⊔ (f^[n₂]) a₂) := by rw [sup_comm]
       _ ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂ := h' n₁ a₁ _
-      
 #align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iff
 
 end Preorder
Diff
@@ -78,34 +78,16 @@ instance [Preorder β] [OrderTop β] : OrderTop (α →o β)
 instance [CompleteLattice β] : InfSet (α →o β)
     where sInf s := ⟨fun x => ⨅ f ∈ s, (f : _) x, fun x y h => iInf₂_mono fun f _ => f.mono h⟩
 
-/- warning: order_hom.Inf_apply -> OrderHom.sInf_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (InfSet.sInf.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) s) x) (iInf.{u2, succ (max u1 u2)} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (InfSet.sInf.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) s) x) (iInf.{u2, succ (max u1 u2)} β (CompleteLattice.toInfSet.{u2} β _inst_2) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f x)))
-Case conversion may be inaccurate. Consider using '#align order_hom.Inf_apply OrderHom.sInf_applyₓ'. -/
 @[simp]
 theorem sInf_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : sInf s x = ⨅ f ∈ s, (f : _) x :=
   rfl
 #align order_hom.Inf_apply OrderHom.sInf_apply
 
-/- warning: order_hom.infi_apply -> OrderHom.iInf_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i) x))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i) x))
-Case conversion may be inaccurate. Consider using '#align order_hom.infi_apply OrderHom.iInf_applyₓ'. -/
 theorem iInf_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨅ i, f i) x = ⨅ i, f i x :=
   (sInf_apply _ _).trans iInf_range
 #align order_hom.infi_apply OrderHom.iInf_apply
 
-/- warning: order_hom.coe_infi -> OrderHom.coe_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iInf.{max u1 u2, u3} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} (α -> β) (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iInf.{max u1 u2, u3} (α -> β) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toInfSet.{u2} β _inst_2)) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i)))
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_infi OrderHom.coe_iInfₓ'. -/
 @[simp, norm_cast]
 theorem coe_iInf {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨅ i, f i : α →o β) : α → β) = ⨅ i, f i :=
@@ -115,34 +97,16 @@ theorem coe_iInf {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
 instance [CompleteLattice β] : SupSet (α →o β)
     where sSup s := ⟨fun x => ⨆ f ∈ s, (f : _) x, fun x y h => iSup₂_mono fun f _ => f.mono h⟩
 
-/- warning: order_hom.Sup_apply -> OrderHom.sSup_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (SupSet.sSup.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) s) x) (iSup.{u2, succ (max u1 u2)} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (SupSet.sSup.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) s) x) (iSup.{u2, succ (max u1 u2)} β (CompleteLattice.toSupSet.{u2} β _inst_2) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f x)))
-Case conversion may be inaccurate. Consider using '#align order_hom.Sup_apply OrderHom.sSup_applyₓ'. -/
 @[simp]
 theorem sSup_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : sSup s x = ⨆ f ∈ s, (f : _) x :=
   rfl
 #align order_hom.Sup_apply OrderHom.sSup_apply
 
-/- warning: order_hom.supr_apply -> OrderHom.iSup_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i) x))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i) x))
-Case conversion may be inaccurate. Consider using '#align order_hom.supr_apply OrderHom.iSup_applyₓ'. -/
 theorem iSup_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨆ i, f i) x = ⨆ i, f i x :=
   (sSup_apply _ _).trans iSup_range
 #align order_hom.supr_apply OrderHom.iSup_apply
 
-/- warning: order_hom.coe_supr -> OrderHom.coe_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iSup.{max u1 u2, u3} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2))) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} (α -> β) (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iSup.{max u1 u2, u3} (α -> β) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toSupSet.{u2} β _inst_2)) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i)))
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_supr OrderHom.coe_iSupₓ'. -/
 @[simp, norm_cast]
 theorem coe_iSup {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨆ i, f i : α →o β) : α → β) = ⨆ i, f i :=
@@ -159,12 +123,6 @@ instance [CompleteLattice β] : CompleteLattice (α →o β) :=
     le_inf := fun s f hf x => le_iInf₂ fun g hg => hf g hg x
     inf_le := fun s f hf x => iInf_le_of_le f (iInf_le _ hf) }
 
-/- warning: order_hom.iterate_sup_le_sup_iff -> OrderHom.iterate_sup_le_sup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_2 : SemilatticeSup.{u1} α] (f : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))), Iff (forall (n₁ : Nat) (n₂ : Nat) (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n₁ n₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₁ a₁) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₂ a₂))) (forall (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f a₁) a₂))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_2 : SemilatticeSup.{u1} α] (f : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))), Iff (forall (n₁ : Nat) (n₂ : Nat) (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n₁ n₂) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) n₁ a₁) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) n₂ a₂))) (forall (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f a₁) a₂))
-Case conversion may be inaccurate. Consider using '#align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iffₓ'. -/
 theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α) :
     (∀ n₁ n₂ a₁ a₂, (f^[n₁ + n₂]) (a₁ ⊔ a₂) ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂) ↔
       ∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ f a₁ ⊔ a₂ :=
Diff
@@ -171,11 +171,10 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
   by
   constructor <;> intro h
   · exact h 1 0
-  · intro n₁ n₂ a₁ a₂
+  · intro n₁ n₂ a₁ a₂;
     have h' : ∀ n a₁ a₂, (f^[n]) (a₁ ⊔ a₂) ≤ (f^[n]) a₁ ⊔ a₂ :=
       by
-      intro n
-      induction' n with n ih <;> intro a₁ a₂
+      intro n; induction' n with n ih <;> intro a₁ a₂
       · rfl
       ·
         calc
Diff
@@ -161,7 +161,7 @@ instance [CompleteLattice β] : CompleteLattice (α →o β) :=
 
 /- warning: order_hom.iterate_sup_le_sup_iff -> OrderHom.iterate_sup_le_sup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_2 : SemilatticeSup.{u1} α] (f : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))), Iff (forall (n₁ : Nat) (n₂ : Nat) (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n₁ n₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₁ a₁) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₂ a₂))) (forall (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f a₁) a₂))
+  forall {α : Type.{u1}} [_inst_2 : SemilatticeSup.{u1} α] (f : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))), Iff (forall (n₁ : Nat) (n₂ : Nat) (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n₁ n₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₁ a₁) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₂ a₂))) (forall (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f a₁) a₂))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_2 : SemilatticeSup.{u1} α] (f : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))), Iff (forall (n₁ : Nat) (n₂ : Nat) (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n₁ n₂) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) n₁ a₁) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) n₂ a₂))) (forall (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f a₁) a₂))
 Case conversion may be inaccurate. Consider using '#align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iffₓ'. -/
Diff
@@ -76,88 +76,88 @@ instance [Preorder β] [OrderTop β] : OrderTop (α →o β)
   le_top a x := le_top
 
 instance [CompleteLattice β] : InfSet (α →o β)
-    where infₛ s := ⟨fun x => ⨅ f ∈ s, (f : _) x, fun x y h => infᵢ₂_mono fun f _ => f.mono h⟩
+    where sInf s := ⟨fun x => ⨅ f ∈ s, (f : _) x, fun x y h => iInf₂_mono fun f _ => f.mono h⟩
 
-/- warning: order_hom.Inf_apply -> OrderHom.infₛ_apply is a dubious translation:
+/- warning: order_hom.Inf_apply -> OrderHom.sInf_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (InfSet.infₛ.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) s) x) (infᵢ.{u2, succ (max u1 u2)} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) f x)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (InfSet.sInf.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) s) x) (iInf.{u2, succ (max u1 u2)} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (InfSet.infₛ.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) s) x) (infᵢ.{u2, succ (max u1 u2)} β (CompleteLattice.toInfSet.{u2} β _inst_2) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f x)))
-Case conversion may be inaccurate. Consider using '#align order_hom.Inf_apply OrderHom.infₛ_applyₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (InfSet.sInf.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) s) x) (iInf.{u2, succ (max u1 u2)} β (CompleteLattice.toInfSet.{u2} β _inst_2) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f x)))
+Case conversion may be inaccurate. Consider using '#align order_hom.Inf_apply OrderHom.sInf_applyₓ'. -/
 @[simp]
-theorem infₛ_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : infₛ s x = ⨅ f ∈ s, (f : _) x :=
+theorem sInf_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : sInf s x = ⨅ f ∈ s, (f : _) x :=
   rfl
-#align order_hom.Inf_apply OrderHom.infₛ_apply
+#align order_hom.Inf_apply OrderHom.sInf_apply
 
-/- warning: order_hom.infi_apply -> OrderHom.infᵢ_apply is a dubious translation:
+/- warning: order_hom.infi_apply -> OrderHom.iInf_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (infᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i) x))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i) x))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (infᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (infᵢ.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i) x))
-Case conversion may be inaccurate. Consider using '#align order_hom.infi_apply OrderHom.infᵢ_applyₓ'. -/
-theorem infᵢ_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i) x))
+Case conversion may be inaccurate. Consider using '#align order_hom.infi_apply OrderHom.iInf_applyₓ'. -/
+theorem iInf_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨅ i, f i) x = ⨅ i, f i x :=
-  (infₛ_apply _ _).trans infᵢ_range
-#align order_hom.infi_apply OrderHom.infᵢ_apply
+  (sInf_apply _ _).trans iInf_range
+#align order_hom.infi_apply OrderHom.iInf_apply
 
-/- warning: order_hom.coe_infi -> OrderHom.coe_infᵢ is a dubious translation:
+/- warning: order_hom.coe_infi -> OrderHom.coe_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (infᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (infᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (infᵢ.{max u1 u2, u3} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (infᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iInf.{max u1 u2, u3} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} (α -> β) (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (infᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (infᵢ.{max u1 u2, u3} (α -> β) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toInfSet.{u2} β _inst_2)) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i)))
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_infi OrderHom.coe_infᵢₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} (α -> β) (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iInf.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iInf.{max u1 u2, u3} (α -> β) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toInfSet.{u2} β _inst_2)) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i)))
+Case conversion may be inaccurate. Consider using '#align order_hom.coe_infi OrderHom.coe_iInfₓ'. -/
 @[simp, norm_cast]
-theorem coe_infᵢ {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
+theorem coe_iInf {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨅ i, f i : α →o β) : α → β) = ⨅ i, f i :=
-  funext fun x => (infᵢ_apply f x).trans (@infᵢ_apply _ _ _ _ (fun i => f i) _).symm
-#align order_hom.coe_infi OrderHom.coe_infᵢ
+  funext fun x => (iInf_apply f x).trans (@iInf_apply _ _ _ _ (fun i => f i) _).symm
+#align order_hom.coe_infi OrderHom.coe_iInf
 
 instance [CompleteLattice β] : SupSet (α →o β)
-    where supₛ s := ⟨fun x => ⨆ f ∈ s, (f : _) x, fun x y h => supᵢ₂_mono fun f _ => f.mono h⟩
+    where sSup s := ⟨fun x => ⨆ f ∈ s, (f : _) x, fun x y h => iSup₂_mono fun f _ => f.mono h⟩
 
-/- warning: order_hom.Sup_apply -> OrderHom.supₛ_apply is a dubious translation:
+/- warning: order_hom.Sup_apply -> OrderHom.sSup_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (SupSet.supₛ.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) s) x) (supᵢ.{u2, succ (max u1 u2)} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) f x)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (SupSet.sSup.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) s) x) (iSup.{u2, succ (max u1 u2)} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.Mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.hasMem.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (SupSet.supₛ.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) s) x) (supᵢ.{u2, succ (max u1 u2)} β (CompleteLattice.toSupSet.{u2} β _inst_2) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f x)))
-Case conversion may be inaccurate. Consider using '#align order_hom.Sup_apply OrderHom.supₛ_applyₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (s : Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (SupSet.sSup.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) s) x) (iSup.{u2, succ (max u1 u2)} β (CompleteLattice.toSupSet.{u2} β _inst_2) (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (f : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) (fun (H : Membership.mem.{max u1 u2, max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (Set.{max u2 u1} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (Set.instMembershipSet.{max u1 u2} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) f s) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f x)))
+Case conversion may be inaccurate. Consider using '#align order_hom.Sup_apply OrderHom.sSup_applyₓ'. -/
 @[simp]
-theorem supₛ_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : supₛ s x = ⨆ f ∈ s, (f : _) x :=
+theorem sSup_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) : sSup s x = ⨆ f ∈ s, (f : _) x :=
   rfl
-#align order_hom.Sup_apply OrderHom.supₛ_apply
+#align order_hom.Sup_apply OrderHom.sSup_apply
 
-/- warning: order_hom.supr_apply -> OrderHom.supᵢ_apply is a dubious translation:
+/- warning: order_hom.supr_apply -> OrderHom.iSup_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i) x))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i) x))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (supᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i) x))
-Case conversion may be inaccurate. Consider using '#align order_hom.supr_apply OrderHom.supᵢ_applyₓ'. -/
-theorem supᵢ_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : α), Eq.{succ u2} β (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i)) x) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i) x))
+Case conversion may be inaccurate. Consider using '#align order_hom.supr_apply OrderHom.iSup_applyₓ'. -/
+theorem iSup_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨆ i, f i) x = ⨆ i, f i x :=
-  (supₛ_apply _ _).trans supᵢ_range
-#align order_hom.supr_apply OrderHom.supᵢ_apply
+  (sSup_apply _ _).trans iSup_range
+#align order_hom.supr_apply OrderHom.iSup_apply
 
-/- warning: order_hom.coe_supr -> OrderHom.coe_supᵢ is a dubious translation:
+/- warning: order_hom.coe_supr -> OrderHom.coe_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (supᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (supᵢ.{max u1 u2, u3} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (supᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2))) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iSup.{max u1 u2, u3} ((fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2))) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (fun (_x : OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) => α -> β) (OrderHom.hasCoeToFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} (α -> β) (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (supᵢ.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (supᵢ.{max u1 u2, u3} (α -> β) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toSupSet.{u2} β _inst_2)) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i)))
-Case conversion may be inaccurate. Consider using '#align order_hom.coe_supr OrderHom.coe_supᵢₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] {ι : Sort.{u3}} [_inst_2 : CompleteLattice.{u2} β] (f : ι -> (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))), Eq.{max (succ u1) (succ u2)} (α -> β) (OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (iSup.{max u1 u2, u3} (OrderHom.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => f i))) (iSup.{max u1 u2, u3} (α -> β) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toSupSet.{u2} β _inst_2)) ι (fun (i : ι) => OrderHom.toFun.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (f i)))
+Case conversion may be inaccurate. Consider using '#align order_hom.coe_supr OrderHom.coe_iSupₓ'. -/
 @[simp, norm_cast]
-theorem coe_supᵢ {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
+theorem coe_iSup {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨆ i, f i : α →o β) : α → β) = ⨆ i, f i :=
-  funext fun x => (supᵢ_apply f x).trans (@supᵢ_apply _ _ _ _ (fun i => f i) _).symm
-#align order_hom.coe_supr OrderHom.coe_supᵢ
+  funext fun x => (iSup_apply f x).trans (@iSup_apply _ _ _ _ (fun i => f i) _).symm
+#align order_hom.coe_supr OrderHom.coe_iSup
 
 instance [CompleteLattice β] : CompleteLattice (α →o β) :=
   { (_ : Lattice (α →o β)), OrderHom.orderTop,
     OrderHom.orderBot with
-    supₛ := supₛ
-    le_sup := fun s f hf x => le_supᵢ_of_le f (le_supᵢ _ hf)
-    sup_le := fun s f hf x => supᵢ₂_le fun g hg => hf g hg x
-    infₛ := infₛ
-    le_inf := fun s f hf x => le_infᵢ₂ fun g hg => hf g hg x
-    inf_le := fun s f hf x => infᵢ_le_of_le f (infᵢ_le _ hf) }
+    sSup := sSup
+    le_sup := fun s f hf x => le_iSup_of_le f (le_iSup _ hf)
+    sup_le := fun s f hf x => iSup₂_le fun g hg => hf g hg x
+    sInf := sInf
+    le_inf := fun s f hf x => le_iInf₂ fun g hg => hf g hg x
+    inf_le := fun s f hf x => iInf_le_of_le f (iInf_le _ hf) }
 
 /- warning: order_hom.iterate_sup_le_sup_iff -> OrderHom.iterate_sup_le_sup_iff is a dubious translation:
 lean 3 declaration is
Diff
@@ -180,15 +180,15 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
       ·
         calc
           (f^[n + 1]) (a₁ ⊔ a₂) = (f^[n]) (f (a₁ ⊔ a₂)) := Function.iterate_succ_apply f n _
-          _ ≤ (f^[n]) (f a₁ ⊔ a₂) := f.mono.iterate n (h a₁ a₂)
-          _ ≤ (f^[n]) (f a₁) ⊔ a₂ := ih _ _
+          _ ≤ (f^[n]) (f a₁ ⊔ a₂) := (f.mono.iterate n (h a₁ a₂))
+          _ ≤ (f^[n]) (f a₁) ⊔ a₂ := (ih _ _)
           _ = (f^[n + 1]) a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply]
           
     calc
       (f^[n₁ + n₂]) (a₁ ⊔ a₂) = (f^[n₁]) ((f^[n₂]) (a₁ ⊔ a₂)) :=
         Function.iterate_add_apply f n₁ n₂ _
       _ = (f^[n₁]) ((f^[n₂]) (a₂ ⊔ a₁)) := by rw [sup_comm]
-      _ ≤ (f^[n₁]) ((f^[n₂]) a₂ ⊔ a₁) := f.mono.iterate n₁ (h' n₂ _ _)
+      _ ≤ (f^[n₁]) ((f^[n₂]) a₂ ⊔ a₁) := (f.mono.iterate n₁ (h' n₂ _ _))
       _ = (f^[n₁]) (a₁ ⊔ (f^[n₂]) a₂) := by rw [sup_comm]
       _ ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂ := h' n₁ a₁ _
       
Diff
@@ -40,19 +40,17 @@ section Preorder
 variable [Preorder α]
 
 @[simps]
-instance [SemilatticeSup β] : HasSup (α →o β)
-    where sup f g := ⟨fun a => f a ⊔ g a, f.mono.sup g.mono⟩
+instance [SemilatticeSup β] : Sup (α →o β) where sup f g := ⟨fun a => f a ⊔ g a, f.mono.sup g.mono⟩
 
 instance [SemilatticeSup β] : SemilatticeSup (α →o β) :=
   { (_ : PartialOrder (α →o β)) with
-    sup := HasSup.sup
+    sup := Sup.sup
     le_sup_left := fun a b x => le_sup_left
     le_sup_right := fun a b x => le_sup_right
     sup_le := fun a b c h₀ h₁ x => sup_le (h₀ x) (h₁ x) }
 
 @[simps]
-instance [SemilatticeInf β] : HasInf (α →o β)
-    where inf f g := ⟨fun a => f a ⊓ g a, f.mono.inf g.mono⟩
+instance [SemilatticeInf β] : Inf (α →o β) where inf f g := ⟨fun a => f a ⊓ g a, f.mono.inf g.mono⟩
 
 instance [SemilatticeInf β] : SemilatticeInf (α →o β) :=
   { (_ : PartialOrder (α →o β)), (dualIso α β).symm.toGaloisInsertion.liftSemilatticeInf with
@@ -161,7 +159,12 @@ instance [CompleteLattice β] : CompleteLattice (α →o β) :=
     le_inf := fun s f hf x => le_infᵢ₂ fun g hg => hf g hg x
     inf_le := fun s f hf x => infᵢ_le_of_le f (infᵢ_le _ hf) }
 
-#print OrderHom.iterate_sup_le_sup_iff /-
+/- warning: order_hom.iterate_sup_le_sup_iff -> OrderHom.iterate_sup_le_sup_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_2 : SemilatticeSup.{u1} α] (f : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))), Iff (forall (n₁ : Nat) (n₂ : Nat) (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n₁ n₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₁ a₁) (Nat.iterate.{succ u1} α (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f) n₂ a₂))) (forall (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_2) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (fun (_x : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) => α -> α) (OrderHom.hasCoeToFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) f a₁) a₂))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_2 : SemilatticeSup.{u1} α] (f : OrderHom.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))), Iff (forall (n₁ : Nat) (n₂ : Nat) (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n₁ n₂) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) n₁ a₁) (Nat.iterate.{succ u1} α (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f) n₂ a₂))) (forall (a₁ : α) (a₂ : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2))) (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) a₁ a₂)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_2) (OrderHom.toFun.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_2)) f a₁) a₂))
+Case conversion may be inaccurate. Consider using '#align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iffₓ'. -/
 theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α) :
     (∀ n₁ n₂ a₁ a₂, (f^[n₁ + n₂]) (a₁ ⊔ a₂) ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂) ↔
       ∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ f a₁ ⊔ a₂ :=
@@ -190,7 +193,6 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
       _ ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂ := h' n₁ a₁ _
       
 #align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iff
--/
 
 end Preorder
 

Changes in mathlib4

mathlib3
mathlib4
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -36,7 +36,7 @@ variable [Preorder α]
 instance [SemilatticeSup β] : Sup (α →o β) where
   sup f g := ⟨fun a => f a ⊔ g a, f.mono.sup g.mono⟩
 
---Porting note: this is the lemma that could have been generated by `@[simps]` on the
+-- Porting note: this is the lemma that could have been generated by `@[simps]` on the
 --above instance but with a nicer name
 @[simp] lemma coe_sup [SemilatticeSup β] (f g : α →o β) :
   ((f ⊔ g : α →o β) : α → β) = (f : α → β) ⊔ g := rfl
@@ -51,7 +51,7 @@ instance [SemilatticeSup β] : SemilatticeSup (α →o β) :=
 instance [SemilatticeInf β] : Inf (α →o β) where
   inf f g := ⟨fun a => f a ⊓ g a, f.mono.inf g.mono⟩
 
---Porting note: this is the lemma that could have been generated by `@[simps]` on the
+-- Porting note: this is the lemma that could have been generated by `@[simps]` on the
 --above instance but with a nicer name
 @[simp] lemma coe_inf [SemilatticeInf β] (f g : α →o β) :
   ((f ⊓ g : α →o β) : α → β) = (f : α → β) ⊓ g := rfl
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -27,7 +27,7 @@ monotone map, bundled morphism
 
 namespace OrderHom
 
-variable {α β : Type _}
+variable {α β : Type*}
 
 section Preorder
 
@@ -88,13 +88,13 @@ theorem sInf_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) :
   rfl
 #align order_hom.Inf_apply OrderHom.sInf_apply
 
-theorem iInf_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
+theorem iInf_apply {ι : Sort*} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨅ i, f i) x = ⨅ i, f i x :=
   (sInf_apply _ _).trans iInf_range
 #align order_hom.infi_apply OrderHom.iInf_apply
 
 @[simp, norm_cast]
-theorem coe_iInf {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
+theorem coe_iInf {ι : Sort*} [CompleteLattice β] (f : ι → α →o β) :
     ((⨅ i, f i : α →o β) : α → β) = ⨅ i, (f i : α → β) := by
   funext x; simp [iInf_apply]
 #align order_hom.coe_infi OrderHom.coe_iInf
@@ -108,13 +108,13 @@ theorem sSup_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) :
   rfl
 #align order_hom.Sup_apply OrderHom.sSup_apply
 
-theorem iSup_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
+theorem iSup_apply {ι : Sort*} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨆ i, f i) x = ⨆ i, f i x :=
   (sSup_apply _ _).trans iSup_range
 #align order_hom.supr_apply OrderHom.iSup_apply
 
 @[simp, norm_cast]
-theorem coe_iSup {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
+theorem coe_iSup {ι : Sort*} [CompleteLattice β] (f : ι → α →o β) :
     ((⨆ i, f i : α →o β) : α → β) = ⨆ i, (f i : α → β) := by
   funext x; simp [iSup_apply]
 #align order_hom.coe_supr OrderHom.coe_iSup
@@ -130,7 +130,7 @@ instance [CompleteLattice β] : CompleteLattice (α →o β) :=
     sInf_le := fun s f hf x => iInf_le_of_le f (iInf_le _ hf)
     }
 
-theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α) :
+theorem iterate_sup_le_sup_iff {α : Type*} [SemilatticeSup α] (f : α →o α) :
     (∀ n₁ n₂ a₁ a₂, f^[n₁ + n₂] (a₁ ⊔ a₂) ≤ f^[n₁] a₁ ⊔ f^[n₂] a₂) ↔
       ∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ f a₁ ⊔ a₂ := by
   constructor <;> intro h
chore: ensure all instances referred to directly have explicit names (#6423)

Per https://github.com/leanprover/lean4/issues/2343, we are going to need to change the automatic generation of instance names, as they become too long.

This PR ensures that everywhere in Mathlib that refers to an instance by name, that name is given explicitly, rather than being automatically generated.

There are four exceptions, which are now commented, with links to https://github.com/leanprover/lean4/issues/2343.

This was implemented by running Mathlib against a modified Lean that appended _ᾰ to all automatically generated names, and fixing everything.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -72,7 +72,7 @@ instance orderBot [Preorder β] [OrderBot β] : OrderBot (α →o β) where
   bot_le _ _ := bot_le
 
 @[simps]
-instance [Preorder β] [OrderTop β] : Top (α →o β) where
+instance instTopOrderHom [Preorder β] [OrderTop β] : Top (α →o β) where
   top := const α ⊤
 
 instance orderTop [Preorder β] [OrderTop β] : OrderTop (α →o β) where
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Anne Baanen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin, Anne Baanen
-
-! This file was ported from Lean 3 source module order.hom.order
-! leanprover-community/mathlib commit ba2245edf0c8bb155f1569fd9b9492a9b384cde6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Logic.Function.Iterate
 import Mathlib.Order.GaloisConnection
 import Mathlib.Order.Hom.Basic
 
+#align_import order.hom.order from "leanprover-community/mathlib"@"ba2245edf0c8bb155f1569fd9b9492a9b384cde6"
+
 /-!
 # Lattice structure on order homomorphisms
 
fix precedence of Nat.iterate (#5589)
Diff
@@ -134,27 +134,27 @@ instance [CompleteLattice β] : CompleteLattice (α →o β) :=
     }
 
 theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α) :
-    (∀ n₁ n₂ a₁ a₂, (f^[n₁ + n₂]) (a₁ ⊔ a₂) ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂) ↔
+    (∀ n₁ n₂ a₁ a₂, f^[n₁ + n₂] (a₁ ⊔ a₂) ≤ f^[n₁] a₁ ⊔ f^[n₂] a₂) ↔
       ∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ f a₁ ⊔ a₂ := by
   constructor <;> intro h
   · exact h 1 0
   · intro n₁ n₂ a₁ a₂
-    have h' : ∀ n a₁ a₂, (f^[n]) (a₁ ⊔ a₂) ≤ (f^[n]) a₁ ⊔ a₂ := by
+    have h' : ∀ n a₁ a₂, f^[n] (a₁ ⊔ a₂) ≤ f^[n] a₁ ⊔ a₂ := by
       intro n
       induction' n with n ih <;> intro a₁ a₂
       · rfl
       · calc
-          (f^[n + 1]) (a₁ ⊔ a₂) = (f^[n]) (f (a₁ ⊔ a₂)) := Function.iterate_succ_apply f n _
-          _ ≤ (f^[n]) (f a₁ ⊔ a₂) := f.mono.iterate n (h a₁ a₂)
-          _ ≤ (f^[n]) (f a₁) ⊔ a₂ := ih _ _
-          _ = (f^[n + 1]) a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply]
+          f^[n + 1] (a₁ ⊔ a₂) = f^[n] (f (a₁ ⊔ a₂)) := Function.iterate_succ_apply f n _
+          _ ≤ f^[n] (f a₁ ⊔ a₂) := f.mono.iterate n (h a₁ a₂)
+          _ ≤ f^[n] (f a₁) ⊔ a₂ := ih _ _
+          _ = f^[n + 1] a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply]
     calc
-      (f^[n₁ + n₂]) (a₁ ⊔ a₂) = (f^[n₁]) ((f^[n₂]) (a₁ ⊔ a₂)) :=
+      f^[n₁ + n₂] (a₁ ⊔ a₂) = f^[n₁] (f^[n₂] (a₁ ⊔ a₂)) :=
         Function.iterate_add_apply f n₁ n₂ _
-      _ = (f^[n₁]) ((f^[n₂]) (a₂ ⊔ a₁)) := by rw [sup_comm]
-      _ ≤ (f^[n₁]) ((f^[n₂]) a₂ ⊔ a₁) := f.mono.iterate n₁ (h' n₂ _ _)
-      _ = (f^[n₁]) (a₁ ⊔ (f^[n₂]) a₂) := by rw [sup_comm]
-      _ ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂ := h' n₁ a₁ _
+      _ = f^[n₁] (f^[n₂] (a₂ ⊔ a₁)) := by rw [sup_comm]
+      _ ≤ f^[n₁] (f^[n₂] a₂ ⊔ a₁) := f.mono.iterate n₁ (h' n₂ _ _)
+      _ = f^[n₁] (a₁ ⊔ f^[n₂] a₂) := by rw [sup_comm]
+      _ ≤ f^[n₁] a₁ ⊔ f^[n₂] a₂ := h' n₁ a₁ _
 #align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iff
 
 end Preorder
chore: fix many typos (#4535)

Run codespell Mathlib and keep some suggestions.

Diff
@@ -124,11 +124,11 @@ theorem coe_iSup {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
 
 instance [CompleteLattice β] : CompleteLattice (α →o β) :=
   { (_ : Lattice (α →o β)), OrderHom.orderTop, OrderHom.orderBot with
-    -- sSup := SupSet.sSup   -- Porting note: removed, unecessary?
+    -- sSup := SupSet.sSup   -- Porting note: removed, unnecessary?
     -- Porting note: Added `by apply`, was `fun s f hf x => le_iSup_of_le f (le_iSup _ hf)`
     le_sSup := fun s f hf x => le_iSup_of_le f (by apply le_iSup _ hf)
     sSup_le := fun s f hf x => iSup₂_le fun g hg => hf g hg x
-    --inf := sInf      -- Porting note: removed, unecessary?
+    --inf := sInf      -- Porting note: removed, unnecessary?
     le_sInf := fun s f hf x => le_iInf₂ fun g hg => hf g hg x
     sInf_le := fun s f hf x => iInf_le_of_le f (iInf_le _ hf)
     }
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -83,54 +83,54 @@ instance orderTop [Preorder β] [OrderTop β] : OrderTop (α →o β) where
   le_top _ _ := le_top
 
 instance [CompleteLattice β] : InfSet (α →o β) where
-  infₛ s := ⟨fun x => ⨅ f ∈ s, (f : _) x, fun _ _ h => infᵢ₂_mono fun f _ => f.mono h⟩
+  sInf s := ⟨fun x => ⨅ f ∈ s, (f : _) x, fun _ _ h => iInf₂_mono fun f _ => f.mono h⟩
 
 @[simp]
-theorem infₛ_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) :
-    infₛ s x = ⨅ f ∈ s, (f : _) x :=
+theorem sInf_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) :
+    sInf s x = ⨅ f ∈ s, (f : _) x :=
   rfl
-#align order_hom.Inf_apply OrderHom.infₛ_apply
+#align order_hom.Inf_apply OrderHom.sInf_apply
 
-theorem infᵢ_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
+theorem iInf_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨅ i, f i) x = ⨅ i, f i x :=
-  (infₛ_apply _ _).trans infᵢ_range
-#align order_hom.infi_apply OrderHom.infᵢ_apply
+  (sInf_apply _ _).trans iInf_range
+#align order_hom.infi_apply OrderHom.iInf_apply
 
 @[simp, norm_cast]
-theorem coe_infᵢ {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
+theorem coe_iInf {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨅ i, f i : α →o β) : α → β) = ⨅ i, (f i : α → β) := by
-  funext x; simp [infᵢ_apply]
-#align order_hom.coe_infi OrderHom.coe_infᵢ
+  funext x; simp [iInf_apply]
+#align order_hom.coe_infi OrderHom.coe_iInf
 
 instance [CompleteLattice β] : SupSet (α →o β) where
-  supₛ s := ⟨fun x => ⨆ f ∈ s, (f : _) x, fun _ _ h => supᵢ₂_mono fun f _ => f.mono h⟩
+  sSup s := ⟨fun x => ⨆ f ∈ s, (f : _) x, fun _ _ h => iSup₂_mono fun f _ => f.mono h⟩
 
 @[simp]
-theorem supₛ_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) :
-    supₛ s x = ⨆ f ∈ s, (f : _) x :=
+theorem sSup_apply [CompleteLattice β] (s : Set (α →o β)) (x : α) :
+    sSup s x = ⨆ f ∈ s, (f : _) x :=
   rfl
-#align order_hom.Sup_apply OrderHom.supₛ_apply
+#align order_hom.Sup_apply OrderHom.sSup_apply
 
-theorem supᵢ_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
+theorem iSup_apply {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) (x : α) :
     (⨆ i, f i) x = ⨆ i, f i x :=
-  (supₛ_apply _ _).trans supᵢ_range
-#align order_hom.supr_apply OrderHom.supᵢ_apply
+  (sSup_apply _ _).trans iSup_range
+#align order_hom.supr_apply OrderHom.iSup_apply
 
 @[simp, norm_cast]
-theorem coe_supᵢ {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
+theorem coe_iSup {ι : Sort _} [CompleteLattice β] (f : ι → α →o β) :
     ((⨆ i, f i : α →o β) : α → β) = ⨆ i, (f i : α → β) := by
-  funext x; simp [supᵢ_apply]
-#align order_hom.coe_supr OrderHom.coe_supᵢ
+  funext x; simp [iSup_apply]
+#align order_hom.coe_supr OrderHom.coe_iSup
 
 instance [CompleteLattice β] : CompleteLattice (α →o β) :=
   { (_ : Lattice (α →o β)), OrderHom.orderTop, OrderHom.orderBot with
-    -- supₛ := SupSet.supₛ   -- Porting note: removed, unecessary?
-    -- Porting note: Added `by apply`, was `fun s f hf x => le_supᵢ_of_le f (le_supᵢ _ hf)`
-    le_supₛ := fun s f hf x => le_supᵢ_of_le f (by apply le_supᵢ _ hf)
-    supₛ_le := fun s f hf x => supᵢ₂_le fun g hg => hf g hg x
-    --inf := infₛ      -- Porting note: removed, unecessary?
-    le_infₛ := fun s f hf x => le_infᵢ₂ fun g hg => hf g hg x
-    infₛ_le := fun s f hf x => infᵢ_le_of_le f (infᵢ_le _ hf)
+    -- sSup := SupSet.sSup   -- Porting note: removed, unecessary?
+    -- Porting note: Added `by apply`, was `fun s f hf x => le_iSup_of_le f (le_iSup _ hf)`
+    le_sSup := fun s f hf x => le_iSup_of_le f (by apply le_iSup _ hf)
+    sSup_le := fun s f hf x => iSup₂_le fun g hg => hf g hg x
+    --inf := sInf      -- Porting note: removed, unecessary?
+    le_sInf := fun s f hf x => le_iInf₂ fun g hg => hf g hg x
+    sInf_le := fun s f hf x => iInf_le_of_le f (iInf_le _ hf)
     }
 
 theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α) :
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -148,7 +148,6 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
           _ ≤ (f^[n]) (f a₁ ⊔ a₂) := f.mono.iterate n (h a₁ a₂)
           _ ≤ (f^[n]) (f a₁) ⊔ a₂ := ih _ _
           _ = (f^[n + 1]) a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply]
-
     calc
       (f^[n₁ + n₂]) (a₁ ⊔ a₂) = (f^[n₁]) ((f^[n₂]) (a₁ ⊔ a₂)) :=
         Function.iterate_add_apply f n₁ n₂ _
@@ -156,7 +155,6 @@ theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α
       _ ≤ (f^[n₁]) ((f^[n₂]) a₂ ⊔ a₁) := f.mono.iterate n₁ (h' n₂ _ _)
       _ = (f^[n₁]) (a₁ ⊔ (f^[n₂]) a₂) := by rw [sup_comm]
       _ ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂ := h' n₁ a₁ _
-
 #align order_hom.iterate_sup_le_sup_iff OrderHom.iterate_sup_le_sup_iff
 
 end Preorder
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -36,7 +36,7 @@ section Preorder
 
 variable [Preorder α]
 
-instance [SemilatticeSup β] : HasSup (α →o β) where
+instance [SemilatticeSup β] : Sup (α →o β) where
   sup f g := ⟨fun a => f a ⊔ g a, f.mono.sup g.mono⟩
 
 --Porting note: this is the lemma that could have been generated by `@[simps]` on the
@@ -46,12 +46,12 @@ instance [SemilatticeSup β] : HasSup (α →o β) where
 
 instance [SemilatticeSup β] : SemilatticeSup (α →o β) :=
   { (_ : PartialOrder (α →o β)) with
-    sup := HasSup.sup
+    sup := Sup.sup
     le_sup_left := fun _ _ _ => le_sup_left
     le_sup_right := fun _ _ _ => le_sup_right
     sup_le := fun _ _ _ h₀ h₁ x => sup_le (h₀ x) (h₁ x) }
 
-instance [SemilatticeInf β] : HasInf (α →o β) where
+instance [SemilatticeInf β] : Inf (α →o β) where
   inf f g := ⟨fun a => f a ⊓ g a, f.mono.inf g.mono⟩
 
 --Porting note: this is the lemma that could have been generated by `@[simps]` on the
feat: port Order.OmegaCompletePartialOrder (#1168)

Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -36,10 +36,14 @@ section Preorder
 
 variable [Preorder α]
 
-@[simps]
 instance [SemilatticeSup β] : HasSup (α →o β) where
   sup f g := ⟨fun a => f a ⊔ g a, f.mono.sup g.mono⟩
 
+--Porting note: this is the lemma that could have been generated by `@[simps]` on the
+--above instance but with a nicer name
+@[simp] lemma coe_sup [SemilatticeSup β] (f g : α →o β) :
+  ((f ⊔ g : α →o β) : α → β) = (f : α → β) ⊔ g := rfl
+
 instance [SemilatticeSup β] : SemilatticeSup (α →o β) :=
   { (_ : PartialOrder (α →o β)) with
     sup := HasSup.sup
@@ -47,10 +51,14 @@ instance [SemilatticeSup β] : SemilatticeSup (α →o β) :=
     le_sup_right := fun _ _ _ => le_sup_right
     sup_le := fun _ _ _ h₀ h₁ x => sup_le (h₀ x) (h₁ x) }
 
-@[simps]
 instance [SemilatticeInf β] : HasInf (α →o β) where
   inf f g := ⟨fun a => f a ⊓ g a, f.mono.inf g.mono⟩
 
+--Porting note: this is the lemma that could have been generated by `@[simps]` on the
+--above instance but with a nicer name
+@[simp] lemma coe_inf [SemilatticeInf β] (f g : α →o β) :
+  ((f ⊓ g : α →o β) : α → β) = (f : α → β) ⊓ g := rfl
+
 instance [SemilatticeInf β] : SemilatticeInf (α →o β) :=
   { (_ : PartialOrder (α →o β)), (dualIso α β).symm.toGaloisInsertion.liftSemilatticeInf with
     inf := (· ⊓ ·) }
chore: format by line breaks (#1523)

During porting, I usually fix the desired format we seem to want for the line breaks around by with

awk '{do {{if (match($0, "^  by$") && length(p) < 98) {p=p " by";} else {if (NR!=1) {print p}; p=$0}}} while (getline == 1) if (getline==0) print p}' Mathlib/File/Im/Working/On.lean

I noticed there are some more files that slipped through.

This pull request is the result of running this command:

grep -lr "^  by\$" Mathlib | xargs -n 1 awk -i inplace '{do {{if (match($0, "^  by$") && length(p) < 98 && not (match(p, "^[ \t]*--"))) {p=p " by";} else {if (NR!=1) {print p}; p=$0}}} while (getline == 1) if (getline==0) print p}'

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -127,8 +127,7 @@ instance [CompleteLattice β] : CompleteLattice (α →o β) :=
 
 theorem iterate_sup_le_sup_iff {α : Type _} [SemilatticeSup α] (f : α →o α) :
     (∀ n₁ n₂ a₁ a₂, (f^[n₁ + n₂]) (a₁ ⊔ a₂) ≤ (f^[n₁]) a₁ ⊔ (f^[n₂]) a₂) ↔
-      ∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ f a₁ ⊔ a₂ :=
-  by
+      ∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ f a₁ ⊔ a₂ := by
   constructor <;> intro h
   · exact h 1 0
   · intro n₁ n₂ a₁ a₂
feat: port Order.Hom.Order (#1152)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Chris Hughes <33847686+ChrisHughes24@users.noreply.github.com> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Dependencies 57

58 files ported (100.0%)
31683 lines ported (100.0%)

All dependencies are ported!