order.latticeMathlib.Order.Lattice

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(analysis/convex/proj_Icc): Extending convex functions (#18797)

Constantly extending monotone/antitone functions preserves their convexity.

Diff
@@ -846,6 +846,7 @@ hf.dual.map_sup _ _
 end monotone
 
 namespace monotone_on
+variables {f : α → β} {s : set α} {x y : α}
 
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected lemma sup [preorder α] [semilattice_sup β] {f g : α → β} {s : set α}
@@ -867,6 +868,25 @@ protected lemma min [preorder α] [linear_order β] {f g : α → β} {s : set 
   (hf : monotone_on f s) (hg : monotone_on g s) : monotone_on (λ x, min (f x) (g x)) s :=
 hf.inf hg
 
+lemma of_map_inf [semilattice_inf α] [semilattice_inf β]
+  (h : ∀ (x ∈ s) (y ∈ s), f (x ⊓ y) = f x ⊓ f y) : monotone_on f s :=
+λ x hx y hy hxy, inf_eq_left.1 $ by rw [←h _ hx _ hy, inf_eq_left.2 hxy]
+
+lemma of_map_sup [semilattice_sup α] [semilattice_sup β]
+  (h : ∀ (x ∈ s) (y ∈ s), f (x ⊔ y) = f x ⊔ f y) : monotone_on f s :=
+(@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
+
+variables [linear_order α]
+
+lemma map_sup [semilattice_sup β] (hf : monotone_on f s) (hx : x ∈ s) (hy : y ∈ s) :
+  f (x ⊔ y) = f x ⊔ f y :=
+by cases le_total x y; have := hf _ _ h;
+  assumption <|> simp only [h, this, sup_of_le_left, sup_of_le_right]
+
+lemma map_inf [semilattice_inf β] (hf : monotone_on f s) (hx : x ∈ s) (hy : y ∈ s) :
+  f (x ⊓ y) = f x ⊓ f y :=
+hf.dual.map_sup hx hy
+
 end monotone_on
 
 namespace antitone
@@ -912,6 +932,7 @@ hf.dual_right.map_inf x y
 end antitone
 
 namespace antitone_on
+variables {f : α → β} {s : set α} {x y : α}
 
 /-- Pointwise supremum of two antitone functions is a antitone function. -/
 protected lemma sup [preorder α] [semilattice_sup β] {f g : α → β} {s : set α}
@@ -933,6 +954,25 @@ protected lemma min [preorder α] [linear_order β] {f g : α → β} {s : set 
   (hf : antitone_on f s) (hg : antitone_on g s) : antitone_on (λ x, min (f x) (g x)) s :=
 hf.inf hg
 
+lemma of_map_inf [semilattice_inf α] [semilattice_sup β]
+  (h : ∀ (x ∈ s) (y ∈ s), f (x ⊓ y) = f x ⊔ f y) : antitone_on f s :=
+λ x hx y hy hxy, sup_eq_left.1 $ by rw [←h _ hx _ hy, inf_eq_left.2 hxy]
+
+lemma of_map_sup [semilattice_sup α] [semilattice_inf β]
+  (h : ∀ (x ∈ s) (y ∈ s), f (x ⊔ y) = f x ⊓ f y) : antitone_on f s :=
+(@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
+
+variables [linear_order α]
+
+lemma map_sup [semilattice_inf β] (hf : antitone_on f s) (hx : x ∈ s) (hy : y ∈ s) :
+  f (x ⊔ y) = f x ⊓ f y :=
+by cases le_total x y; have := hf _ _ h; assumption <|>
+  simp only [h, this, sup_of_le_left, sup_of_le_right, inf_of_le_left, inf_of_le_right]
+
+lemma map_inf [semilattice_sup β] (hf : antitone_on f s) (hx : x ∈ s) (hy : y ∈ s) :
+  f (x ⊓ y) = f x ⊔ f y :=
+hf.dual.map_sup hx hy
+
 end antitone_on
 
 /-!

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

feat(data/set/intervals/pi): f.update i '' Icc a b = Icc (f.update i a) (f.update i b) (#18892)

and corresponding lemmas for pi.single

Diff
@@ -777,6 +777,19 @@ by refine_struct { .. pi.lattice }; tactic.pi_instance_derive_field
 
 end pi
 
+namespace function
+variables {ι : Type*} {π : ι → Type*} [decidable_eq ι]
+
+lemma update_sup [Π i, semilattice_sup (π i)] (f : Π i, π i) (i : ι) (a b : π i) :
+  f.update i (a ⊔ b) = f.update i a ⊔ f.update i b :=
+funext $ λ j, by obtain rfl | hji := eq_or_ne j i; simp [update_noteq, *]
+
+lemma update_inf [Π i, semilattice_inf (π i)] (f : Π i, π i) (i : ι) (a b : π i) :
+  f.update i (a ⊓ b) = f.update i a ⊓ f.update i b :=
+funext $ λ j, by obtain rfl | hji := eq_or_ne j i; simp [update_noteq, *]
+
+end function
+
 /-!
 ### Monotone functions and lattices
 -/

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

feat(order/lattice): a ⊔ b = a ⊓ b ↔ a = b (#17966)

and a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c

Diff
@@ -504,20 +504,23 @@ variables [lattice α] {a b c d : α}
 
 lemma inf_le_sup : a ⊓ b ≤ a ⊔ b := inf_le_left.trans le_sup_left
 
-@[simp] lemma inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b :=
-begin
-  split,
-  { rintro H rfl, simpa using H },
-  { refine λ Hne, lt_iff_le_and_ne.2 ⟨inf_le_sup, λ Heq, Hne _⟩,
-    refine le_antisymm _ _,
-    exacts [le_sup_left.trans (Heq.symm.trans_le inf_le_right),
-      le_sup_right.trans (Heq.symm.trans_le inf_le_left)] }
-end
-
 @[simp] lemma sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
 ⟨λ h, le_antisymm (le_sup_left.trans $ h.trans inf_le_right)
   (le_sup_right.trans $ h.trans inf_le_left), by { rintro rfl, simp }⟩
 
+@[simp] lemma inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [←inf_le_sup.ge_iff_eq, sup_le_inf]
+@[simp] lemma sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b := eq_comm.trans inf_eq_sup
+@[simp] lemma inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, ne.def, inf_eq_sup]
+
+lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c :=
+begin
+  refine ⟨λ h, _, _⟩,
+  { obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm),
+    simpa using h },
+  { rintro ⟨rfl, rfl⟩,
+    exact ⟨inf_idem, sup_idem⟩ }
+end
+
 /-!
 #### Distributivity laws
 -/

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

refactor(data/set/intervals/monotone): split (#17893)

Also generalize&golf monotone_on.exists_monotone_extension and rename order.monotone to order.monotone.basic.

Lean 4 version is leanprover-community/mathlib4#947

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import order.monotone
+import order.monotone.basic
 import tactic.simps
 import tactic.pi_instances
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -302,7 +302,7 @@ instance sup_commutative : Std.Commutative α (· ⊔ ·) :=
 
 #print sup_assoc /-
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
-  eq_of_forall_ge_iff fun x => by simp only [sup_le_iff, and_assoc']
+  eq_of_forall_ge_iff fun x => by simp only [sup_le_iff, and_assoc]
 #align sup_assoc sup_assoc
 -/
 
Diff
@@ -1105,8 +1105,8 @@ theorem sup_ind (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊔ b)
 @[simp]
 theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
   ⟨fun h =>
-    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) fun bc => by
-      rwa [sup_eq_right.2 bc] at h ,
+    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h) fun bc => by
+      rwa [sup_eq_right.2 bc] at h,
     fun h => h.elim le_sup_of_le_left le_sup_of_le_right⟩
 #align le_sup_iff le_sup_iff
 -/
@@ -1115,8 +1115,8 @@ theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
 @[simp]
 theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
   ⟨fun h =>
-    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) fun bc => by
-      rwa [sup_eq_right.2 bc] at h ,
+    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h) fun bc => by
+      rwa [sup_eq_right.2 bc] at h,
     fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩
 #align lt_sup_iff lt_sup_iff
 -/
Diff
@@ -296,9 +296,9 @@ theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
 #align sup_comm sup_comm
 -/
 
-instance sup_isCommutative : IsCommutative α (· ⊔ ·) :=
+instance sup_commutative : Std.Commutative α (· ⊔ ·) :=
   ⟨@sup_comm _ _⟩
-#align sup_is_commutative sup_isCommutativeₓ
+#align sup_is_commutative sup_commutative
 
 #print sup_assoc /-
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
@@ -306,9 +306,9 @@ theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
 #align sup_assoc sup_assoc
 -/
 
-instance sup_isAssociative : IsAssociative α (· ⊔ ·) :=
+instance sup_associative : Std.Associative α (· ⊔ ·) :=
   ⟨@sup_assoc _ _⟩
-#align sup_is_associative sup_isAssociativeₓ
+#align sup_is_associative sup_associative
 
 #print sup_left_right_swap /-
 theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
@@ -636,9 +636,9 @@ theorem inf_comm : a ⊓ b = b ⊓ a :=
 #align inf_comm inf_comm
 -/
 
-instance inf_isCommutative : IsCommutative α (· ⊓ ·) :=
+instance inf_commutative : Std.Commutative α (· ⊓ ·) :=
   ⟨@inf_comm _ _⟩
-#align inf_is_commutative inf_isCommutativeₓ
+#align inf_is_commutative inf_commutative
 
 #print inf_assoc /-
 theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
@@ -646,9 +646,9 @@ theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
 #align inf_assoc inf_assoc
 -/
 
-instance inf_isAssociative : IsAssociative α (· ⊓ ·) :=
+instance inf_associative : Std.Associative α (· ⊓ ·) :=
   ⟨@inf_assoc _ _⟩
-#align inf_is_associative inf_isAssociativeₓ
+#align inf_is_associative inf_associative
 
 #print inf_left_right_swap /-
 theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
Diff
@@ -287,9 +287,9 @@ theorem sup_idem : a ⊔ a = a := by apply le_antisymm <;> simp
 #align sup_idem sup_idem
 -/
 
-instance sup_isIdempotent : IsIdempotent α (· ⊔ ·) :=
+instance sup_idempotentOp : Std.IdempotentOp α (· ⊔ ·) :=
   ⟨@sup_idem _ _⟩
-#align sup_is_idempotent sup_isIdempotent
+#align sup_is_idempotent sup_idempotentOp
 
 #print sup_comm /-
 theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
@@ -298,7 +298,7 @@ theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
 
 instance sup_isCommutative : IsCommutative α (· ⊔ ·) :=
   ⟨@sup_comm _ _⟩
-#align sup_is_commutative sup_isCommutative
+#align sup_is_commutative sup_isCommutativeₓ
 
 #print sup_assoc /-
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
@@ -308,7 +308,7 @@ theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
 
 instance sup_isAssociative : IsAssociative α (· ⊔ ·) :=
   ⟨@sup_assoc _ _⟩
-#align sup_is_associative sup_isAssociative
+#align sup_is_associative sup_isAssociativeₓ
 
 #print sup_left_right_swap /-
 theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
@@ -626,9 +626,9 @@ theorem inf_idem : a ⊓ a = a :=
 #align inf_idem inf_idem
 -/
 
-instance inf_isIdempotent : IsIdempotent α (· ⊓ ·) :=
+instance inf_idempotentOp : Std.IdempotentOp α (· ⊓ ·) :=
   ⟨@inf_idem _ _⟩
-#align inf_is_idempotent inf_isIdempotent
+#align inf_is_idempotent inf_idempotentOp
 
 #print inf_comm /-
 theorem inf_comm : a ⊓ b = b ⊓ a :=
@@ -638,7 +638,7 @@ theorem inf_comm : a ⊓ b = b ⊓ a :=
 
 instance inf_isCommutative : IsCommutative α (· ⊓ ·) :=
   ⟨@inf_comm _ _⟩
-#align inf_is_commutative inf_isCommutative
+#align inf_is_commutative inf_isCommutativeₓ
 
 #print inf_assoc /-
 theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
@@ -648,7 +648,7 @@ theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
 
 instance inf_isAssociative : IsAssociative α (· ⊓ ·) :=
   ⟨@inf_assoc _ _⟩
-#align inf_is_associative inf_isAssociative
+#align inf_is_associative inf_isAssociativeₓ
 
 #print inf_left_right_swap /-
 theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
Diff
@@ -63,12 +63,14 @@ attribute [ematch] le_trans lt_of_le_of_lt lt_of_lt_of_le lt_trans
 
 section
 
-#print le_antisymm' /-
+/- warning: le_antisymm' clashes with le_antisymm -> le_antisymm
+Case conversion may be inaccurate. Consider using '#align le_antisymm' le_antisymmₓ'. -/
+#print le_antisymm /-
 -- TODO: this seems crazy, but it also seems to work reasonably well
 @[ematch]
-theorem le_antisymm' [PartialOrder α] : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
+theorem le_antisymm [PartialOrder α] : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
   @le_antisymm _ _
-#align le_antisymm' le_antisymm'
+#align le_antisymm' le_antisymm
 -/
 
 end
Diff
@@ -1484,15 +1484,19 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
 #align monotone_on.min MonotoneOn.min
 -/
 
+#print MonotoneOn.of_map_inf /-
 theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β]
     (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊓ f y) : MonotoneOn f s := fun x hx y hy hxy =>
   inf_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
 #align monotone_on.of_map_inf MonotoneOn.of_map_inf
+-/
 
+#print MonotoneOn.of_map_sup /-
 theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β]
     (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊔ f y) : MonotoneOn f s :=
   (@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
 #align monotone_on.of_map_sup MonotoneOn.of_map_sup
+-/
 
 variable [LinearOrder α]
 
@@ -1615,15 +1619,19 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
 #align antitone_on.min AntitoneOn.min
 -/
 
+#print AntitoneOn.of_map_inf /-
 theorem of_map_inf [SemilatticeInf α] [SemilatticeSup β]
     (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊔ f y) : AntitoneOn f s := fun x hx y hy hxy =>
   sup_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
 #align antitone_on.of_map_inf AntitoneOn.of_map_inf
+-/
 
+#print AntitoneOn.of_map_sup /-
 theorem of_map_sup [SemilatticeSup α] [SemilatticeInf β]
     (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊓ f y) : AntitoneOn f s :=
   (@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
 #align antitone_on.of_map_sup AntitoneOn.of_map_sup
+-/
 
 variable [LinearOrder α]
 
Diff
@@ -1496,6 +1496,7 @@ theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β]
 
 variable [LinearOrder α]
 
+#print MonotoneOn.map_sup /-
 theorem map_sup [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
     f (x ⊔ y) = f x ⊔ f y := by
   cases le_total x y <;> have := hf _ _ h <;>
@@ -1503,11 +1504,14 @@ theorem map_sup [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y
     | assumption
     | simp only [h, this, sup_of_le_left, sup_of_le_right]
 #align monotone_on.map_sup MonotoneOn.map_sup
+-/
 
+#print MonotoneOn.map_inf /-
 theorem map_inf [SemilatticeInf β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
     f (x ⊓ y) = f x ⊓ f y :=
   hf.dual.map_sup hx hy
 #align monotone_on.map_inf MonotoneOn.map_inf
+-/
 
 end MonotoneOn
 
@@ -1623,6 +1627,7 @@ theorem of_map_sup [SemilatticeSup α] [SemilatticeInf β]
 
 variable [LinearOrder α]
 
+#print AntitoneOn.map_sup /-
 theorem map_sup [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
     f (x ⊔ y) = f x ⊓ f y := by
   cases le_total x y <;> have := hf _ _ h <;>
@@ -1630,11 +1635,14 @@ theorem map_sup [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y
     | assumption
     | simp only [h, this, sup_of_le_left, sup_of_le_right, inf_of_le_left, inf_of_le_right]
 #align antitone_on.map_sup AntitoneOn.map_sup
+-/
 
+#print AntitoneOn.map_inf /-
 theorem map_inf [SemilatticeSup β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
     f (x ⊓ y) = f x ⊔ f y :=
   hf.dual.map_sup hx hy
 #align antitone_on.map_inf AntitoneOn.map_inf
+-/
 
 end AntitoneOn
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathbin.Order.Monotone.Basic
-import Mathbin.Tactic.Simps
-import Mathbin.Tactic.PiInstances
+import Order.Monotone.Basic
+import Tactic.Simps
+import Tactic.PiInstances
 
 #align_import order.lattice from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"
 
Diff
@@ -222,10 +222,10 @@ theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b :=
 #align right_eq_sup right_eq_sup
 -/
 
-alias sup_eq_left ↔ _ sup_of_le_left
+alias ⟨_, sup_of_le_left⟩ := sup_eq_left
 #align sup_of_le_left sup_of_le_left
 
-alias sup_eq_right ↔ le_of_sup_eq sup_of_le_right
+alias ⟨le_of_sup_eq, sup_of_le_right⟩ := sup_eq_right
 #align le_of_sup_eq le_of_sup_eq
 #align sup_of_le_right sup_of_le_right
 
@@ -570,11 +570,11 @@ theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a :=
 #align right_eq_inf right_eq_inf
 -/
 
-alias inf_eq_left ↔ le_of_inf_eq inf_of_le_left
+alias ⟨le_of_inf_eq, inf_of_le_left⟩ := inf_eq_left
 #align le_of_inf_eq le_of_inf_eq
 #align inf_of_le_left inf_of_le_left
 
-alias inf_eq_right ↔ _ inf_of_le_right
+alias ⟨_, inf_of_le_right⟩ := inf_eq_right
 #align inf_of_le_right inf_of_le_right
 
 attribute [simp] inf_of_le_left inf_of_le_right
Diff
@@ -7,7 +7,7 @@ import Mathbin.Order.Monotone.Basic
 import Mathbin.Tactic.Simps
 import Mathbin.Tactic.PiInstances
 
-#align_import order.lattice from "leanprover-community/mathlib"@"e4bc74cbaf429d706cb9140902f7ca6c431e75a4"
+#align_import order.lattice from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"
 
 /-!
 # (Semi-)lattices
@@ -1450,6 +1450,8 @@ end Monotone
 
 namespace MonotoneOn
 
+variable {f : α → β} {s : Set α} {x y : α}
+
 #print MonotoneOn.sup /-
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
@@ -1482,6 +1484,31 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
 #align monotone_on.min MonotoneOn.min
 -/
 
+theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊓ f y) : MonotoneOn f s := fun x hx y hy hxy =>
+  inf_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
+#align monotone_on.of_map_inf MonotoneOn.of_map_inf
+
+theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊔ f y) : MonotoneOn f s :=
+  (@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
+#align monotone_on.of_map_sup MonotoneOn.of_map_sup
+
+variable [LinearOrder α]
+
+theorem map_sup [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊔ y) = f x ⊔ f y := by
+  cases le_total x y <;> have := hf _ _ h <;>
+    first
+    | assumption
+    | simp only [h, this, sup_of_le_left, sup_of_le_right]
+#align monotone_on.map_sup MonotoneOn.map_sup
+
+theorem map_inf [SemilatticeInf β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊓ y) = f x ⊓ f y :=
+  hf.dual.map_sup hx hy
+#align monotone_on.map_inf MonotoneOn.map_inf
+
 end MonotoneOn
 
 namespace Antitone
@@ -1550,6 +1577,8 @@ end Antitone
 
 namespace AntitoneOn
 
+variable {f : α → β} {s : Set α} {x y : α}
+
 #print AntitoneOn.sup /-
 /-- Pointwise supremum of two antitone functions is a antitone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
@@ -1582,6 +1611,31 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
 #align antitone_on.min AntitoneOn.min
 -/
 
+theorem of_map_inf [SemilatticeInf α] [SemilatticeSup β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊔ f y) : AntitoneOn f s := fun x hx y hy hxy =>
+  sup_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
+#align antitone_on.of_map_inf AntitoneOn.of_map_inf
+
+theorem of_map_sup [SemilatticeSup α] [SemilatticeInf β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊓ f y) : AntitoneOn f s :=
+  (@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
+#align antitone_on.of_map_sup AntitoneOn.of_map_sup
+
+variable [LinearOrder α]
+
+theorem map_sup [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊔ y) = f x ⊓ f y := by
+  cases le_total x y <;> have := hf _ _ h <;>
+    first
+    | assumption
+    | simp only [h, this, sup_of_le_left, sup_of_le_right, inf_of_le_left, inf_of_le_right]
+#align antitone_on.map_sup AntitoneOn.map_sup
+
+theorem map_inf [SemilatticeSup β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊓ y) = f x ⊔ f y :=
+  hf.dual.map_sup hx hy
+#align antitone_on.map_inf AntitoneOn.map_inf
+
 end AntitoneOn
 
 /-!
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.lattice
-! leanprover-community/mathlib commit e4bc74cbaf429d706cb9140902f7ca6c431e75a4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.Monotone.Basic
 import Mathbin.Tactic.Simps
 import Mathbin.Tactic.PiInstances
 
+#align_import order.lattice from "leanprover-community/mathlib"@"e4bc74cbaf429d706cb9140902f7ca6c431e75a4"
+
 /-!
 # (Semi-)lattices
 
Diff
@@ -1176,7 +1176,7 @@ end LinearOrder
 theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊔ ·) = (maxDefault : α → α → α) :=
   by
-  ext (x y)
+  ext x y
   dsimp only [maxDefault]
   split_ifs with h'
   exacts [sup_of_le_right h', sup_of_le_left <| (total_of (· ≤ ·) x y).resolve_left h']
@@ -1187,7 +1187,7 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊓ ·) = (minDefault : α → α → α) :=
   by
-  ext (x y)
+  ext x y
   dsimp only [minDefault]
   split_ifs with h'
   exacts [inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
Diff
@@ -131,71 +131,99 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c d : α}
 
+#print le_sup_left /-
 @[simp]
 theorem le_sup_left : a ≤ a ⊔ b :=
   SemilatticeSup.le_sup_left a b
 #align le_sup_left le_sup_left
+-/
 
+#print le_sup_left' /-
 @[ematch]
 theorem le_sup_left' : a ≤ a ⊔ b :=
   le_sup_left
 #align le_sup_left' le_sup_left'
+-/
 
+#print le_sup_right /-
 @[simp]
 theorem le_sup_right : b ≤ a ⊔ b :=
   SemilatticeSup.le_sup_right a b
 #align le_sup_right le_sup_right
+-/
 
+#print le_sup_right' /-
 @[ematch]
 theorem le_sup_right' : b ≤ a ⊔ b :=
   le_sup_right
 #align le_sup_right' le_sup_right'
+-/
 
+#print le_sup_of_le_left /-
 theorem le_sup_of_le_left (h : c ≤ a) : c ≤ a ⊔ b :=
   le_trans h le_sup_left
 #align le_sup_of_le_left le_sup_of_le_left
+-/
 
+#print le_sup_of_le_right /-
 theorem le_sup_of_le_right (h : c ≤ b) : c ≤ a ⊔ b :=
   le_trans h le_sup_right
 #align le_sup_of_le_right le_sup_of_le_right
+-/
 
+#print lt_sup_of_lt_left /-
 theorem lt_sup_of_lt_left (h : c < a) : c < a ⊔ b :=
   h.trans_le le_sup_left
 #align lt_sup_of_lt_left lt_sup_of_lt_left
+-/
 
+#print lt_sup_of_lt_right /-
 theorem lt_sup_of_lt_right (h : c < b) : c < a ⊔ b :=
   h.trans_le le_sup_right
 #align lt_sup_of_lt_right lt_sup_of_lt_right
+-/
 
+#print sup_le /-
 theorem sup_le : a ≤ c → b ≤ c → a ⊔ b ≤ c :=
   SemilatticeSup.sup_le a b c
 #align sup_le sup_le
+-/
 
+#print sup_le_iff /-
 @[simp]
 theorem sup_le_iff : a ⊔ b ≤ c ↔ a ≤ c ∧ b ≤ c :=
   ⟨fun h : a ⊔ b ≤ c => ⟨le_trans le_sup_left h, le_trans le_sup_right h⟩, fun ⟨h₁, h₂⟩ =>
     sup_le h₁ h₂⟩
 #align sup_le_iff sup_le_iff
+-/
 
+#print sup_eq_left /-
 @[simp]
 theorem sup_eq_left : a ⊔ b = a ↔ b ≤ a :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_left sup_eq_left
+-/
 
+#print sup_eq_right /-
 @[simp]
 theorem sup_eq_right : a ⊔ b = b ↔ a ≤ b :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_right sup_eq_right
+-/
 
+#print left_eq_sup /-
 @[simp]
 theorem left_eq_sup : a = a ⊔ b ↔ b ≤ a :=
   eq_comm.trans sup_eq_left
 #align left_eq_sup left_eq_sup
+-/
 
+#print right_eq_sup /-
 @[simp]
 theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b :=
   eq_comm.trans sup_eq_right
 #align right_eq_sup right_eq_sup
+-/
 
 alias sup_eq_left ↔ _ sup_of_le_left
 #align sup_of_le_left sup_of_le_left
@@ -206,20 +234,27 @@ alias sup_eq_right ↔ le_of_sup_eq sup_of_le_right
 
 attribute [simp] sup_of_le_left sup_of_le_right
 
+#print left_lt_sup /-
 @[simp]
 theorem left_lt_sup : a < a ⊔ b ↔ ¬b ≤ a :=
   le_sup_left.lt_iff_ne.trans <| not_congr left_eq_sup
 #align left_lt_sup left_lt_sup
+-/
 
+#print right_lt_sup /-
 @[simp]
 theorem right_lt_sup : b < a ⊔ b ↔ ¬a ≤ b :=
   le_sup_right.lt_iff_ne.trans <| not_congr right_eq_sup
 #align right_lt_sup right_lt_sup
+-/
 
+#print left_or_right_lt_sup /-
 theorem left_or_right_lt_sup (h : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
   h.not_le_or_not_le.symm.imp left_lt_sup.2 right_lt_sup.2
 #align left_or_right_lt_sup left_or_right_lt_sup
+-/
 
+#print le_iff_exists_sup /-
 theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
   by
   constructor
@@ -227,94 +262,134 @@ theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
   · rintro ⟨c, rfl : _ = _ ⊔ _⟩
     exact le_sup_left
 #align le_iff_exists_sup le_iff_exists_sup
+-/
 
+#print sup_le_sup /-
 theorem sup_le_sup (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊔ c ≤ b ⊔ d :=
   sup_le (le_sup_of_le_left h₁) (le_sup_of_le_right h₂)
 #align sup_le_sup sup_le_sup
+-/
 
+#print sup_le_sup_left /-
 theorem sup_le_sup_left (h₁ : a ≤ b) (c) : c ⊔ a ≤ c ⊔ b :=
   sup_le_sup le_rfl h₁
 #align sup_le_sup_left sup_le_sup_left
+-/
 
+#print sup_le_sup_right /-
 theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
   sup_le_sup h₁ le_rfl
 #align sup_le_sup_right sup_le_sup_right
+-/
 
+#print sup_idem /-
 @[simp]
 theorem sup_idem : a ⊔ a = a := by apply le_antisymm <;> simp
 #align sup_idem sup_idem
+-/
 
 instance sup_isIdempotent : IsIdempotent α (· ⊔ ·) :=
   ⟨@sup_idem _ _⟩
 #align sup_is_idempotent sup_isIdempotent
 
+#print sup_comm /-
 theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
 #align sup_comm sup_comm
+-/
 
 instance sup_isCommutative : IsCommutative α (· ⊔ ·) :=
   ⟨@sup_comm _ _⟩
 #align sup_is_commutative sup_isCommutative
 
+#print sup_assoc /-
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
   eq_of_forall_ge_iff fun x => by simp only [sup_le_iff, and_assoc']
 #align sup_assoc sup_assoc
+-/
 
 instance sup_isAssociative : IsAssociative α (· ⊔ ·) :=
   ⟨@sup_assoc _ _⟩
 #align sup_is_associative sup_isAssociative
 
+#print sup_left_right_swap /-
 theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
   rw [sup_comm, @sup_comm _ _ a, sup_assoc]
 #align sup_left_right_swap sup_left_right_swap
+-/
 
+#print sup_left_idem /-
 @[simp]
 theorem sup_left_idem : a ⊔ (a ⊔ b) = a ⊔ b := by rw [← sup_assoc, sup_idem]
 #align sup_left_idem sup_left_idem
+-/
 
+#print sup_right_idem /-
 @[simp]
 theorem sup_right_idem : a ⊔ b ⊔ b = a ⊔ b := by rw [sup_assoc, sup_idem]
 #align sup_right_idem sup_right_idem
+-/
 
+#print sup_left_comm /-
 theorem sup_left_comm (a b c : α) : a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c) := by
   rw [← sup_assoc, ← sup_assoc, @sup_comm α _ a]
 #align sup_left_comm sup_left_comm
+-/
 
+#print sup_right_comm /-
 theorem sup_right_comm (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ b := by
   rw [sup_assoc, sup_assoc, @sup_comm _ _ b]
 #align sup_right_comm sup_right_comm
+-/
 
+#print sup_sup_sup_comm /-
 theorem sup_sup_sup_comm (a b c d : α) : a ⊔ b ⊔ (c ⊔ d) = a ⊔ c ⊔ (b ⊔ d) := by
   rw [sup_assoc, sup_left_comm b, ← sup_assoc]
 #align sup_sup_sup_comm sup_sup_sup_comm
+-/
 
+#print sup_sup_distrib_left /-
 theorem sup_sup_distrib_left (a b c : α) : a ⊔ (b ⊔ c) = a ⊔ b ⊔ (a ⊔ c) := by
   rw [sup_sup_sup_comm, sup_idem]
 #align sup_sup_distrib_left sup_sup_distrib_left
+-/
 
+#print sup_sup_distrib_right /-
 theorem sup_sup_distrib_right (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ (b ⊔ c) := by
   rw [sup_sup_sup_comm, sup_idem]
 #align sup_sup_distrib_right sup_sup_distrib_right
+-/
 
+#print sup_congr_left /-
 theorem sup_congr_left (hb : b ≤ a ⊔ c) (hc : c ≤ a ⊔ b) : a ⊔ b = a ⊔ c :=
   (sup_le le_sup_left hb).antisymm <| sup_le le_sup_left hc
 #align sup_congr_left sup_congr_left
+-/
 
+#print sup_congr_right /-
 theorem sup_congr_right (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ⊔ c = b ⊔ c :=
   (sup_le ha le_sup_right).antisymm <| sup_le hb le_sup_right
 #align sup_congr_right sup_congr_right
+-/
 
+#print sup_eq_sup_iff_left /-
 theorem sup_eq_sup_iff_left : a ⊔ b = a ⊔ c ↔ b ≤ a ⊔ c ∧ c ≤ a ⊔ b :=
   ⟨fun h => ⟨h ▸ le_sup_right, h.symm ▸ le_sup_right⟩, fun h => sup_congr_left h.1 h.2⟩
 #align sup_eq_sup_iff_left sup_eq_sup_iff_left
+-/
 
+#print sup_eq_sup_iff_right /-
 theorem sup_eq_sup_iff_right : a ⊔ c = b ⊔ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c :=
   ⟨fun h => ⟨h ▸ le_sup_left, h.symm ▸ le_sup_left⟩, fun h => sup_congr_right h.1 h.2⟩
 #align sup_eq_sup_iff_right sup_eq_sup_iff_right
+-/
 
+#print Ne.lt_sup_or_lt_sup /-
 theorem Ne.lt_sup_or_lt_sup (hab : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
   hab.symm.not_le_or_not_le.imp left_lt_sup.2 right_lt_sup.2
 #align ne.lt_sup_or_lt_sup Ne.lt_sup_or_lt_sup
+-/
 
+#print Monotone.forall_le_of_antitone /-
 /-- If `f` is monotone, `g` is antitone, and `f ≤ g`, then for all `a`, `b` we have `f a ≤ g b`. -/
 theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α → β} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) (m n : α) : f m ≤ g n :=
@@ -323,7 +398,9 @@ theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α →
     _ ≤ g (m ⊔ n) := (h _)
     _ ≤ g n := hg le_sup_right
 #align monotone.forall_le_of_antitone Monotone.forall_le_of_antitone
+-/
 
+#print SemilatticeSup.ext_sup /-
 theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
     (H :
       ∀ x y : α,
@@ -336,6 +413,7 @@ theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
       x ⊔ y :=
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff] <;> rw [← H, @sup_le_iff α A, H, H]
 #align semilattice_sup.ext_sup SemilatticeSup.ext_sup
+-/
 
 #print SemilatticeSup.ext /-
 theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
@@ -352,9 +430,11 @@ theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
 #align semilattice_sup.ext SemilatticeSup.ext
 -/
 
+#print ite_le_sup /-
 theorem ite_le_sup (s s' : α) (P : Prop) [Decidable P] : ite P s s' ≤ s ⊔ s' :=
   if h : P then (if_pos h).trans_le le_sup_left else (if_neg h).trans_le le_sup_right
 #align ite_le_sup ite_le_sup
+-/
 
 end SemilatticeSup
 
@@ -400,70 +480,98 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c d : α}
 
+#print inf_le_left /-
 @[simp]
 theorem inf_le_left : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left inf_le_left
+-/
 
+#print inf_le_left' /-
 @[ematch]
 theorem inf_le_left' : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left' inf_le_left'
+-/
 
+#print inf_le_right /-
 @[simp]
 theorem inf_le_right : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right inf_le_right
+-/
 
+#print inf_le_right' /-
 @[ematch]
 theorem inf_le_right' : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right' inf_le_right'
+-/
 
+#print le_inf /-
 theorem le_inf : a ≤ b → a ≤ c → a ≤ b ⊓ c :=
   SemilatticeInf.le_inf a b c
 #align le_inf le_inf
+-/
 
+#print inf_le_of_left_le /-
 theorem inf_le_of_left_le (h : a ≤ c) : a ⊓ b ≤ c :=
   le_trans inf_le_left h
 #align inf_le_of_left_le inf_le_of_left_le
+-/
 
+#print inf_le_of_right_le /-
 theorem inf_le_of_right_le (h : b ≤ c) : a ⊓ b ≤ c :=
   le_trans inf_le_right h
 #align inf_le_of_right_le inf_le_of_right_le
+-/
 
+#print inf_lt_of_left_lt /-
 theorem inf_lt_of_left_lt (h : a < c) : a ⊓ b < c :=
   lt_of_le_of_lt inf_le_left h
 #align inf_lt_of_left_lt inf_lt_of_left_lt
+-/
 
+#print inf_lt_of_right_lt /-
 theorem inf_lt_of_right_lt (h : b < c) : a ⊓ b < c :=
   lt_of_le_of_lt inf_le_right h
 #align inf_lt_of_right_lt inf_lt_of_right_lt
+-/
 
+#print le_inf_iff /-
 @[simp]
 theorem le_inf_iff : a ≤ b ⊓ c ↔ a ≤ b ∧ a ≤ c :=
   @sup_le_iff αᵒᵈ _ _ _ _
 #align le_inf_iff le_inf_iff
+-/
 
+#print inf_eq_left /-
 @[simp]
 theorem inf_eq_left : a ⊓ b = a ↔ a ≤ b :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_left inf_eq_left
+-/
 
+#print inf_eq_right /-
 @[simp]
 theorem inf_eq_right : a ⊓ b = b ↔ b ≤ a :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_right inf_eq_right
+-/
 
+#print left_eq_inf /-
 @[simp]
 theorem left_eq_inf : a = a ⊓ b ↔ a ≤ b :=
   eq_comm.trans inf_eq_left
 #align left_eq_inf left_eq_inf
+-/
 
+#print right_eq_inf /-
 @[simp]
 theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a :=
   eq_comm.trans inf_eq_right
 #align right_eq_inf right_eq_inf
+-/
 
 alias inf_eq_left ↔ le_of_inf_eq inf_of_le_left
 #align le_of_inf_eq le_of_inf_eq
@@ -474,111 +582,156 @@ alias inf_eq_right ↔ _ inf_of_le_right
 
 attribute [simp] inf_of_le_left inf_of_le_right
 
+#print inf_lt_left /-
 @[simp]
 theorem inf_lt_left : a ⊓ b < a ↔ ¬a ≤ b :=
   @left_lt_sup αᵒᵈ _ _ _
 #align inf_lt_left inf_lt_left
+-/
 
+#print inf_lt_right /-
 @[simp]
 theorem inf_lt_right : a ⊓ b < b ↔ ¬b ≤ a :=
   @right_lt_sup αᵒᵈ _ _ _
 #align inf_lt_right inf_lt_right
+-/
 
+#print inf_lt_left_or_right /-
 theorem inf_lt_left_or_right (h : a ≠ b) : a ⊓ b < a ∨ a ⊓ b < b :=
   @left_or_right_lt_sup αᵒᵈ _ _ _ h
 #align inf_lt_left_or_right inf_lt_left_or_right
+-/
 
+#print inf_le_inf /-
 theorem inf_le_inf (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊓ c ≤ b ⊓ d :=
   @sup_le_sup αᵒᵈ _ _ _ _ _ h₁ h₂
 #align inf_le_inf inf_le_inf
+-/
 
+#print inf_le_inf_right /-
 theorem inf_le_inf_right (a : α) {b c : α} (h : b ≤ c) : b ⊓ a ≤ c ⊓ a :=
   inf_le_inf h le_rfl
 #align inf_le_inf_right inf_le_inf_right
+-/
 
+#print inf_le_inf_left /-
 theorem inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c :=
   inf_le_inf le_rfl h
 #align inf_le_inf_left inf_le_inf_left
+-/
 
+#print inf_idem /-
 @[simp]
 theorem inf_idem : a ⊓ a = a :=
   @sup_idem αᵒᵈ _ _
 #align inf_idem inf_idem
+-/
 
 instance inf_isIdempotent : IsIdempotent α (· ⊓ ·) :=
   ⟨@inf_idem _ _⟩
 #align inf_is_idempotent inf_isIdempotent
 
+#print inf_comm /-
 theorem inf_comm : a ⊓ b = b ⊓ a :=
   @sup_comm αᵒᵈ _ _ _
 #align inf_comm inf_comm
+-/
 
 instance inf_isCommutative : IsCommutative α (· ⊓ ·) :=
   ⟨@inf_comm _ _⟩
 #align inf_is_commutative inf_isCommutative
 
+#print inf_assoc /-
 theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
   @sup_assoc αᵒᵈ _ a b c
 #align inf_assoc inf_assoc
+-/
 
 instance inf_isAssociative : IsAssociative α (· ⊓ ·) :=
   ⟨@inf_assoc _ _⟩
 #align inf_is_associative inf_isAssociative
 
+#print inf_left_right_swap /-
 theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
   @sup_left_right_swap αᵒᵈ _ _ _ _
 #align inf_left_right_swap inf_left_right_swap
+-/
 
+#print inf_left_idem /-
 @[simp]
 theorem inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b :=
   @sup_left_idem αᵒᵈ _ a b
 #align inf_left_idem inf_left_idem
+-/
 
+#print inf_right_idem /-
 @[simp]
 theorem inf_right_idem : a ⊓ b ⊓ b = a ⊓ b :=
   @sup_right_idem αᵒᵈ _ a b
 #align inf_right_idem inf_right_idem
+-/
 
+#print inf_left_comm /-
 theorem inf_left_comm (a b c : α) : a ⊓ (b ⊓ c) = b ⊓ (a ⊓ c) :=
   @sup_left_comm αᵒᵈ _ a b c
 #align inf_left_comm inf_left_comm
+-/
 
+#print inf_right_comm /-
 theorem inf_right_comm (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ b :=
   @sup_right_comm αᵒᵈ _ a b c
 #align inf_right_comm inf_right_comm
+-/
 
+#print inf_inf_inf_comm /-
 theorem inf_inf_inf_comm (a b c d : α) : a ⊓ b ⊓ (c ⊓ d) = a ⊓ c ⊓ (b ⊓ d) :=
   @sup_sup_sup_comm αᵒᵈ _ _ _ _ _
 #align inf_inf_inf_comm inf_inf_inf_comm
+-/
 
+#print inf_inf_distrib_left /-
 theorem inf_inf_distrib_left (a b c : α) : a ⊓ (b ⊓ c) = a ⊓ b ⊓ (a ⊓ c) :=
   @sup_sup_distrib_left αᵒᵈ _ _ _ _
 #align inf_inf_distrib_left inf_inf_distrib_left
+-/
 
+#print inf_inf_distrib_right /-
 theorem inf_inf_distrib_right (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ (b ⊓ c) :=
   @sup_sup_distrib_right αᵒᵈ _ _ _ _
 #align inf_inf_distrib_right inf_inf_distrib_right
+-/
 
+#print inf_congr_left /-
 theorem inf_congr_left (hb : a ⊓ c ≤ b) (hc : a ⊓ b ≤ c) : a ⊓ b = a ⊓ c :=
   @sup_congr_left αᵒᵈ _ _ _ _ hb hc
 #align inf_congr_left inf_congr_left
+-/
 
+#print inf_congr_right /-
 theorem inf_congr_right (h1 : b ⊓ c ≤ a) (h2 : a ⊓ c ≤ b) : a ⊓ c = b ⊓ c :=
   @sup_congr_right αᵒᵈ _ _ _ _ h1 h2
 #align inf_congr_right inf_congr_right
+-/
 
+#print inf_eq_inf_iff_left /-
 theorem inf_eq_inf_iff_left : a ⊓ b = a ⊓ c ↔ a ⊓ c ≤ b ∧ a ⊓ b ≤ c :=
   @sup_eq_sup_iff_left αᵒᵈ _ _ _ _
 #align inf_eq_inf_iff_left inf_eq_inf_iff_left
+-/
 
+#print inf_eq_inf_iff_right /-
 theorem inf_eq_inf_iff_right : a ⊓ c = b ⊓ c ↔ b ⊓ c ≤ a ∧ a ⊓ c ≤ b :=
   @sup_eq_sup_iff_right αᵒᵈ _ _ _ _
 #align inf_eq_inf_iff_right inf_eq_inf_iff_right
+-/
 
+#print Ne.inf_lt_or_inf_lt /-
 theorem Ne.inf_lt_or_inf_lt : a ≠ b → a ⊓ b < a ∨ a ⊓ b < b :=
   @Ne.lt_sup_or_lt_sup αᵒᵈ _ _ _
 #align ne.inf_lt_or_inf_lt Ne.inf_lt_or_inf_lt
+-/
 
+#print SemilatticeInf.ext_inf /-
 theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
     (H :
       ∀ x y : α,
@@ -591,6 +744,7 @@ theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
       x ⊓ y :=
   eq_of_forall_le_iff fun c => by simp only [le_inf_iff] <;> rw [← H, @le_inf_iff α A, H, H]
 #align semilattice_inf.ext_inf SemilatticeInf.ext_inf
+-/
 
 #print SemilatticeInf.ext /-
 theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
@@ -614,9 +768,11 @@ theorem SemilatticeInf.dual_dual (α : Type _) [H : SemilatticeInf α] :
 #align semilattice_inf.dual_dual SemilatticeInf.dual_dual
 -/
 
+#print inf_le_ite /-
 theorem inf_le_ite (s s' : α) (P : Prop) [Decidable P] : s ⊓ s' ≤ ite P s s' :=
   @ite_le_sup αᵒᵈ _ _ _ _ _
 #align inf_le_ite inf_le_ite
+-/
 
 end SemilatticeInf
 
@@ -708,10 +864,13 @@ section Lattice
 
 variable [Lattice α] {a b c d : α}
 
+#print inf_le_sup /-
 theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
   inf_le_left.trans le_sup_left
 #align inf_le_sup inf_le_sup
+-/
 
+#print sup_le_inf /-
 @[simp]
 theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
   ⟨fun h =>
@@ -719,20 +878,28 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
       (le_sup_right.trans <| h.trans inf_le_left),
     by rintro rfl; simp⟩
 #align sup_le_inf sup_le_inf
+-/
 
+#print inf_eq_sup /-
 @[simp]
 theorem inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [← inf_le_sup.ge_iff_eq, sup_le_inf]
 #align inf_eq_sup inf_eq_sup
+-/
 
+#print sup_eq_inf /-
 @[simp]
 theorem sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b :=
   eq_comm.trans inf_eq_sup
 #align sup_eq_inf sup_eq_inf
+-/
 
+#print inf_lt_sup /-
 @[simp]
 theorem inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
 #align inf_lt_sup inf_lt_sup
+-/
 
+#print inf_eq_and_sup_eq_iff /-
 theorem inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c :=
   by
   refine' ⟨fun h => _, _⟩
@@ -741,29 +908,40 @@ theorem inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c
   · rintro ⟨rfl, rfl⟩
     exact ⟨inf_idem, sup_idem⟩
 #align inf_eq_and_sup_eq_iff inf_eq_and_sup_eq_iff
+-/
 
 /-!
 #### Distributivity laws
 -/
 
 
+#print sup_inf_le /-
 -- TODO: better names?
 theorem sup_inf_le : a ⊔ b ⊓ c ≤ (a ⊔ b) ⊓ (a ⊔ c) :=
   le_inf (sup_le_sup_left inf_le_left _) (sup_le_sup_left inf_le_right _)
 #align sup_inf_le sup_inf_le
+-/
 
+#print le_inf_sup /-
 theorem le_inf_sup : a ⊓ b ⊔ a ⊓ c ≤ a ⊓ (b ⊔ c) :=
   sup_le (inf_le_inf_left _ le_sup_left) (inf_le_inf_left _ le_sup_right)
 #align le_inf_sup le_inf_sup
+-/
 
+#print inf_sup_self /-
 theorem inf_sup_self : a ⊓ (a ⊔ b) = a := by simp
 #align inf_sup_self inf_sup_self
+-/
 
+#print sup_inf_self /-
 theorem sup_inf_self : a ⊔ a ⊓ b = a := by simp
 #align sup_inf_self sup_inf_self
+-/
 
+#print sup_eq_iff_inf_eq /-
 theorem sup_eq_iff_inf_eq : a ⊔ b = b ↔ a ⊓ b = a := by rw [sup_eq_right, ← inf_eq_left]
 #align sup_eq_iff_inf_eq sup_eq_iff_inf_eq
+-/
 
 #print Lattice.ext /-
 theorem Lattice.ext {α} {A B : Lattice α}
@@ -810,18 +988,25 @@ section DistribLattice
 
 variable [DistribLattice α] {x y z : α}
 
+#print le_sup_inf /-
 theorem le_sup_inf : ∀ {x y z : α}, (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z :=
   DistribLattice.le_sup_inf
 #align le_sup_inf le_sup_inf
+-/
 
+#print sup_inf_left /-
 theorem sup_inf_left : x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z) :=
   le_antisymm sup_inf_le le_sup_inf
 #align sup_inf_left sup_inf_left
+-/
 
+#print sup_inf_right /-
 theorem sup_inf_right : y ⊓ z ⊔ x = (y ⊔ x) ⊓ (z ⊔ x) := by
   simp only [sup_inf_left, fun y : α => @sup_comm α _ y x, eq_self_iff_true]
 #align sup_inf_right sup_inf_right
+-/
 
+#print inf_sup_left /-
 theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
   calc
     x ⊓ (y ⊔ z) = x ⊓ (x ⊔ z) ⊓ (y ⊔ z) := by rw [inf_sup_self]
@@ -830,14 +1015,18 @@ theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
     _ = (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z) := by rw [sup_comm]
     _ = x ⊓ y ⊔ x ⊓ z := by rw [sup_inf_left]
 #align inf_sup_left inf_sup_left
+-/
 
 instance (α : Type _) [DistribLattice α] : DistribLattice αᵒᵈ :=
   { OrderDual.lattice α with le_sup_inf := fun x y z => le_of_eq inf_sup_left.symm }
 
+#print inf_sup_right /-
 theorem inf_sup_right : (y ⊔ z) ⊓ x = y ⊓ x ⊔ z ⊓ x := by
   simp only [inf_sup_left, fun y : α => @inf_comm α _ y x, eq_self_iff_true]
 #align inf_sup_right inf_sup_right
+-/
 
+#print le_of_inf_le_sup_le /-
 theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y ⊔ z) : x ≤ y :=
   calc
     x ≤ y ⊓ z ⊔ x := le_sup_right
@@ -847,15 +1036,19 @@ theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y 
     _ ≤ y ⊔ y ⊓ z := (sup_le_sup_left h₁ _)
     _ ≤ _ := sup_le (le_refl y) inf_le_left
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
+-/
 
+#print eq_of_inf_eq_sup_eq /-
 theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a)
     (h₂ : b ⊔ a = c ⊔ a) : b = c :=
   le_antisymm (le_of_inf_le_sup_le (le_of_eq h₁) (le_of_eq h₂))
     (le_of_inf_le_sup_le (le_of_eq h₁.symm) (le_of_eq h₂.symm))
 #align eq_of_inf_eq_sup_eq eq_of_inf_eq_sup_eq
+-/
 
 end DistribLattice
 
+#print DistribLattice.ofInfSupLe /-
 -- See note [reducible non-instances]
 /-- Prove distributivity of an existing lattice from the dual distributive law. -/
 @[reducible]
@@ -864,6 +1057,7 @@ def DistribLattice.ofInfSupLe [Lattice α] (inf_sup_le : ∀ a b c : α, a ⊓ (
   { ‹Lattice α›,
     @OrderDual.distribLattice αᵒᵈ { OrderDual.lattice _ with le_sup_inf := inf_sup_le } with }
 #align distrib_lattice.of_inf_sup_le DistribLattice.ofInfSupLe
+-/
 
 /-!
 ### Lattices derived from linear orders
@@ -889,19 +1083,26 @@ section LinearOrder
 
 variable [LinearOrder α] {a b c d : α}
 
+#print sup_eq_max /-
 theorem sup_eq_max : a ⊔ b = max a b :=
   rfl
 #align sup_eq_max sup_eq_max
+-/
 
+#print inf_eq_min /-
 theorem inf_eq_min : a ⊓ b = min a b :=
   rfl
 #align inf_eq_min inf_eq_min
+-/
 
+#print sup_ind /-
 theorem sup_ind (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊔ b) :=
   (IsTotal.total a b).elim (fun h : a ≤ b => by rwa [sup_eq_right.2 h]) fun h => by
     rwa [sup_eq_left.2 h]
 #align sup_ind sup_ind
+-/
 
+#print le_sup_iff /-
 @[simp]
 theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
   ⟨fun h =>
@@ -909,7 +1110,9 @@ theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
       rwa [sup_eq_right.2 bc] at h ,
     fun h => h.elim le_sup_of_le_left le_sup_of_le_right⟩
 #align le_sup_iff le_sup_iff
+-/
 
+#print lt_sup_iff /-
 @[simp]
 theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
   ⟨fun h =>
@@ -917,43 +1120,59 @@ theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
       rwa [sup_eq_right.2 bc] at h ,
     fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩
 #align lt_sup_iff lt_sup_iff
+-/
 
+#print sup_lt_iff /-
 @[simp]
 theorem sup_lt_iff : b ⊔ c < a ↔ b < a ∧ c < a :=
   ⟨fun h => ⟨le_sup_left.trans_lt h, le_sup_right.trans_lt h⟩, fun h => sup_ind b c h.1 h.2⟩
 #align sup_lt_iff sup_lt_iff
+-/
 
+#print inf_ind /-
 theorem inf_ind (a b : α) {p : α → Prop} : p a → p b → p (a ⊓ b) :=
   @sup_ind αᵒᵈ _ _ _ _
 #align inf_ind inf_ind
+-/
 
+#print inf_le_iff /-
 @[simp]
 theorem inf_le_iff : b ⊓ c ≤ a ↔ b ≤ a ∨ c ≤ a :=
   @le_sup_iff αᵒᵈ _ _ _ _
 #align inf_le_iff inf_le_iff
+-/
 
+#print inf_lt_iff /-
 @[simp]
 theorem inf_lt_iff : b ⊓ c < a ↔ b < a ∨ c < a :=
   @lt_sup_iff αᵒᵈ _ _ _ _
 #align inf_lt_iff inf_lt_iff
+-/
 
+#print lt_inf_iff /-
 @[simp]
 theorem lt_inf_iff : a < b ⊓ c ↔ a < b ∧ a < c :=
   @sup_lt_iff αᵒᵈ _ _ _ _
 #align lt_inf_iff lt_inf_iff
+-/
 
 variable (a b c d)
 
+#print max_max_max_comm /-
 theorem max_max_max_comm : max (max a b) (max c d) = max (max a c) (max b d) :=
   sup_sup_sup_comm _ _ _ _
 #align max_max_max_comm max_max_max_comm
+-/
 
+#print min_min_min_comm /-
 theorem min_min_min_comm : min (min a b) (min c d) = min (min a c) (min b d) :=
   inf_inf_inf_comm _ _ _ _
 #align min_min_min_comm min_min_min_comm
+-/
 
 end LinearOrder
 
+#print sup_eq_maxDefault /-
 theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊔ ·) = (maxDefault : α → α → α) :=
   by
@@ -962,7 +1181,9 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
   split_ifs with h'
   exacts [sup_of_le_right h', sup_of_le_left <| (total_of (· ≤ ·) x y).resolve_left h']
 #align sup_eq_max_default sup_eq_maxDefault
+-/
 
+#print inf_eq_minDefault /-
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊓ ·) = (minDefault : α → α → α) :=
   by
@@ -971,6 +1192,7 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   split_ifs with h'
   exacts [inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
+-/
 
 #print Lattice.toLinearOrder /-
 /-- A lattice with total order is a linear order.
@@ -1129,15 +1351,19 @@ namespace Function
 
 variable {ι : Type _} {π : ι → Type _} [DecidableEq ι]
 
+#print Function.update_sup /-
 theorem update_sup [∀ i, SemilatticeSup (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
     f.update i (a ⊔ b) = f.update i a ⊔ f.update i b :=
   funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
 #align function.update_sup Function.update_sup
+-/
 
+#print Function.update_inf /-
 theorem update_inf [∀ i, SemilatticeInf (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
     f.update i (a ⊓ b) = f.update i a ⊓ f.update i b :=
   funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
 #align function.update_inf Function.update_inf
+-/
 
 end Function
 
@@ -1148,164 +1374,216 @@ end Function
 
 namespace Monotone
 
+#print Monotone.sup /-
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone (f ⊔ g) := fun x y h => sup_le_sup (hf h) (hg h)
 #align monotone.sup Monotone.sup
+-/
 
+#print Monotone.inf /-
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone (f ⊓ g) := fun x y h => inf_le_inf (hf h) (hg h)
 #align monotone.inf Monotone.inf
+-/
 
+#print Monotone.max /-
 /-- Pointwise maximum of two monotone functions is a monotone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun x => max (f x) (g x) :=
   hf.sup hg
 #align monotone.max Monotone.max
+-/
 
+#print Monotone.min /-
 /-- Pointwise minimum of two monotone functions is a monotone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun x => min (f x) (g x) :=
   hf.inf hg
 #align monotone.min Monotone.min
+-/
 
+#print Monotone.le_map_sup /-
 theorem le_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β} (h : Monotone f) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
   sup_le (h le_sup_left) (h le_sup_right)
 #align monotone.le_map_sup Monotone.le_map_sup
+-/
 
+#print Monotone.map_inf_le /-
 theorem map_inf_le [SemilatticeInf α] [SemilatticeInf β] {f : α → β} (h : Monotone f) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
   le_inf (h inf_le_left) (h inf_le_right)
 #align monotone.map_inf_le Monotone.map_inf_le
+-/
 
+#print Monotone.of_map_inf /-
 theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β] {f : α → β}
     (h : ∀ x y, f (x ⊓ y) = f x ⊓ f y) : Monotone f := fun x y hxy =>
   inf_eq_left.1 <| by rw [← h, inf_eq_left.2 hxy]
 #align monotone.of_map_inf Monotone.of_map_inf
+-/
 
+#print Monotone.of_map_sup /-
 theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
     (h : ∀ x y, f (x ⊔ y) = f x ⊔ f y) : Monotone f :=
   (@of_map_inf (OrderDual α) (OrderDual β) _ _ _ h).dual
 #align monotone.of_map_sup Monotone.of_map_sup
+-/
 
 variable [LinearOrder α]
 
+#print Monotone.map_sup /-
 theorem map_sup [SemilatticeSup β] {f : α → β} (hf : Monotone f) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
   (IsTotal.total x y).elim (fun h : x ≤ y => by simp only [h, hf h, sup_of_le_right]) fun h => by
     simp only [h, hf h, sup_of_le_left]
 #align monotone.map_sup Monotone.map_sup
+-/
 
+#print Monotone.map_inf /-
 theorem map_inf [SemilatticeInf β] {f : α → β} (hf : Monotone f) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
   hf.dual.map_sup _ _
 #align monotone.map_inf Monotone.map_inf
+-/
 
 end Monotone
 
 namespace MonotoneOn
 
+#print MonotoneOn.sup /-
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
     (hf : MonotoneOn f s) (hg : MonotoneOn g s) : MonotoneOn (f ⊔ g) s := fun x hx y hy h =>
   sup_le_sup (hf hx hy h) (hg hx hy h)
 #align monotone_on.sup MonotoneOn.sup
+-/
 
+#print MonotoneOn.inf /-
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} {s : Set α}
     (hf : MonotoneOn f s) (hg : MonotoneOn g s) : MonotoneOn (f ⊓ g) s :=
   (hf.dual.sup hg.dual).dual
 #align monotone_on.inf MonotoneOn.inf
+-/
 
+#print MonotoneOn.max /-
 /-- Pointwise maximum of two monotone functions is a monotone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : MonotoneOn f s)
     (hg : MonotoneOn g s) : MonotoneOn (fun x => max (f x) (g x)) s :=
   hf.sup hg
 #align monotone_on.max MonotoneOn.max
+-/
 
+#print MonotoneOn.min /-
 /-- Pointwise minimum of two monotone functions is a monotone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : MonotoneOn f s)
     (hg : MonotoneOn g s) : MonotoneOn (fun x => min (f x) (g x)) s :=
   hf.inf hg
 #align monotone_on.min MonotoneOn.min
+-/
 
 end MonotoneOn
 
 namespace Antitone
 
+#print Antitone.sup /-
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone (f ⊔ g) := fun x y h => sup_le_sup (hf h) (hg h)
 #align antitone.sup Antitone.sup
+-/
 
+#print Antitone.inf /-
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone (f ⊓ g) := fun x y h => inf_le_inf (hf h) (hg h)
 #align antitone.inf Antitone.inf
+-/
 
+#print Antitone.max /-
 /-- Pointwise maximum of two monotone functions is a monotone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone fun x => max (f x) (g x) :=
   hf.sup hg
 #align antitone.max Antitone.max
+-/
 
+#print Antitone.min /-
 /-- Pointwise minimum of two monotone functions is a monotone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone fun x => min (f x) (g x) :=
   hf.inf hg
 #align antitone.min Antitone.min
+-/
 
+#print Antitone.map_sup_le /-
 theorem map_sup_le [SemilatticeSup α] [SemilatticeInf β] {f : α → β} (h : Antitone f) (x y : α) :
     f (x ⊔ y) ≤ f x ⊓ f y :=
   h.dual_right.le_map_sup x y
 #align antitone.map_sup_le Antitone.map_sup_le
+-/
 
+#print Antitone.le_map_inf /-
 theorem le_map_inf [SemilatticeInf α] [SemilatticeSup β] {f : α → β} (h : Antitone f) (x y : α) :
     f x ⊔ f y ≤ f (x ⊓ y) :=
   h.dual_right.map_inf_le x y
 #align antitone.le_map_inf Antitone.le_map_inf
+-/
 
 variable [LinearOrder α]
 
+#print Antitone.map_sup /-
 theorem map_sup [SemilatticeInf β] {f : α → β} (hf : Antitone f) (x y : α) :
     f (x ⊔ y) = f x ⊓ f y :=
   hf.dual_right.map_sup x y
 #align antitone.map_sup Antitone.map_sup
+-/
 
+#print Antitone.map_inf /-
 theorem map_inf [SemilatticeSup β] {f : α → β} (hf : Antitone f) (x y : α) :
     f (x ⊓ y) = f x ⊔ f y :=
   hf.dual_right.map_inf x y
 #align antitone.map_inf Antitone.map_inf
+-/
 
 end Antitone
 
 namespace AntitoneOn
 
+#print AntitoneOn.sup /-
 /-- Pointwise supremum of two antitone functions is a antitone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊔ g) s := fun x hx y hy h =>
   sup_le_sup (hf hx hy h) (hg hx hy h)
 #align antitone_on.sup AntitoneOn.sup
+-/
 
+#print AntitoneOn.inf /-
 /-- Pointwise infimum of two antitone functions is a antitone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊓ g) s :=
   (hf.dual.sup hg.dual).dual
 #align antitone_on.inf AntitoneOn.inf
+-/
 
+#print AntitoneOn.max /-
 /-- Pointwise maximum of two antitone functions is a antitone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : AntitoneOn f s)
     (hg : AntitoneOn g s) : AntitoneOn (fun x => max (f x) (g x)) s :=
   hf.sup hg
 #align antitone_on.max AntitoneOn.max
+-/
 
+#print AntitoneOn.min /-
 /-- Pointwise minimum of two antitone functions is a antitone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : AntitoneOn f s)
     (hg : AntitoneOn g s) : AntitoneOn (fun x => min (f x) (g x)) s :=
   hf.inf hg
 #align antitone_on.min AntitoneOn.min
+-/
 
 end AntitoneOn
 
@@ -1425,6 +1703,7 @@ end Prod
 
 namespace Subtype
 
+#print Subtype.semilatticeSup /-
 /-- A subtype forms a `⊔`-semilattice if `⊔` preserves the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -1436,7 +1715,9 @@ protected def semilatticeSup [SemilatticeSup α] {P : α → Prop}
     le_sup_right := fun x y => @le_sup_right _ _ (x : α) y
     sup_le := fun x y z h1 h2 => @sup_le α _ _ _ _ h1 h2 }
 #align subtype.semilattice_sup Subtype.semilatticeSup
+-/
 
+#print Subtype.semilatticeInf /-
 /-- A subtype forms a `⊓`-semilattice if `⊓` preserves the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -1448,7 +1729,9 @@ protected def semilatticeInf [SemilatticeInf α] {P : α → Prop}
     inf_le_right := fun x y => @inf_le_right _ _ (x : α) y
     le_inf := fun x y z h1 h2 => @le_inf α _ _ _ _ h1 h2 }
 #align subtype.semilattice_inf Subtype.semilatticeInf
+-/
 
+#print Subtype.lattice /-
 /-- A subtype forms a lattice if `⊔` and `⊓` preserve the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -1456,7 +1739,9 @@ protected def lattice [Lattice α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x
     (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y)) : Lattice { x : α // P x } :=
   { Subtype.semilatticeInf Pinf, Subtype.semilatticeSup Psup with }
 #align subtype.lattice Subtype.lattice
+-/
 
+#print Subtype.coe_sup /-
 @[simp, norm_cast]
 theorem coe_sup [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y))
     (x y : Subtype P) :
@@ -1466,7 +1751,9 @@ theorem coe_sup [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x
       x ⊔ y :=
   rfl
 #align subtype.coe_sup Subtype.coe_sup
+-/
 
+#print Subtype.coe_inf /-
 @[simp, norm_cast]
 theorem coe_inf [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y))
     (x y : Subtype P) :
@@ -1476,7 +1763,9 @@ theorem coe_inf [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x
       x ⊓ y :=
   rfl
 #align subtype.coe_inf Subtype.coe_inf
+-/
 
+#print Subtype.mk_sup_mk /-
 @[simp]
 theorem mk_sup_mk [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y))
     {x y : α} (hx : P x) (hy : P y) :
@@ -1485,7 +1774,9 @@ theorem mk_sup_mk [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P
       ⟨x ⊔ y, Psup hx hy⟩ :=
   rfl
 #align subtype.mk_sup_mk Subtype.mk_sup_mk
+-/
 
+#print Subtype.mk_inf_mk /-
 @[simp]
 theorem mk_inf_mk [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y))
     {x y : α} (hx : P x) (hy : P y) :
@@ -1494,11 +1785,13 @@ theorem mk_inf_mk [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P
       ⟨x ⊓ y, Pinf hx hy⟩ :=
   rfl
 #align subtype.mk_inf_mk Subtype.mk_inf_mk
+-/
 
 end Subtype
 
 section lift
 
+#print Function.Injective.semilatticeSup /-
 /-- A type endowed with `⊔` is a `semilattice_sup`, if it admits an injective map that
 preserves `⊔` to a `semilattice_sup`.
 See note [reducible non-instances]. -/
@@ -1511,7 +1804,9 @@ protected def Function.Injective.semilatticeSup [Sup α] [SemilatticeSup β] (f
     le_sup_right := fun a b => by change f b ≤ f (a ⊔ b); rw [map_sup]; exact le_sup_right
     sup_le := fun a b c ha hb => by change f (a ⊔ b) ≤ f c; rw [map_sup]; exact sup_le ha hb }
 #align function.injective.semilattice_sup Function.Injective.semilatticeSup
+-/
 
+#print Function.Injective.semilatticeInf /-
 /-- A type endowed with `⊓` is a `semilattice_inf`, if it admits an injective map that
 preserves `⊓` to a `semilattice_inf`.
 See note [reducible non-instances]. -/
@@ -1524,7 +1819,9 @@ protected def Function.Injective.semilatticeInf [Inf α] [SemilatticeInf β] (f
     inf_le_right := fun a b => by change f (a ⊓ b) ≤ f b; rw [map_inf]; exact inf_le_right
     le_inf := fun a b c ha hb => by change f a ≤ f (b ⊓ c); rw [map_inf]; exact le_inf ha hb }
 #align function.injective.semilattice_inf Function.Injective.semilatticeInf
+-/
 
+#print Function.Injective.lattice /-
 /-- A type endowed with `⊔` and `⊓` is a `lattice`, if it admits an injective map that
 preserves `⊔` and `⊓` to a `lattice`.
 See note [reducible non-instances]. -/
@@ -1534,7 +1831,9 @@ protected def Function.Injective.lattice [Sup α] [Inf α] [Lattice β] (f : α
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : Lattice α :=
   { hf_inj.SemilatticeSup f map_sup, hf_inj.SemilatticeInf f map_inf with }
 #align function.injective.lattice Function.Injective.lattice
+-/
 
+#print Function.Injective.distribLattice /-
 /-- A type endowed with `⊔` and `⊓` is a `distrib_lattice`, if it admits an injective map that
 preserves `⊔` and `⊓` to a `distrib_lattice`.
 See note [reducible non-instances]. -/
@@ -1548,6 +1847,7 @@ protected def Function.Injective.distribLattice [Sup α] [Inf α] [DistribLattic
       change f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c)
       rw [map_inf, map_sup, map_sup, map_sup, map_inf]; exact le_sup_inf }
 #align function.injective.distrib_lattice Function.Injective.distribLattice
+-/
 
 end lift
 
Diff
@@ -322,7 +322,6 @@ theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α →
     f m ≤ f (m ⊔ n) := hf le_sup_left
     _ ≤ g (m ⊔ n) := (h _)
     _ ≤ g n := hg le_sup_right
-    
 #align monotone.forall_le_of_antitone Monotone.forall_le_of_antitone
 
 theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
@@ -684,12 +683,10 @@ def Lattice.mk' {α : Type _} [Sup α] [Inf α] (sup_comm : ∀ a b : α, a ⊔
     calc
       b ⊔ b = b ⊔ b ⊓ (b ⊔ b) := by rw [inf_sup_self]
       _ = b := by rw [sup_inf_self]
-      
   have inf_idem : ∀ b : α, b ⊓ b = b := fun b =>
     calc
       b ⊓ b = b ⊓ (b ⊔ b ⊓ b) := by rw [sup_inf_self]
       _ = b := by rw [inf_sup_self]
-      
   let semilatt_inf_inst := SemilatticeInf.mk' inf_comm inf_assoc inf_idem
   let semilatt_sup_inst := SemilatticeSup.mk' sup_comm sup_assoc sup_idem
   let
@@ -832,7 +829,6 @@ theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
     _ = (x ⊔ x ⊓ y) ⊓ (x ⊓ y ⊔ z) := by rw [sup_inf_self]
     _ = (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z) := by rw [sup_comm]
     _ = x ⊓ y ⊔ x ⊓ z := by rw [sup_inf_left]
-    
 #align inf_sup_left inf_sup_left
 
 instance (α : Type _) [DistribLattice α] : DistribLattice αᵒᵈ :=
@@ -850,7 +846,6 @@ theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y 
     _ = y ⊔ x ⊓ z := sup_inf_left.symm
     _ ≤ y ⊔ y ⊓ z := (sup_le_sup_left h₁ _)
     _ ≤ _ := sup_le (le_refl y) inf_le_left
-    
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
 
 theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a)
Diff
@@ -910,16 +910,16 @@ theorem sup_ind (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊔ b)
 @[simp]
 theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
   ⟨fun h =>
-    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h) fun bc => by
-      rwa [sup_eq_right.2 bc] at h,
+    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) fun bc => by
+      rwa [sup_eq_right.2 bc] at h ,
     fun h => h.elim le_sup_of_le_left le_sup_of_le_right⟩
 #align le_sup_iff le_sup_iff
 
 @[simp]
 theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
   ⟨fun h =>
-    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h) fun bc => by
-      rwa [sup_eq_right.2 bc] at h,
+    (total_of (· ≤ ·) c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) fun bc => by
+      rwa [sup_eq_right.2 bc] at h ,
     fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩
 #align lt_sup_iff lt_sup_iff
 
@@ -965,7 +965,7 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
   ext (x y)
   dsimp only [maxDefault]
   split_ifs with h'
-  exacts[sup_of_le_right h', sup_of_le_left <| (total_of (· ≤ ·) x y).resolve_left h']
+  exacts [sup_of_le_right h', sup_of_le_left <| (total_of (· ≤ ·) x y).resolve_left h']
 #align sup_eq_max_default sup_eq_maxDefault
 
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
@@ -974,7 +974,7 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   ext (x y)
   dsimp only [minDefault]
   split_ifs with h'
-  exacts[inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
+  exacts [inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
 
 #print Lattice.toLinearOrder /-
Diff
@@ -66,11 +66,13 @@ attribute [ematch] le_trans lt_of_le_of_lt lt_of_lt_of_le lt_trans
 
 section
 
+#print le_antisymm' /-
 -- TODO: this seems crazy, but it also seems to work reasonably well
 @[ematch]
 theorem le_antisymm' [PartialOrder α] : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
   @le_antisymm _ _
 #align le_antisymm' le_antisymm'
+-/
 
 end
 
@@ -336,6 +338,7 @@ theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff] <;> rw [← H, @sup_le_iff α A, H, H]
 #align semilattice_sup.ext_sup SemilatticeSup.ext_sup
 
+#print SemilatticeSup.ext /-
 theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
     (H :
       ∀ x y : α,
@@ -348,6 +351,7 @@ theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
   cases A; cases B
   injection this <;> congr
 #align semilattice_sup.ext SemilatticeSup.ext
+-/
 
 theorem ite_le_sup (s s' : α) (P : Prop) [Decidable P] : ite P s s' ≤ s ⊔ s' :=
   if h : P then (if_pos h).trans_le le_sup_left else (if_neg h).trans_le le_sup_right
@@ -589,6 +593,7 @@ theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
   eq_of_forall_le_iff fun c => by simp only [le_inf_iff] <;> rw [← H, @le_inf_iff α A, H, H]
 #align semilattice_inf.ext_inf SemilatticeInf.ext_inf
 
+#print SemilatticeInf.ext /-
 theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
     (H :
       ∀ x y : α,
@@ -601,6 +606,7 @@ theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
   cases A; cases B
   injection this <;> congr
 #align semilattice_inf.ext SemilatticeInf.ext
+-/
 
 #print SemilatticeInf.dual_dual /-
 theorem SemilatticeInf.dual_dual (α : Type _) [H : SemilatticeInf α] :
@@ -762,6 +768,7 @@ theorem sup_inf_self : a ⊔ a ⊓ b = a := by simp
 theorem sup_eq_iff_inf_eq : a ⊔ b = b ↔ a ⊓ b = a := by rw [sup_eq_right, ← inf_eq_left]
 #align sup_eq_iff_inf_eq sup_eq_iff_inf_eq
 
+#print Lattice.ext /-
 theorem Lattice.ext {α} {A B : Lattice α}
     (H :
       ∀ x y : α,
@@ -775,6 +782,7 @@ theorem Lattice.ext {α} {A B : Lattice α}
   cases A; cases B
   injection SS <;> injection II <;> congr
 #align lattice.ext Lattice.ext
+-/
 
 end Lattice
 
@@ -969,6 +977,7 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   exacts[inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
 
+#print Lattice.toLinearOrder /-
 /-- A lattice with total order is a linear order.
 
 See note [reducible non-instances]. -/
@@ -986,6 +995,7 @@ def Lattice.toLinearOrder (α : Type u) [Lattice α] [DecidableEq α]
     min := (· ⊓ ·)
     min_def := inf_eq_minDefault }
 #align lattice.to_linear_order Lattice.toLinearOrder
+-/
 
 -- see Note [lower instance priority]
 instance (priority := 100) LinearOrder.toDistribLattice {α : Type u} [o : LinearOrder α] :
Diff
@@ -66,12 +66,6 @@ attribute [ematch] le_trans lt_of_le_of_lt lt_of_lt_of_le lt_trans
 
 section
 
-/- warning: le_antisymm' -> le_antisymm' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align le_antisymm' le_antisymm'ₓ'. -/
 -- TODO: this seems crazy, but it also seems to work reasonably well
 @[ematch]
 theorem le_antisymm' [PartialOrder α] : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
@@ -135,221 +129,95 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c d : α}
 
-/- warning: le_sup_left -> le_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align le_sup_left le_sup_leftₓ'. -/
 @[simp]
 theorem le_sup_left : a ≤ a ⊔ b :=
   SemilatticeSup.le_sup_left a b
 #align le_sup_left le_sup_left
 
-/- warning: le_sup_left' -> le_sup_left' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align le_sup_left' le_sup_left'ₓ'. -/
 @[ematch]
 theorem le_sup_left' : a ≤ a ⊔ b :=
   le_sup_left
 #align le_sup_left' le_sup_left'
 
-/- warning: le_sup_right -> le_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align le_sup_right le_sup_rightₓ'. -/
 @[simp]
 theorem le_sup_right : b ≤ a ⊔ b :=
   SemilatticeSup.le_sup_right a b
 #align le_sup_right le_sup_right
 
-/- warning: le_sup_right' -> le_sup_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align le_sup_right' le_sup_right'ₓ'. -/
 @[ematch]
 theorem le_sup_right' : b ≤ a ⊔ b :=
   le_sup_right
 #align le_sup_right' le_sup_right'
 
-/- warning: le_sup_of_le_left -> le_sup_of_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align le_sup_of_le_left le_sup_of_le_leftₓ'. -/
 theorem le_sup_of_le_left (h : c ≤ a) : c ≤ a ⊔ b :=
   le_trans h le_sup_left
 #align le_sup_of_le_left le_sup_of_le_left
 
-/- warning: le_sup_of_le_right -> le_sup_of_le_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align le_sup_of_le_right le_sup_of_le_rightₓ'. -/
 theorem le_sup_of_le_right (h : c ≤ b) : c ≤ a ⊔ b :=
   le_trans h le_sup_right
 #align le_sup_of_le_right le_sup_of_le_right
 
-/- warning: lt_sup_of_lt_left -> lt_sup_of_lt_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align lt_sup_of_lt_left lt_sup_of_lt_leftₓ'. -/
 theorem lt_sup_of_lt_left (h : c < a) : c < a ⊔ b :=
   h.trans_le le_sup_left
 #align lt_sup_of_lt_left lt_sup_of_lt_left
 
-/- warning: lt_sup_of_lt_right -> lt_sup_of_lt_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align lt_sup_of_lt_right lt_sup_of_lt_rightₓ'. -/
 theorem lt_sup_of_lt_right (h : c < b) : c < a ⊔ b :=
   h.trans_le le_sup_right
 #align lt_sup_of_lt_right lt_sup_of_lt_right
 
-/- warning: sup_le -> sup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align sup_le sup_leₓ'. -/
 theorem sup_le : a ≤ c → b ≤ c → a ⊔ b ≤ c :=
   SemilatticeSup.sup_le a b c
 #align sup_le sup_le
 
-/- warning: sup_le_iff -> sup_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c))
-Case conversion may be inaccurate. Consider using '#align sup_le_iff sup_le_iffₓ'. -/
 @[simp]
 theorem sup_le_iff : a ⊔ b ≤ c ↔ a ≤ c ∧ b ≤ c :=
   ⟨fun h : a ⊔ b ≤ c => ⟨le_trans le_sup_left h, le_trans le_sup_right h⟩, fun ⟨h₁, h₂⟩ =>
     sup_le h₁ h₂⟩
 #align sup_le_iff sup_le_iff
 
-/- warning: sup_eq_left -> sup_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
-Case conversion may be inaccurate. Consider using '#align sup_eq_left sup_eq_leftₓ'. -/
 @[simp]
 theorem sup_eq_left : a ⊔ b = a ↔ b ≤ a :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_left sup_eq_left
 
-/- warning: sup_eq_right -> sup_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align sup_eq_right sup_eq_rightₓ'. -/
 @[simp]
 theorem sup_eq_right : a ⊔ b = b ↔ a ≤ b :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_right sup_eq_right
 
-/- warning: left_eq_sup -> left_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
-Case conversion may be inaccurate. Consider using '#align left_eq_sup left_eq_supₓ'. -/
 @[simp]
 theorem left_eq_sup : a = a ⊔ b ↔ b ≤ a :=
   eq_comm.trans sup_eq_left
 #align left_eq_sup left_eq_sup
 
-/- warning: right_eq_sup -> right_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align right_eq_sup right_eq_supₓ'. -/
 @[simp]
 theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b :=
   eq_comm.trans sup_eq_right
 #align right_eq_sup right_eq_sup
 
-/- warning: sup_of_le_left -> sup_of_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align sup_of_le_left sup_of_le_leftₓ'. -/
 alias sup_eq_left ↔ _ sup_of_le_left
 #align sup_of_le_left sup_of_le_left
 
-/- warning: le_of_sup_eq -> le_of_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align le_of_sup_eq le_of_sup_eqₓ'. -/
-/- warning: sup_of_le_right -> sup_of_le_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align sup_of_le_right sup_of_le_rightₓ'. -/
 alias sup_eq_right ↔ le_of_sup_eq sup_of_le_right
 #align le_of_sup_eq le_of_sup_eq
 #align sup_of_le_right sup_of_le_right
 
 attribute [simp] sup_of_le_left sup_of_le_right
 
-/- warning: left_lt_sup -> left_lt_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align left_lt_sup left_lt_supₓ'. -/
 @[simp]
 theorem left_lt_sup : a < a ⊔ b ↔ ¬b ≤ a :=
   le_sup_left.lt_iff_ne.trans <| not_congr left_eq_sup
 #align left_lt_sup left_lt_sup
 
-/- warning: right_lt_sup -> right_lt_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align right_lt_sup right_lt_supₓ'. -/
 @[simp]
 theorem right_lt_sup : b < a ⊔ b ↔ ¬a ≤ b :=
   le_sup_right.lt_iff_ne.trans <| not_congr right_eq_sup
 #align right_lt_sup right_lt_sup
 
-/- warning: left_or_right_lt_sup -> left_or_right_lt_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
-Case conversion may be inaccurate. Consider using '#align left_or_right_lt_sup left_or_right_lt_supₓ'. -/
 theorem left_or_right_lt_sup (h : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
   h.not_le_or_not_le.symm.imp left_lt_sup.2 right_lt_sup.2
 #align left_or_right_lt_sup left_or_right_lt_sup
 
-/- warning: le_iff_exists_sup -> le_iff_exists_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) (Exists.{succ u1} α (fun (c : α) => Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) (Exists.{succ u1} α (fun (c : α) => Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)))
-Case conversion may be inaccurate. Consider using '#align le_iff_exists_sup le_iff_exists_supₓ'. -/
 theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
   by
   constructor
@@ -358,42 +226,18 @@ theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
     exact le_sup_left
 #align le_iff_exists_sup le_iff_exists_sup
 
-/- warning: sup_le_sup -> sup_le_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align sup_le_sup sup_le_supₓ'. -/
 theorem sup_le_sup (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊔ c ≤ b ⊔ d :=
   sup_le (le_sup_of_le_left h₁) (le_sup_of_le_right h₂)
 #align sup_le_sup sup_le_sup
 
-/- warning: sup_le_sup_left -> sup_le_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b))
-Case conversion may be inaccurate. Consider using '#align sup_le_sup_left sup_le_sup_leftₓ'. -/
 theorem sup_le_sup_left (h₁ : a ≤ b) (c) : c ⊔ a ≤ c ⊔ b :=
   sup_le_sup le_rfl h₁
 #align sup_le_sup_left sup_le_sup_left
 
-/- warning: sup_le_sup_right -> sup_le_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sup_le_sup_right sup_le_sup_rightₓ'. -/
 theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
   sup_le_sup h₁ le_rfl
 #align sup_le_sup_right sup_le_sup_right
 
-/- warning: sup_idem -> sup_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a a) a
-Case conversion may be inaccurate. Consider using '#align sup_idem sup_idemₓ'. -/
 @[simp]
 theorem sup_idem : a ⊔ a = a := by apply le_antisymm <;> simp
 #align sup_idem sup_idem
@@ -402,12 +246,6 @@ instance sup_isIdempotent : IsIdempotent α (· ⊔ ·) :=
   ⟨@sup_idem _ _⟩
 #align sup_is_idempotent sup_isIdempotent
 
-/- warning: sup_comm -> sup_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align sup_comm sup_commₓ'. -/
 theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
 #align sup_comm sup_comm
 
@@ -415,12 +253,6 @@ instance sup_isCommutative : IsCommutative α (· ⊔ ·) :=
   ⟨@sup_comm _ _⟩
 #align sup_is_commutative sup_isCommutative
 
-/- warning: sup_assoc -> sup_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sup_assoc sup_assocₓ'. -/
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
   eq_of_forall_ge_iff fun x => by simp only [sup_le_iff, and_assoc']
 #align sup_assoc sup_assoc
@@ -429,142 +261,58 @@ instance sup_isAssociative : IsAssociative α (· ⊔ ·) :=
   ⟨@sup_assoc _ _⟩
 #align sup_is_associative sup_isAssociative
 
-/- warning: sup_left_right_swap -> sup_left_right_swap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b) a)
-Case conversion may be inaccurate. Consider using '#align sup_left_right_swap sup_left_right_swapₓ'. -/
 theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
   rw [sup_comm, @sup_comm _ _ a, sup_assoc]
 #align sup_left_right_swap sup_left_right_swap
 
-/- warning: sup_left_idem -> sup_left_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sup_left_idem sup_left_idemₓ'. -/
 @[simp]
 theorem sup_left_idem : a ⊔ (a ⊔ b) = a ⊔ b := by rw [← sup_assoc, sup_idem]
 #align sup_left_idem sup_left_idem
 
-/- warning: sup_right_idem -> sup_right_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sup_right_idem sup_right_idemₓ'. -/
 @[simp]
 theorem sup_right_idem : a ⊔ b ⊔ b = a ⊔ b := by rw [sup_assoc, sup_idem]
 #align sup_right_idem sup_right_idem
 
-/- warning: sup_left_comm -> sup_left_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align sup_left_comm sup_left_commₓ'. -/
 theorem sup_left_comm (a b c : α) : a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c) := by
   rw [← sup_assoc, ← sup_assoc, @sup_comm α _ a]
 #align sup_left_comm sup_left_comm
 
-/- warning: sup_right_comm -> sup_right_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align sup_right_comm sup_right_commₓ'. -/
 theorem sup_right_comm (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ b := by
   rw [sup_assoc, sup_assoc, @sup_comm _ _ b]
 #align sup_right_comm sup_right_comm
 
-/- warning: sup_sup_sup_comm -> sup_sup_sup_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c d)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c d)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align sup_sup_sup_comm sup_sup_sup_commₓ'. -/
 theorem sup_sup_sup_comm (a b c d : α) : a ⊔ b ⊔ (c ⊔ d) = a ⊔ c ⊔ (b ⊔ d) := by
   rw [sup_assoc, sup_left_comm b, ← sup_assoc]
 #align sup_sup_sup_comm sup_sup_sup_comm
 
-/- warning: sup_sup_distrib_left -> sup_sup_distrib_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align sup_sup_distrib_left sup_sup_distrib_leftₓ'. -/
 theorem sup_sup_distrib_left (a b c : α) : a ⊔ (b ⊔ c) = a ⊔ b ⊔ (a ⊔ c) := by
   rw [sup_sup_sup_comm, sup_idem]
 #align sup_sup_distrib_left sup_sup_distrib_left
 
-/- warning: sup_sup_distrib_right -> sup_sup_distrib_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sup_sup_distrib_right sup_sup_distrib_rightₓ'. -/
 theorem sup_sup_distrib_right (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ (b ⊔ c) := by
   rw [sup_sup_sup_comm, sup_idem]
 #align sup_sup_distrib_right sup_sup_distrib_right
 
-/- warning: sup_congr_left -> sup_congr_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align sup_congr_left sup_congr_leftₓ'. -/
 theorem sup_congr_left (hb : b ≤ a ⊔ c) (hc : c ≤ a ⊔ b) : a ⊔ b = a ⊔ c :=
   (sup_le le_sup_left hb).antisymm <| sup_le le_sup_left hc
 #align sup_congr_left sup_congr_left
 
-/- warning: sup_congr_right -> sup_congr_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sup_congr_right sup_congr_rightₓ'. -/
 theorem sup_congr_right (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ⊔ c = b ⊔ c :=
   (sup_le ha le_sup_right).antisymm <| sup_le hb le_sup_right
 #align sup_congr_right sup_congr_right
 
-/- warning: sup_eq_sup_iff_left -> sup_eq_sup_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
-Case conversion may be inaccurate. Consider using '#align sup_eq_sup_iff_left sup_eq_sup_iff_leftₓ'. -/
 theorem sup_eq_sup_iff_left : a ⊔ b = a ⊔ c ↔ b ≤ a ⊔ c ∧ c ≤ a ⊔ b :=
   ⟨fun h => ⟨h ▸ le_sup_right, h.symm ▸ le_sup_right⟩, fun h => sup_congr_left h.1 h.2⟩
 #align sup_eq_sup_iff_left sup_eq_sup_iff_left
 
-/- warning: sup_eq_sup_iff_right -> sup_eq_sup_iff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)))
-Case conversion may be inaccurate. Consider using '#align sup_eq_sup_iff_right sup_eq_sup_iff_rightₓ'. -/
 theorem sup_eq_sup_iff_right : a ⊔ c = b ⊔ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c :=
   ⟨fun h => ⟨h ▸ le_sup_left, h.symm ▸ le_sup_left⟩, fun h => sup_congr_right h.1 h.2⟩
 #align sup_eq_sup_iff_right sup_eq_sup_iff_right
 
-/- warning: ne.lt_sup_or_lt_sup -> Ne.lt_sup_or_lt_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
-Case conversion may be inaccurate. Consider using '#align ne.lt_sup_or_lt_sup Ne.lt_sup_or_lt_supₓ'. -/
 theorem Ne.lt_sup_or_lt_sup (hab : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
   hab.symm.not_le_or_not_le.imp left_lt_sup.2 right_lt_sup.2
 #align ne.lt_sup_or_lt_sup Ne.lt_sup_or_lt_sup
 
-/- warning: monotone.forall_le_of_antitone -> Monotone.forall_le_of_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) _inst_2 f) -> (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) _inst_2 g) -> (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_2)) f g) -> (forall (m : α) (n : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (f m) (g n))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : SemilatticeSup.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {g : α -> β}, (Monotone.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)) _inst_2 f) -> (Antitone.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)) _inst_2 g) -> (LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_2)) f g) -> (forall (m : α) (n : α), LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (f m) (g n))
-Case conversion may be inaccurate. Consider using '#align monotone.forall_le_of_antitone Monotone.forall_le_of_antitoneₓ'. -/
 /-- If `f` is monotone, `g` is antitone, and `f ≤ g`, then for all `a`, `b` we have `f a ≤ g b`. -/
 theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α → β} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) (m n : α) : f m ≤ g n :=
@@ -575,12 +323,6 @@ theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α →
     
 #align monotone.forall_le_of_antitone Monotone.forall_le_of_antitone
 
-/- warning: semilattice_sup.ext_sup -> SemilatticeSup.ext_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α A) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α B) x y))
-but is expected to have type
-  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α A) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α B) x y))
-Case conversion may be inaccurate. Consider using '#align semilattice_sup.ext_sup SemilatticeSup.ext_supₓ'. -/
 theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
     (H :
       ∀ x y : α,
@@ -594,12 +336,6 @@ theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff] <;> rw [← H, @sup_le_iff α A, H, H]
 #align semilattice_sup.ext_sup SemilatticeSup.ext_sup
 
-/- warning: semilattice_sup.ext -> SemilatticeSup.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeSup.{u1} α) A B)
-but is expected to have type
-  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeSup.{u1} α) A B)
-Case conversion may be inaccurate. Consider using '#align semilattice_sup.ext SemilatticeSup.extₓ'. -/
 theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
     (H :
       ∀ x y : α,
@@ -613,12 +349,6 @@ theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
   injection this <;> congr
 #align semilattice_sup.ext SemilatticeSup.ext
 
-/- warning: ite_le_sup -> ite_le_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (ite.{succ u1} α P _inst_2 s s') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) s s')
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (ite.{succ u1} α P _inst_2 s s') (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) s s')
-Case conversion may be inaccurate. Consider using '#align ite_le_sup ite_le_supₓ'. -/
 theorem ite_le_sup (s s' : α) (P : Prop) [Decidable P] : ite P s s' ≤ s ⊔ s' :=
   if h : P then (if_pos h).trans_le le_sup_left else (if_neg h).trans_le le_sup_right
 #align ite_le_sup ite_le_sup
@@ -667,250 +397,106 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c d : α}
 
-/- warning: inf_le_left -> inf_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a
-Case conversion may be inaccurate. Consider using '#align inf_le_left inf_le_leftₓ'. -/
 @[simp]
 theorem inf_le_left : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left inf_le_left
 
-/- warning: inf_le_left' -> inf_le_left' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a
-Case conversion may be inaccurate. Consider using '#align inf_le_left' inf_le_left'ₓ'. -/
 @[ematch]
 theorem inf_le_left' : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left' inf_le_left'
 
-/- warning: inf_le_right -> inf_le_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b
-Case conversion may be inaccurate. Consider using '#align inf_le_right inf_le_rightₓ'. -/
 @[simp]
 theorem inf_le_right : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right inf_le_right
 
-/- warning: inf_le_right' -> inf_le_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b
-Case conversion may be inaccurate. Consider using '#align inf_le_right' inf_le_right'ₓ'. -/
 @[ematch]
 theorem inf_le_right' : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right' inf_le_right'
 
-/- warning: le_inf -> le_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align le_inf le_infₓ'. -/
 theorem le_inf : a ≤ b → a ≤ c → a ≤ b ⊓ c :=
   SemilatticeInf.le_inf a b c
 #align le_inf le_inf
 
-/- warning: inf_le_of_left_le -> inf_le_of_left_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align inf_le_of_left_le inf_le_of_left_leₓ'. -/
 theorem inf_le_of_left_le (h : a ≤ c) : a ⊓ b ≤ c :=
   le_trans inf_le_left h
 #align inf_le_of_left_le inf_le_of_left_le
 
-/- warning: inf_le_of_right_le -> inf_le_of_right_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align inf_le_of_right_le inf_le_of_right_leₓ'. -/
 theorem inf_le_of_right_le (h : b ≤ c) : a ⊓ b ≤ c :=
   le_trans inf_le_right h
 #align inf_le_of_right_le inf_le_of_right_le
 
-/- warning: inf_lt_of_left_lt -> inf_lt_of_left_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align inf_lt_of_left_lt inf_lt_of_left_ltₓ'. -/
 theorem inf_lt_of_left_lt (h : a < c) : a ⊓ b < c :=
   lt_of_le_of_lt inf_le_left h
 #align inf_lt_of_left_lt inf_lt_of_left_lt
 
-/- warning: inf_lt_of_right_lt -> inf_lt_of_right_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align inf_lt_of_right_lt inf_lt_of_right_ltₓ'. -/
 theorem inf_lt_of_right_lt (h : b < c) : a ⊓ b < c :=
   lt_of_le_of_lt inf_le_right h
 #align inf_lt_of_right_lt inf_lt_of_right_lt
 
-/- warning: le_inf_iff -> le_inf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c))
-Case conversion may be inaccurate. Consider using '#align le_inf_iff le_inf_iffₓ'. -/
 @[simp]
 theorem le_inf_iff : a ≤ b ⊓ c ↔ a ≤ b ∧ a ≤ c :=
   @sup_le_iff αᵒᵈ _ _ _ _
 #align le_inf_iff le_inf_iff
 
-/- warning: inf_eq_left -> inf_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align inf_eq_left inf_eq_leftₓ'. -/
 @[simp]
 theorem inf_eq_left : a ⊓ b = a ↔ a ≤ b :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_left inf_eq_left
 
-/- warning: inf_eq_right -> inf_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
-Case conversion may be inaccurate. Consider using '#align inf_eq_right inf_eq_rightₓ'. -/
 @[simp]
 theorem inf_eq_right : a ⊓ b = b ↔ b ≤ a :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_right inf_eq_right
 
-/- warning: left_eq_inf -> left_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align left_eq_inf left_eq_infₓ'. -/
 @[simp]
 theorem left_eq_inf : a = a ⊓ b ↔ a ≤ b :=
   eq_comm.trans inf_eq_left
 #align left_eq_inf left_eq_inf
 
-/- warning: right_eq_inf -> right_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
-Case conversion may be inaccurate. Consider using '#align right_eq_inf right_eq_infₓ'. -/
 @[simp]
 theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a :=
   eq_comm.trans inf_eq_right
 #align right_eq_inf right_eq_inf
 
-/- warning: le_of_inf_eq -> le_of_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align le_of_inf_eq le_of_inf_eqₓ'. -/
-/- warning: inf_of_le_left -> inf_of_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align inf_of_le_left inf_of_le_leftₓ'. -/
 alias inf_eq_left ↔ le_of_inf_eq inf_of_le_left
 #align le_of_inf_eq le_of_inf_eq
 #align inf_of_le_left inf_of_le_left
 
-/- warning: inf_of_le_right -> inf_of_le_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align inf_of_le_right inf_of_le_rightₓ'. -/
 alias inf_eq_right ↔ _ inf_of_le_right
 #align inf_of_le_right inf_of_le_right
 
 attribute [simp] inf_of_le_left inf_of_le_right
 
-/- warning: inf_lt_left -> inf_lt_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align inf_lt_left inf_lt_leftₓ'. -/
 @[simp]
 theorem inf_lt_left : a ⊓ b < a ↔ ¬a ≤ b :=
   @left_lt_sup αᵒᵈ _ _ _
 #align inf_lt_left inf_lt_left
 
-/- warning: inf_lt_right -> inf_lt_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align inf_lt_right inf_lt_rightₓ'. -/
 @[simp]
 theorem inf_lt_right : a ⊓ b < b ↔ ¬b ≤ a :=
   @right_lt_sup αᵒᵈ _ _ _
 #align inf_lt_right inf_lt_right
 
-/- warning: inf_lt_left_or_right -> inf_lt_left_or_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b))
-Case conversion may be inaccurate. Consider using '#align inf_lt_left_or_right inf_lt_left_or_rightₓ'. -/
 theorem inf_lt_left_or_right (h : a ≠ b) : a ⊓ b < a ∨ a ⊓ b < b :=
   @left_or_right_lt_sup αᵒᵈ _ _ _ h
 #align inf_lt_left_or_right inf_lt_left_or_right
 
-/- warning: inf_le_inf -> inf_le_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align inf_le_inf inf_le_infₓ'. -/
 theorem inf_le_inf (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊓ c ≤ b ⊓ d :=
   @sup_le_sup αᵒᵈ _ _ _ _ _ h₁ h₂
 #align inf_le_inf inf_le_inf
 
-/- warning: inf_le_inf_right -> inf_le_inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b a) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c a))
-Case conversion may be inaccurate. Consider using '#align inf_le_inf_right inf_le_inf_rightₓ'. -/
 theorem inf_le_inf_right (a : α) {b c : α} (h : b ≤ c) : b ⊓ a ≤ c ⊓ a :=
   inf_le_inf h le_rfl
 #align inf_le_inf_right inf_le_inf_right
 
-/- warning: inf_le_inf_left -> inf_le_inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align inf_le_inf_left inf_le_inf_leftₓ'. -/
 theorem inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c :=
   inf_le_inf le_rfl h
 #align inf_le_inf_left inf_le_inf_left
 
-/- warning: inf_idem -> inf_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a a) a
-Case conversion may be inaccurate. Consider using '#align inf_idem inf_idemₓ'. -/
 @[simp]
 theorem inf_idem : a ⊓ a = a :=
   @sup_idem αᵒᵈ _ _
@@ -920,12 +506,6 @@ instance inf_isIdempotent : IsIdempotent α (· ⊓ ·) :=
   ⟨@inf_idem _ _⟩
 #align inf_is_idempotent inf_isIdempotent
 
-/- warning: inf_comm -> inf_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align inf_comm inf_commₓ'. -/
 theorem inf_comm : a ⊓ b = b ⊓ a :=
   @sup_comm αᵒᵈ _ _ _
 #align inf_comm inf_comm
@@ -934,12 +514,6 @@ instance inf_isCommutative : IsCommutative α (· ⊓ ·) :=
   ⟨@inf_comm _ _⟩
 #align inf_is_commutative inf_isCommutative
 
-/- warning: inf_assoc -> inf_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align inf_assoc inf_assocₓ'. -/
 theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
   @sup_assoc αᵒᵈ _ a b c
 #align inf_assoc inf_assoc
@@ -948,144 +522,60 @@ instance inf_isAssociative : IsAssociative α (· ⊓ ·) :=
   ⟨@inf_assoc _ _⟩
 #align inf_is_associative inf_isAssociative
 
-/- warning: inf_left_right_swap -> inf_left_right_swap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c b) a)
-Case conversion may be inaccurate. Consider using '#align inf_left_right_swap inf_left_right_swapₓ'. -/
 theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
   @sup_left_right_swap αᵒᵈ _ _ _ _
 #align inf_left_right_swap inf_left_right_swap
 
-/- warning: inf_left_idem -> inf_left_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align inf_left_idem inf_left_idemₓ'. -/
 @[simp]
 theorem inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b :=
   @sup_left_idem αᵒᵈ _ a b
 #align inf_left_idem inf_left_idem
 
-/- warning: inf_right_idem -> inf_right_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align inf_right_idem inf_right_idemₓ'. -/
 @[simp]
 theorem inf_right_idem : a ⊓ b ⊓ b = a ⊓ b :=
   @sup_right_idem αᵒᵈ _ a b
 #align inf_right_idem inf_right_idem
 
-/- warning: inf_left_comm -> inf_left_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align inf_left_comm inf_left_commₓ'. -/
 theorem inf_left_comm (a b c : α) : a ⊓ (b ⊓ c) = b ⊓ (a ⊓ c) :=
   @sup_left_comm αᵒᵈ _ a b c
 #align inf_left_comm inf_left_comm
 
-/- warning: inf_right_comm -> inf_right_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align inf_right_comm inf_right_commₓ'. -/
 theorem inf_right_comm (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ b :=
   @sup_right_comm αᵒᵈ _ a b c
 #align inf_right_comm inf_right_comm
 
-/- warning: inf_inf_inf_comm -> inf_inf_inf_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c d)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c d)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align inf_inf_inf_comm inf_inf_inf_commₓ'. -/
 theorem inf_inf_inf_comm (a b c d : α) : a ⊓ b ⊓ (c ⊓ d) = a ⊓ c ⊓ (b ⊓ d) :=
   @sup_sup_sup_comm αᵒᵈ _ _ _ _ _
 #align inf_inf_inf_comm inf_inf_inf_comm
 
-/- warning: inf_inf_distrib_left -> inf_inf_distrib_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align inf_inf_distrib_left inf_inf_distrib_leftₓ'. -/
 theorem inf_inf_distrib_left (a b c : α) : a ⊓ (b ⊓ c) = a ⊓ b ⊓ (a ⊓ c) :=
   @sup_sup_distrib_left αᵒᵈ _ _ _ _
 #align inf_inf_distrib_left inf_inf_distrib_left
 
-/- warning: inf_inf_distrib_right -> inf_inf_distrib_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align inf_inf_distrib_right inf_inf_distrib_rightₓ'. -/
 theorem inf_inf_distrib_right (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ (b ⊓ c) :=
   @sup_sup_distrib_right αᵒᵈ _ _ _ _
 #align inf_inf_distrib_right inf_inf_distrib_right
 
-/- warning: inf_congr_left -> inf_congr_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align inf_congr_left inf_congr_leftₓ'. -/
 theorem inf_congr_left (hb : a ⊓ c ≤ b) (hc : a ⊓ b ≤ c) : a ⊓ b = a ⊓ c :=
   @sup_congr_left αᵒᵈ _ _ _ _ hb hc
 #align inf_congr_left inf_congr_left
 
-/- warning: inf_congr_right -> inf_congr_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align inf_congr_right inf_congr_rightₓ'. -/
 theorem inf_congr_right (h1 : b ⊓ c ≤ a) (h2 : a ⊓ c ≤ b) : a ⊓ c = b ⊓ c :=
   @sup_congr_right αᵒᵈ _ _ _ _ h1 h2
 #align inf_congr_right inf_congr_right
 
-/- warning: inf_eq_inf_iff_left -> inf_eq_inf_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c))
-Case conversion may be inaccurate. Consider using '#align inf_eq_inf_iff_left inf_eq_inf_iff_leftₓ'. -/
 theorem inf_eq_inf_iff_left : a ⊓ b = a ⊓ c ↔ a ⊓ c ≤ b ∧ a ⊓ b ≤ c :=
   @sup_eq_sup_iff_left αᵒᵈ _ _ _ _
 #align inf_eq_inf_iff_left inf_eq_inf_iff_left
 
-/- warning: inf_eq_inf_iff_right -> inf_eq_inf_iff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b))
-Case conversion may be inaccurate. Consider using '#align inf_eq_inf_iff_right inf_eq_inf_iff_rightₓ'. -/
 theorem inf_eq_inf_iff_right : a ⊓ c = b ⊓ c ↔ b ⊓ c ≤ a ∧ a ⊓ c ≤ b :=
   @sup_eq_sup_iff_right αᵒᵈ _ _ _ _
 #align inf_eq_inf_iff_right inf_eq_inf_iff_right
 
-/- warning: ne.inf_lt_or_inf_lt -> Ne.inf_lt_or_inf_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b))
-Case conversion may be inaccurate. Consider using '#align ne.inf_lt_or_inf_lt Ne.inf_lt_or_inf_ltₓ'. -/
 theorem Ne.inf_lt_or_inf_lt : a ≠ b → a ⊓ b < a ∨ a ⊓ b < b :=
   @Ne.lt_sup_or_lt_sup αᵒᵈ _ _ _
 #align ne.inf_lt_or_inf_lt Ne.inf_lt_or_inf_lt
 
-/- warning: semilattice_inf.ext_inf -> SemilatticeInf.ext_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α A) x y) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α B) x y))
-but is expected to have type
-  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α A) x y) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α B) x y))
-Case conversion may be inaccurate. Consider using '#align semilattice_inf.ext_inf SemilatticeInf.ext_infₓ'. -/
 theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
     (H :
       ∀ x y : α,
@@ -1099,12 +589,6 @@ theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
   eq_of_forall_le_iff fun c => by simp only [le_inf_iff] <;> rw [← H, @le_inf_iff α A, H, H]
 #align semilattice_inf.ext_inf SemilatticeInf.ext_inf
 
-/- warning: semilattice_inf.ext -> SemilatticeInf.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeInf.{u1} α) A B)
-but is expected to have type
-  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeInf.{u1} α) A B)
-Case conversion may be inaccurate. Consider using '#align semilattice_inf.ext SemilatticeInf.extₓ'. -/
 theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
     (H :
       ∀ x y : α,
@@ -1125,12 +609,6 @@ theorem SemilatticeInf.dual_dual (α : Type _) [H : SemilatticeInf α] :
 #align semilattice_inf.dual_dual SemilatticeInf.dual_dual
 -/
 
-/- warning: inf_le_ite -> inf_le_ite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) s s') (ite.{succ u1} α P _inst_2 s s')
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) s s') (ite.{succ u1} α P _inst_2 s s')
-Case conversion may be inaccurate. Consider using '#align inf_le_ite inf_le_iteₓ'. -/
 theorem inf_le_ite (s s' : α) (P : Prop) [Decidable P] : s ⊓ s' ≤ ite P s s' :=
   @ite_le_sup αᵒᵈ _ _ _ _ _
 #align inf_le_ite inf_le_ite
@@ -1227,22 +705,10 @@ section Lattice
 
 variable [Lattice α] {a b c d : α}
 
-/- warning: inf_le_sup -> inf_le_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align inf_le_sup inf_le_supₓ'. -/
 theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
   inf_le_left.trans le_sup_left
 #align inf_le_sup inf_le_sup
 
-/- warning: sup_le_inf -> sup_le_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b)) (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align sup_le_inf sup_le_infₓ'. -/
 @[simp]
 theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
   ⟨fun h =>
@@ -1251,43 +717,19 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
     by rintro rfl; simp⟩
 #align sup_le_inf sup_le_inf
 
-/- warning: inf_eq_sup -> inf_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align inf_eq_sup inf_eq_supₓ'. -/
 @[simp]
 theorem inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [← inf_le_sup.ge_iff_eq, sup_le_inf]
 #align inf_eq_sup inf_eq_sup
 
-/- warning: sup_eq_inf -> sup_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b)) (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align sup_eq_inf sup_eq_infₓ'. -/
 @[simp]
 theorem sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b :=
   eq_comm.trans inf_eq_sup
 #align sup_eq_inf sup_eq_inf
 
-/- warning: inf_lt_sup -> inf_lt_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Ne.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Ne.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align inf_lt_sup inf_lt_supₓ'. -/
 @[simp]
 theorem inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
 #align inf_lt_sup inf_lt_sup
 
-/- warning: inf_eq_and_sup_eq_iff -> inf_eq_and_sup_eq_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, Iff (And (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) c) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)) (And (Eq.{succ u1} α a c) (Eq.{succ u1} α b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, Iff (And (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)) (And (Eq.{succ u1} α a c) (Eq.{succ u1} α b c))
-Case conversion may be inaccurate. Consider using '#align inf_eq_and_sup_eq_iff inf_eq_and_sup_eq_iffₓ'. -/
 theorem inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c :=
   by
   refine' ⟨fun h => _, _⟩
@@ -1302,60 +744,24 @@ theorem inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c
 -/
 
 
-/- warning: sup_inf_le -> sup_inf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a c))
-Case conversion may be inaccurate. Consider using '#align sup_inf_le sup_inf_leₓ'. -/
 -- TODO: better names?
 theorem sup_inf_le : a ⊔ b ⊓ c ≤ (a ⊔ b) ⊓ (a ⊔ c) :=
   le_inf (sup_le_sup_left inf_le_left _) (sup_le_sup_left inf_le_right _)
 #align sup_inf_le sup_inf_le
 
-/- warning: le_inf_sup -> le_inf_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
-Case conversion may be inaccurate. Consider using '#align le_inf_sup le_inf_supₓ'. -/
 theorem le_inf_sup : a ⊓ b ⊔ a ⊓ c ≤ a ⊓ (b ⊔ c) :=
   sup_le (inf_le_inf_left _ le_sup_left) (inf_le_inf_left _ le_sup_right)
 #align le_inf_sup le_inf_sup
 
-/- warning: inf_sup_self -> inf_sup_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) a
-Case conversion may be inaccurate. Consider using '#align inf_sup_self inf_sup_selfₓ'. -/
 theorem inf_sup_self : a ⊓ (a ⊔ b) = a := by simp
 #align inf_sup_self inf_sup_self
 
-/- warning: sup_inf_self -> sup_inf_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b)) a
-Case conversion may be inaccurate. Consider using '#align sup_inf_self sup_inf_selfₓ'. -/
 theorem sup_inf_self : a ⊔ a ⊓ b = a := by simp
 #align sup_inf_self sup_inf_self
 
-/- warning: sup_eq_iff_inf_eq -> sup_eq_iff_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) b) (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align sup_eq_iff_inf_eq sup_eq_iff_inf_eqₓ'. -/
 theorem sup_eq_iff_inf_eq : a ⊔ b = b ↔ a ⊓ b = a := by rw [sup_eq_right, ← inf_eq_left]
 #align sup_eq_iff_inf_eq sup_eq_iff_inf_eq
 
-/- warning: lattice.ext -> Lattice.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {A : Lattice.{u1} α} {B : Lattice.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α A)))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α B)))) x y)) -> (Eq.{succ u1} (Lattice.{u1} α) A B)
-but is expected to have type
-  forall {α : Type.{u1}} {A : Lattice.{u1} α} {B : Lattice.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α A)))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α B)))) x y)) -> (Eq.{succ u1} (Lattice.{u1} α) A B)
-Case conversion may be inaccurate. Consider using '#align lattice.ext Lattice.extₓ'. -/
 theorem Lattice.ext {α} {A B : Lattice α}
     (H :
       ∀ x y : α,
@@ -1399,42 +805,18 @@ section DistribLattice
 
 variable [DistribLattice α] {x y z : α}
 
-/- warning: le_sup_inf -> le_sup_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z))
-Case conversion may be inaccurate. Consider using '#align le_sup_inf le_sup_infₓ'. -/
 theorem le_sup_inf : ∀ {x y z : α}, (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z :=
   DistribLattice.le_sup_inf
 #align le_sup_inf le_sup_inf
 
-/- warning: sup_inf_left -> sup_inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z))
-Case conversion may be inaccurate. Consider using '#align sup_inf_left sup_inf_leftₓ'. -/
 theorem sup_inf_left : x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z) :=
   le_antisymm sup_inf_le le_sup_inf
 #align sup_inf_left sup_inf_left
 
-/- warning: sup_inf_right -> sup_inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z) x) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y x) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) z x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z) x) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y x) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) z x))
-Case conversion may be inaccurate. Consider using '#align sup_inf_right sup_inf_rightₓ'. -/
 theorem sup_inf_right : y ⊓ z ⊔ x = (y ⊔ x) ⊓ (z ⊔ x) := by
   simp only [sup_inf_left, fun y : α => @sup_comm α _ y x, eq_self_iff_true]
 #align sup_inf_right sup_inf_right
 
-/- warning: inf_sup_left -> inf_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x y) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z))
-Case conversion may be inaccurate. Consider using '#align inf_sup_left inf_sup_leftₓ'. -/
 theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
   calc
     x ⊓ (y ⊔ z) = x ⊓ (x ⊔ z) ⊓ (y ⊔ z) := by rw [inf_sup_self]
@@ -1448,22 +830,10 @@ theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
 instance (α : Type _) [DistribLattice α] : DistribLattice αᵒᵈ :=
   { OrderDual.lattice α with le_sup_inf := fun x y z => le_of_eq inf_sup_left.symm }
 
-/- warning: inf_sup_right -> inf_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z) x) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y x) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) z x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z) x) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y x) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) z x))
-Case conversion may be inaccurate. Consider using '#align inf_sup_right inf_sup_rightₓ'. -/
 theorem inf_sup_right : (y ⊔ z) ⊓ x = y ⊓ x ⊔ z ⊓ x := by
   simp only [inf_sup_left, fun y : α => @inf_comm α _ y x, eq_self_iff_true]
 #align inf_sup_right inf_sup_right
 
-/- warning: le_of_inf_le_sup_le -> le_of_inf_le_sup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y)
-Case conversion may be inaccurate. Consider using '#align le_of_inf_le_sup_le le_of_inf_le_sup_leₓ'. -/
 theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y ⊔ z) : x ≤ y :=
   calc
     x ≤ y ⊓ z ⊔ x := le_sup_right
@@ -1475,12 +845,6 @@ theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y 
     
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
 
-/- warning: eq_of_inf_eq_sup_eq -> eq_of_inf_eq_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_2 : DistribLattice.{u1} α] {a : α} {b : α} {c : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) b a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) c a)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) b a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) c a)) -> (Eq.{succ u1} α b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_2 : DistribLattice.{u1} α] {a : α} {b : α} {c : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2)) b a) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2)) c a)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) b a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) c a)) -> (Eq.{succ u1} α b c)
-Case conversion may be inaccurate. Consider using '#align eq_of_inf_eq_sup_eq eq_of_inf_eq_sup_eqₓ'. -/
 theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a)
     (h₂ : b ⊔ a = c ⊔ a) : b = c :=
   le_antisymm (le_of_inf_le_sup_le (le_of_eq h₁) (le_of_eq h₂))
@@ -1489,12 +853,6 @@ theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁
 
 end DistribLattice
 
-/- warning: distrib_lattice.of_inf_sup_le -> DistribLattice.ofInfSupLe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], (forall (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c))) -> (DistribLattice.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], (forall (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c))) -> (DistribLattice.{u1} α)
-Case conversion may be inaccurate. Consider using '#align distrib_lattice.of_inf_sup_le DistribLattice.ofInfSupLeₓ'. -/
 -- See note [reducible non-instances]
 /-- Prove distributivity of an existing lattice from the dual distributive law. -/
 @[reducible]
@@ -1528,43 +886,19 @@ section LinearOrder
 
 variable [LinearOrder α] {a b c d : α}
 
-/- warning: sup_eq_max -> sup_eq_max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (LinearOrder.max.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sup_eq_max sup_eq_maxₓ'. -/
 theorem sup_eq_max : a ⊔ b = max a b :=
   rfl
 #align sup_eq_max sup_eq_max
 
-/- warning: inf_eq_min -> inf_eq_min is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (LinearOrder.min.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) a b) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align inf_eq_min inf_eq_minₓ'. -/
 theorem inf_eq_min : a ⊓ b = min a b :=
   rfl
 #align inf_eq_min inf_eq_min
 
-/- warning: sup_ind -> sup_ind is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align sup_ind sup_indₓ'. -/
 theorem sup_ind (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊔ b) :=
   (IsTotal.total a b).elim (fun h : a ≤ b => by rwa [sup_eq_right.2 h]) fun h => by
     rwa [sup_eq_left.2 h]
 #align sup_ind sup_ind
 
-/- warning: le_sup_iff -> le_sup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
-Case conversion may be inaccurate. Consider using '#align le_sup_iff le_sup_iffₓ'. -/
 @[simp]
 theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
   ⟨fun h =>
@@ -1573,12 +907,6 @@ theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
     fun h => h.elim le_sup_of_le_left le_sup_of_le_right⟩
 #align le_sup_iff le_sup_iff
 
-/- warning: lt_sup_iff -> lt_sup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
-Case conversion may be inaccurate. Consider using '#align lt_sup_iff lt_sup_iffₓ'. -/
 @[simp]
 theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
   ⟨fun h =>
@@ -1587,55 +915,25 @@ theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
     fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩
 #align lt_sup_iff lt_sup_iff
 
-/- warning: sup_lt_iff -> sup_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
-Case conversion may be inaccurate. Consider using '#align sup_lt_iff sup_lt_iffₓ'. -/
 @[simp]
 theorem sup_lt_iff : b ⊔ c < a ↔ b < a ∧ c < a :=
   ⟨fun h => ⟨le_sup_left.trans_lt h, le_sup_right.trans_lt h⟩, fun h => sup_ind b c h.1 h.2⟩
 #align sup_lt_iff sup_lt_iff
 
-/- warning: inf_ind -> inf_ind is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align inf_ind inf_indₓ'. -/
 theorem inf_ind (a b : α) {p : α → Prop} : p a → p b → p (a ⊓ b) :=
   @sup_ind αᵒᵈ _ _ _ _
 #align inf_ind inf_ind
 
-/- warning: inf_le_iff -> inf_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c) a) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
-Case conversion may be inaccurate. Consider using '#align inf_le_iff inf_le_iffₓ'. -/
 @[simp]
 theorem inf_le_iff : b ⊓ c ≤ a ↔ b ≤ a ∨ c ≤ a :=
   @le_sup_iff αᵒᵈ _ _ _ _
 #align inf_le_iff inf_le_iff
 
-/- warning: inf_lt_iff -> inf_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c) a) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
-Case conversion may be inaccurate. Consider using '#align inf_lt_iff inf_lt_iffₓ'. -/
 @[simp]
 theorem inf_lt_iff : b ⊓ c < a ↔ b < a ∨ c < a :=
   @lt_sup_iff αᵒᵈ _ _ _ _
 #align inf_lt_iff inf_lt_iff
 
-/- warning: lt_inf_iff -> lt_inf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
-Case conversion may be inaccurate. Consider using '#align lt_inf_iff lt_inf_iffₓ'. -/
 @[simp]
 theorem lt_inf_iff : a < b ⊓ c ↔ a < b ∧ a < c :=
   @sup_lt_iff αᵒᵈ _ _ _ _
@@ -1643,34 +941,16 @@ theorem lt_inf_iff : a < b ⊓ c ↔ a < b ∧ a < c :=
 
 variable (a b c d)
 
-/- warning: max_max_max_comm -> max_max_max_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 (LinearOrder.max.{u1} α _inst_1 a b) (LinearOrder.max.{u1} α _inst_1 c d)) (LinearOrder.max.{u1} α _inst_1 (LinearOrder.max.{u1} α _inst_1 a c) (LinearOrder.max.{u1} α _inst_1 b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) c d)) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align max_max_max_comm max_max_max_commₓ'. -/
 theorem max_max_max_comm : max (max a b) (max c d) = max (max a c) (max b d) :=
   sup_sup_sup_comm _ _ _ _
 #align max_max_max_comm max_max_max_comm
 
-/- warning: min_min_min_comm -> min_min_min_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 (LinearOrder.min.{u1} α _inst_1 a b) (LinearOrder.min.{u1} α _inst_1 c d)) (LinearOrder.min.{u1} α _inst_1 (LinearOrder.min.{u1} α _inst_1 a c) (LinearOrder.min.{u1} α _inst_1 b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) c d)) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a c) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) b d))
-Case conversion may be inaccurate. Consider using '#align min_min_min_comm min_min_min_commₓ'. -/
 theorem min_min_min_comm : min (min a b) (min c d) = min (min a c) (min b d) :=
   inf_inf_inf_comm _ _ _ _
 #align min_min_min_comm min_min_min_comm
 
 end LinearOrder
 
-/- warning: sup_eq_max_default -> sup_eq_maxDefault is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1)) (maxDefault.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8136 : α) (x._@.Mathlib.Order.Lattice._hyg.8138 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8136 x._@.Mathlib.Order.Lattice._hyg.8138)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8154 : α) (x._@.Mathlib.Order.Lattice._hyg.8156 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8154 x._@.Mathlib.Order.Lattice._hyg.8156)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8172 : α) (x._@.Mathlib.Order.Lattice._hyg.8174 : α) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8172 x._@.Mathlib.Order.Lattice._hyg.8174) (maxDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
-Case conversion may be inaccurate. Consider using '#align sup_eq_max_default sup_eq_maxDefaultₓ'. -/
 theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊔ ·) = (maxDefault : α → α → α) :=
   by
@@ -1680,12 +960,6 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
   exacts[sup_of_le_right h', sup_of_le_left <| (total_of (· ≤ ·) x y).resolve_left h']
 #align sup_eq_max_default sup_eq_maxDefault
 
-/- warning: inf_eq_min_default -> inf_eq_minDefault is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1)) (minDefault.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8250 : α) (x._@.Mathlib.Order.Lattice._hyg.8252 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8250 x._@.Mathlib.Order.Lattice._hyg.8252)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8268 : α) (x._@.Mathlib.Order.Lattice._hyg.8270 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8268 x._@.Mathlib.Order.Lattice._hyg.8270)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8286 : α) (x._@.Mathlib.Order.Lattice._hyg.8288 : α) => Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8286 x._@.Mathlib.Order.Lattice._hyg.8288) (minDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
-Case conversion may be inaccurate. Consider using '#align inf_eq_min_default inf_eq_minDefaultₓ'. -/
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊓ ·) = (minDefault : α → α → α) :=
   by
@@ -1695,12 +969,6 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   exacts[inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
 
-/- warning: lattice.to_linear_order -> Lattice.toLinearOrder is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : DecidableRel.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))] [_inst_5 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))], LinearOrder.{u1} α
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8371 : α) (x._@.Mathlib.Order.Lattice._hyg.8373 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8371 x._@.Mathlib.Order.Lattice._hyg.8373)] [_inst_4 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8395 : α) (x._@.Mathlib.Order.Lattice._hyg.8397 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8395 x._@.Mathlib.Order.Lattice._hyg.8397)] [_inst_5 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8413 : α) (x._@.Mathlib.Order.Lattice._hyg.8415 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8413 x._@.Mathlib.Order.Lattice._hyg.8415)], LinearOrder.{u1} α
-Case conversion may be inaccurate. Consider using '#align lattice.to_linear_order Lattice.toLinearOrderₓ'. -/
 /-- A lattice with total order is a linear order.
 
 See note [reducible non-instances]. -/
@@ -1856,23 +1124,11 @@ namespace Function
 
 variable {ι : Type _} {π : ι → Type _} [DecidableEq ι]
 
-/- warning: function.update_sup -> Function.update_sup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeSup.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Sup.sup.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (_inst_2 i)) a b)) (Sup.sup.{max u1 u2} (forall (a : ι), π a) (Pi.hasSup.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
-but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeSup.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Sup.sup.{u2} (π i) (SemilatticeSup.toSup.{u2} (π i) (_inst_2 i)) a b)) (Sup.sup.{max u1 u2} (forall (a : ι), π a) (Pi.instSupForAll.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeSup.toSup.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
-Case conversion may be inaccurate. Consider using '#align function.update_sup Function.update_supₓ'. -/
 theorem update_sup [∀ i, SemilatticeSup (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
     f.update i (a ⊔ b) = f.update i a ⊔ f.update i b :=
   funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
 #align function.update_sup Function.update_sup
 
-/- warning: function.update_inf -> Function.update_inf is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeInf.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Inf.inf.{u2} (π i) (SemilatticeInf.toHasInf.{u2} (π i) (_inst_2 i)) a b)) (Inf.inf.{max u1 u2} (forall (a : ι), π a) (Pi.hasInf.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeInf.toHasInf.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
-but is expected to have type
-  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeInf.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Inf.inf.{u2} (π i) (SemilatticeInf.toInf.{u2} (π i) (_inst_2 i)) a b)) (Inf.inf.{max u1 u2} (forall (a : ι), π a) (Pi.instInfForAll.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeInf.toInf.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
-Case conversion may be inaccurate. Consider using '#align function.update_inf Function.update_infₓ'. -/
 theorem update_inf [∀ i, SemilatticeInf (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
     f.update i (a ⊓ b) = f.update i a ⊓ f.update i b :=
   funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
@@ -1887,91 +1143,43 @@ end Function
 
 namespace Monotone
 
-/- warning: monotone.sup -> Monotone.sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g))
-Case conversion may be inaccurate. Consider using '#align monotone.sup Monotone.supₓ'. -/
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone (f ⊔ g) := fun x y h => sup_le_sup (hf h) (hg h)
 #align monotone.sup Monotone.sup
 
-/- warning: monotone.inf -> Monotone.inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g))
-Case conversion may be inaccurate. Consider using '#align monotone.inf Monotone.infₓ'. -/
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone (f ⊓ g) := fun x y h => inf_le_inf (hf h) (hg h)
 #align monotone.inf Monotone.inf
 
-/- warning: monotone.max -> Monotone.max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.max.{u2} β _inst_2 (f x) (g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Max.max.{u2} β (LinearOrder.toMax.{u2} β _inst_2) (f x) (g x)))
-Case conversion may be inaccurate. Consider using '#align monotone.max Monotone.maxₓ'. -/
 /-- Pointwise maximum of two monotone functions is a monotone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun x => max (f x) (g x) :=
   hf.sup hg
 #align monotone.max Monotone.max
 
-/- warning: monotone.min -> Monotone.min is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.min.{u2} β _inst_2 (f x) (g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Min.min.{u2} β (LinearOrder.toMin.{u2} β _inst_2) (f x) (g x)))
-Case conversion may be inaccurate. Consider using '#align monotone.min Monotone.minₓ'. -/
 /-- Pointwise minimum of two monotone functions is a monotone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun x => min (f x) (g x) :=
   hf.inf hg
 #align monotone.min Monotone.min
 
-/- warning: monotone.le_map_sup -> Monotone.le_map_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)) (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)))
-Case conversion may be inaccurate. Consider using '#align monotone.le_map_sup Monotone.le_map_supₓ'. -/
 theorem le_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β} (h : Monotone f) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
   sup_le (h le_sup_left) (h le_sup_right)
 #align monotone.le_map_sup Monotone.le_map_sup
 
-/- warning: monotone.map_inf_le -> Monotone.map_inf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align monotone.map_inf_le Monotone.map_inf_leₓ'. -/
 theorem map_inf_le [SemilatticeInf α] [SemilatticeInf β] {f : α → β} (h : Monotone f) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
   le_inf (h inf_le_left) (h inf_le_right)
 #align monotone.map_inf_le Monotone.map_inf_le
 
-/- warning: monotone.of_map_inf -> Monotone.of_map_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f)
-Case conversion may be inaccurate. Consider using '#align monotone.of_map_inf Monotone.of_map_infₓ'. -/
 theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β] {f : α → β}
     (h : ∀ x y, f (x ⊓ y) = f x ⊓ f y) : Monotone f := fun x y hxy =>
   inf_eq_left.1 <| by rw [← h, inf_eq_left.2 hxy]
 #align monotone.of_map_inf Monotone.of_map_inf
 
-/- warning: monotone.of_map_sup -> Monotone.of_map_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f)
-Case conversion may be inaccurate. Consider using '#align monotone.of_map_sup Monotone.of_map_supₓ'. -/
 theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
     (h : ∀ x y, f (x ⊔ y) = f x ⊔ f y) : Monotone f :=
   (@of_map_inf (OrderDual α) (OrderDual β) _ _ _ h).dual
@@ -1979,24 +1187,12 @@ theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
 
 variable [LinearOrder α]
 
-/- warning: monotone.map_sup -> Monotone.map_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align monotone.map_sup Monotone.map_supₓ'. -/
 theorem map_sup [SemilatticeSup β] {f : α → β} (hf : Monotone f) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
   (IsTotal.total x y).elim (fun h : x ≤ y => by simp only [h, hf h, sup_of_le_right]) fun h => by
     simp only [h, hf h, sup_of_le_left]
 #align monotone.map_sup Monotone.map_sup
 
-/- warning: monotone.map_inf -> Monotone.map_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align monotone.map_inf Monotone.map_infₓ'. -/
 theorem map_inf [SemilatticeInf β] {f : α → β} (hf : Monotone f) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
   hf.dual.map_sup _ _
@@ -2006,48 +1202,24 @@ end Monotone
 
 namespace MonotoneOn
 
-/- warning: monotone_on.sup -> MonotoneOn.sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g) s)
-Case conversion may be inaccurate. Consider using '#align monotone_on.sup MonotoneOn.supₓ'. -/
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
     (hf : MonotoneOn f s) (hg : MonotoneOn g s) : MonotoneOn (f ⊔ g) s := fun x hx y hy h =>
   sup_le_sup (hf hx hy h) (hg hx hy h)
 #align monotone_on.sup MonotoneOn.sup
 
-/- warning: monotone_on.inf -> MonotoneOn.inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g) s)
-Case conversion may be inaccurate. Consider using '#align monotone_on.inf MonotoneOn.infₓ'. -/
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} {s : Set α}
     (hf : MonotoneOn f s) (hg : MonotoneOn g s) : MonotoneOn (f ⊓ g) s :=
   (hf.dual.sup hg.dual).dual
 #align monotone_on.inf MonotoneOn.inf
 
-/- warning: monotone_on.max -> MonotoneOn.max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.max.{u2} β _inst_2 (f x) (g x)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Max.max.{u2} β (LinearOrder.toMax.{u2} β _inst_2) (f x) (g x)) s)
-Case conversion may be inaccurate. Consider using '#align monotone_on.max MonotoneOn.maxₓ'. -/
 /-- Pointwise maximum of two monotone functions is a monotone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : MonotoneOn f s)
     (hg : MonotoneOn g s) : MonotoneOn (fun x => max (f x) (g x)) s :=
   hf.sup hg
 #align monotone_on.max MonotoneOn.max
 
-/- warning: monotone_on.min -> MonotoneOn.min is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.min.{u2} β _inst_2 (f x) (g x)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Min.min.{u2} β (LinearOrder.toMin.{u2} β _inst_2) (f x) (g x)) s)
-Case conversion may be inaccurate. Consider using '#align monotone_on.min MonotoneOn.minₓ'. -/
 /-- Pointwise minimum of two monotone functions is a monotone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : MonotoneOn f s)
     (hg : MonotoneOn g s) : MonotoneOn (fun x => min (f x) (g x)) s :=
@@ -2058,69 +1230,33 @@ end MonotoneOn
 
 namespace Antitone
 
-/- warning: antitone.sup -> Antitone.sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g))
-Case conversion may be inaccurate. Consider using '#align antitone.sup Antitone.supₓ'. -/
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone (f ⊔ g) := fun x y h => sup_le_sup (hf h) (hg h)
 #align antitone.sup Antitone.sup
 
-/- warning: antitone.inf -> Antitone.inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g))
-Case conversion may be inaccurate. Consider using '#align antitone.inf Antitone.infₓ'. -/
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone (f ⊓ g) := fun x y h => inf_le_inf (hf h) (hg h)
 #align antitone.inf Antitone.inf
 
-/- warning: antitone.max -> Antitone.max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.max.{u2} β _inst_2 (f x) (g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Max.max.{u2} β (LinearOrder.toMax.{u2} β _inst_2) (f x) (g x)))
-Case conversion may be inaccurate. Consider using '#align antitone.max Antitone.maxₓ'. -/
 /-- Pointwise maximum of two monotone functions is a monotone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone fun x => max (f x) (g x) :=
   hf.sup hg
 #align antitone.max Antitone.max
 
-/- warning: antitone.min -> Antitone.min is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.min.{u2} β _inst_2 (f x) (g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Min.min.{u2} β (LinearOrder.toMin.{u2} β _inst_2) (f x) (g x)))
-Case conversion may be inaccurate. Consider using '#align antitone.min Antitone.minₓ'. -/
 /-- Pointwise minimum of two monotone functions is a monotone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone fun x => min (f x) (g x) :=
   hf.inf hg
 #align antitone.min Antitone.min
 
-/- warning: antitone.map_sup_le -> Antitone.map_sup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align antitone.map_sup_le Antitone.map_sup_leₓ'. -/
 theorem map_sup_le [SemilatticeSup α] [SemilatticeInf β] {f : α → β} (h : Antitone f) (x y : α) :
     f (x ⊔ y) ≤ f x ⊓ f y :=
   h.dual_right.le_map_sup x y
 #align antitone.map_sup_le Antitone.map_sup_le
 
-/- warning: antitone.le_map_inf -> Antitone.le_map_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)) (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)))
-Case conversion may be inaccurate. Consider using '#align antitone.le_map_inf Antitone.le_map_infₓ'. -/
 theorem le_map_inf [SemilatticeInf α] [SemilatticeSup β] {f : α → β} (h : Antitone f) (x y : α) :
     f x ⊔ f y ≤ f (x ⊓ y) :=
   h.dual_right.map_inf_le x y
@@ -2128,23 +1264,11 @@ theorem le_map_inf [SemilatticeInf α] [SemilatticeSup β] {f : α → β} (h :
 
 variable [LinearOrder α]
 
-/- warning: antitone.map_sup -> Antitone.map_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align antitone.map_sup Antitone.map_supₓ'. -/
 theorem map_sup [SemilatticeInf β] {f : α → β} (hf : Antitone f) (x y : α) :
     f (x ⊔ y) = f x ⊓ f y :=
   hf.dual_right.map_sup x y
 #align antitone.map_sup Antitone.map_sup
 
-/- warning: antitone.map_inf -> Antitone.map_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align antitone.map_inf Antitone.map_infₓ'. -/
 theorem map_inf [SemilatticeSup β] {f : α → β} (hf : Antitone f) (x y : α) :
     f (x ⊓ y) = f x ⊔ f y :=
   hf.dual_right.map_inf x y
@@ -2154,48 +1278,24 @@ end Antitone
 
 namespace AntitoneOn
 
-/- warning: antitone_on.sup -> AntitoneOn.sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g) s)
-Case conversion may be inaccurate. Consider using '#align antitone_on.sup AntitoneOn.supₓ'. -/
 /-- Pointwise supremum of two antitone functions is a antitone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊔ g) s := fun x hx y hy h =>
   sup_le_sup (hf hx hy h) (hg hx hy h)
 #align antitone_on.sup AntitoneOn.sup
 
-/- warning: antitone_on.inf -> AntitoneOn.inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g) s)
-Case conversion may be inaccurate. Consider using '#align antitone_on.inf AntitoneOn.infₓ'. -/
 /-- Pointwise infimum of two antitone functions is a antitone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊓ g) s :=
   (hf.dual.sup hg.dual).dual
 #align antitone_on.inf AntitoneOn.inf
 
-/- warning: antitone_on.max -> AntitoneOn.max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.max.{u2} β _inst_2 (f x) (g x)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Max.max.{u2} β (LinearOrder.toMax.{u2} β _inst_2) (f x) (g x)) s)
-Case conversion may be inaccurate. Consider using '#align antitone_on.max AntitoneOn.maxₓ'. -/
 /-- Pointwise maximum of two antitone functions is a antitone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : AntitoneOn f s)
     (hg : AntitoneOn g s) : AntitoneOn (fun x => max (f x) (g x)) s :=
   hf.sup hg
 #align antitone_on.max AntitoneOn.max
 
-/- warning: antitone_on.min -> AntitoneOn.min is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) (fun (x : α) => LinearOrder.min.{u2} β _inst_2 (f x) (g x)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) (fun (x : α) => Min.min.{u2} β (LinearOrder.toMin.{u2} β _inst_2) (f x) (g x)) s)
-Case conversion may be inaccurate. Consider using '#align antitone_on.min AntitoneOn.minₓ'. -/
 /-- Pointwise minimum of two antitone functions is a antitone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : AntitoneOn f s)
     (hg : AntitoneOn g s) : AntitoneOn (fun x => min (f x) (g x)) s :=
@@ -2320,12 +1420,6 @@ end Prod
 
 namespace Subtype
 
-/- warning: subtype.semilattice_sup -> Subtype.semilatticeSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))) -> (SemilatticeSup.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y))) -> (SemilatticeSup.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
-Case conversion may be inaccurate. Consider using '#align subtype.semilattice_sup Subtype.semilatticeSupₓ'. -/
 /-- A subtype forms a `⊔`-semilattice if `⊔` preserves the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -2338,12 +1432,6 @@ protected def semilatticeSup [SemilatticeSup α] {P : α → Prop}
     sup_le := fun x y z h1 h2 => @sup_le α _ _ _ _ h1 h2 }
 #align subtype.semilattice_sup Subtype.semilatticeSup
 
-/- warning: subtype.semilattice_inf -> Subtype.semilatticeInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y))) -> (SemilatticeInf.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y))) -> (SemilatticeInf.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
-Case conversion may be inaccurate. Consider using '#align subtype.semilattice_inf Subtype.semilatticeInfₓ'. -/
 /-- A subtype forms a `⊓`-semilattice if `⊓` preserves the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -2356,12 +1444,6 @@ protected def semilatticeInf [SemilatticeInf α] {P : α → Prop}
     le_inf := fun x y z h1 h2 => @le_inf α _ _ _ _ h1 h2 }
 #align subtype.semilattice_inf Subtype.semilatticeInf
 
-/- warning: subtype.lattice -> Subtype.lattice is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y))) -> (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y))) -> (Lattice.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y))) -> (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y))) -> (Lattice.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
-Case conversion may be inaccurate. Consider using '#align subtype.lattice Subtype.latticeₓ'. -/
 /-- A subtype forms a lattice if `⊔` and `⊓` preserve the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -2370,12 +1452,6 @@ protected def lattice [Lattice α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x
   { Subtype.semilatticeInf Pinf, Subtype.semilatticeSup Psup with }
 #align subtype.lattice Subtype.lattice
 
-/- warning: subtype.coe_sup -> Subtype.coe_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toHasSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) x y)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) x) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α (Subtype.val.{succ u1} α P (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) x y)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Subtype.val.{succ u1} α P x) (Subtype.val.{succ u1} α P y))
-Case conversion may be inaccurate. Consider using '#align subtype.coe_sup Subtype.coe_supₓ'. -/
 @[simp, norm_cast]
 theorem coe_sup [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y))
     (x y : Subtype P) :
@@ -2386,12 +1462,6 @@ theorem coe_sup [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x
   rfl
 #align subtype.coe_sup Subtype.coe_sup
 
-/- warning: subtype.coe_inf -> Subtype.coe_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toHasInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) x y)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) x) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α (Subtype.val.{succ u1} α P (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) x y)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Subtype.val.{succ u1} α P x) (Subtype.val.{succ u1} α P y))
-Case conversion may be inaccurate. Consider using '#align subtype.coe_inf Subtype.coe_infₓ'. -/
 @[simp, norm_cast]
 theorem coe_inf [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y))
     (x y : Subtype P) :
@@ -2402,12 +1472,6 @@ theorem coe_inf [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x
   rfl
 #align subtype.coe_inf Subtype.coe_inf
 
-/- warning: subtype.mk_sup_mk -> Subtype.mk_sup_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toHasSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y) (Psup x y hx hy))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y) (Psup x y hx hy))
-Case conversion may be inaccurate. Consider using '#align subtype.mk_sup_mk Subtype.mk_sup_mkₓ'. -/
 @[simp]
 theorem mk_sup_mk [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y))
     {x y : α} (hx : P x) (hy : P y) :
@@ -2417,12 +1481,6 @@ theorem mk_sup_mk [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P
   rfl
 #align subtype.mk_sup_mk Subtype.mk_sup_mk
 
-/- warning: subtype.mk_inf_mk -> Subtype.mk_inf_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toHasInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y) (Pinf x y hx hy))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y) (Pinf x y hx hy))
-Case conversion may be inaccurate. Consider using '#align subtype.mk_inf_mk Subtype.mk_inf_mkₓ'. -/
 @[simp]
 theorem mk_inf_mk [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y))
     {x y : α} (hx : P x) (hy : P y) :
@@ -2436,12 +1494,6 @@ end Subtype
 
 section lift
 
-/- warning: function.injective.semilattice_sup -> Function.Injective.semilatticeSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeSup.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeSup.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.semilattice_sup Function.Injective.semilatticeSupₓ'. -/
 /-- A type endowed with `⊔` is a `semilattice_sup`, if it admits an injective map that
 preserves `⊔` to a `semilattice_sup`.
 See note [reducible non-instances]. -/
@@ -2455,12 +1507,6 @@ protected def Function.Injective.semilatticeSup [Sup α] [SemilatticeSup β] (f
     sup_le := fun a b c ha hb => by change f (a ⊔ b) ≤ f c; rw [map_sup]; exact sup_le ha hb }
 #align function.injective.semilattice_sup Function.Injective.semilatticeSup
 
-/- warning: function.injective.semilattice_inf -> Function.Injective.semilatticeInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_1 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeInf.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_1 a b)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeInf.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.semilattice_inf Function.Injective.semilatticeInfₓ'. -/
 /-- A type endowed with `⊓` is a `semilattice_inf`, if it admits an injective map that
 preserves `⊓` to a `semilattice_inf`.
 See note [reducible non-instances]. -/
@@ -2474,12 +1520,6 @@ protected def Function.Injective.semilatticeInf [Inf α] [SemilatticeInf β] (f
     le_inf := fun a b c ha hb => by change f a ≤ f (b ⊓ c); rw [map_inf]; exact le_inf ha hb }
 #align function.injective.semilattice_inf Function.Injective.semilatticeInf
 
-/- warning: function.injective.lattice -> Function.Injective.lattice is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Lattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_3)) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)) (f a) (f b))) -> (Lattice.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Lattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_3)) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β _inst_3) (f a) (f b))) -> (Lattice.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.lattice Function.Injective.latticeₓ'. -/
 /-- A type endowed with `⊔` and `⊓` is a `lattice`, if it admits an injective map that
 preserves `⊔` and `⊓` to a `lattice`.
 See note [reducible non-instances]. -/
@@ -2490,12 +1530,6 @@ protected def Function.Injective.lattice [Sup α] [Inf α] [Lattice β] (f : α
   { hf_inj.SemilatticeSup f map_sup, hf_inj.SemilatticeInf f map_inf with }
 #align function.injective.lattice Function.Injective.lattice
 
-/- warning: function.injective.distrib_lattice -> Function.Injective.distribLattice is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : DistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β _inst_3))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β _inst_3))) (f a) (f b))) -> (DistribLattice.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : DistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β _inst_3))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (DistribLattice.toLattice.{u2} β _inst_3)) (f a) (f b))) -> (DistribLattice.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.distrib_lattice Function.Injective.distribLatticeₓ'. -/
 /-- A type endowed with `⊔` and `⊓` is a `distrib_lattice`, if it admits an injective map that
 preserves `⊔` and `⊓` to a `distrib_lattice`.
 See note [reducible non-instances]. -/
Diff
@@ -353,8 +353,7 @@ Case conversion may be inaccurate. Consider using '#align le_iff_exists_sup le_i
 theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
   by
   constructor
-  · intro h
-    exact ⟨b, (sup_eq_right.mpr h).symm⟩
+  · intro h; exact ⟨b, (sup_eq_right.mpr h).symm⟩
   · rintro ⟨c, rfl : _ = _ ⊔ _⟩
     exact le_sup_left
 #align le_iff_exists_sup le_iff_exists_sup
@@ -1218,15 +1217,9 @@ def Lattice.mk' {α : Type _} [Sup α] [Inf α] (sup_comm : ∀ a b : α, a ⊔
       inf_sup_self
   { partial_order_inst, semilatt_sup_inst,
     semilatt_inf_inst with
-    inf_le_left := fun a b => by
-      rw [partial_order_eq]
-      apply inf_le_left
-    inf_le_right := fun a b => by
-      rw [partial_order_eq]
-      apply inf_le_right
-    le_inf := fun a b c => by
-      rw [partial_order_eq]
-      apply le_inf }
+    inf_le_left := fun a b => by rw [partial_order_eq]; apply inf_le_left
+    inf_le_right := fun a b => by rw [partial_order_eq]; apply inf_le_right
+    le_inf := fun a b c => by rw [partial_order_eq]; apply le_inf }
 #align lattice.mk' Lattice.mk'
 -/
 
@@ -1255,9 +1248,7 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
   ⟨fun h =>
     le_antisymm (le_sup_left.trans <| h.trans inf_le_right)
       (le_sup_right.trans <| h.trans inf_le_left),
-    by
-    rintro rfl
-    simp⟩
+    by rintro rfl; simp⟩
 #align sup_le_inf sup_le_inf
 
 /- warning: inf_eq_sup -> inf_eq_sup is a dubious translation:
@@ -2459,18 +2450,9 @@ protected def Function.Injective.semilatticeSup [Sup α] [SemilatticeSup β] (f
     (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) : SemilatticeSup α :=
   { PartialOrder.lift f hf_inj with
     sup := Sup.sup
-    le_sup_left := fun a b => by
-      change f a ≤ f (a ⊔ b)
-      rw [map_sup]
-      exact le_sup_left
-    le_sup_right := fun a b => by
-      change f b ≤ f (a ⊔ b)
-      rw [map_sup]
-      exact le_sup_right
-    sup_le := fun a b c ha hb => by
-      change f (a ⊔ b) ≤ f c
-      rw [map_sup]
-      exact sup_le ha hb }
+    le_sup_left := fun a b => by change f a ≤ f (a ⊔ b); rw [map_sup]; exact le_sup_left
+    le_sup_right := fun a b => by change f b ≤ f (a ⊔ b); rw [map_sup]; exact le_sup_right
+    sup_le := fun a b c ha hb => by change f (a ⊔ b) ≤ f c; rw [map_sup]; exact sup_le ha hb }
 #align function.injective.semilattice_sup Function.Injective.semilatticeSup
 
 /- warning: function.injective.semilattice_inf -> Function.Injective.semilatticeInf is a dubious translation:
@@ -2487,18 +2469,9 @@ protected def Function.Injective.semilatticeInf [Inf α] [SemilatticeInf β] (f
     (hf_inj : Function.Injective f) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : SemilatticeInf α :=
   { PartialOrder.lift f hf_inj with
     inf := Inf.inf
-    inf_le_left := fun a b => by
-      change f (a ⊓ b) ≤ f a
-      rw [map_inf]
-      exact inf_le_left
-    inf_le_right := fun a b => by
-      change f (a ⊓ b) ≤ f b
-      rw [map_inf]
-      exact inf_le_right
-    le_inf := fun a b c ha hb => by
-      change f a ≤ f (b ⊓ c)
-      rw [map_inf]
-      exact le_inf ha hb }
+    inf_le_left := fun a b => by change f (a ⊓ b) ≤ f a; rw [map_inf]; exact inf_le_left
+    inf_le_right := fun a b => by change f (a ⊓ b) ≤ f b; rw [map_inf]; exact inf_le_right
+    le_inf := fun a b c ha hb => by change f a ≤ f (b ⊓ c); rw [map_inf]; exact le_inf ha hb }
 #align function.injective.semilattice_inf Function.Injective.semilatticeInf
 
 /- warning: function.injective.lattice -> Function.Injective.lattice is a dubious translation:
@@ -2534,8 +2507,7 @@ protected def Function.Injective.distribLattice [Sup α] [Inf α] [DistribLattic
     le_sup_inf := fun a b c =>
       by
       change f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c)
-      rw [map_inf, map_sup, map_sup, map_sup, map_inf]
-      exact le_sup_inf }
+      rw [map_inf, map_sup, map_sup, map_sup, map_inf]; exact le_sup_inf }
 #align function.injective.distrib_lattice Function.Injective.distribLattice
 
 end lift
Diff
@@ -1678,7 +1678,7 @@ end LinearOrder
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1)) (maxDefault.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8135 : α) (x._@.Mathlib.Order.Lattice._hyg.8137 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8135 x._@.Mathlib.Order.Lattice._hyg.8137)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8153 : α) (x._@.Mathlib.Order.Lattice._hyg.8155 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8153 x._@.Mathlib.Order.Lattice._hyg.8155)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8171 : α) (x._@.Mathlib.Order.Lattice._hyg.8173 : α) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8171 x._@.Mathlib.Order.Lattice._hyg.8173) (maxDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8136 : α) (x._@.Mathlib.Order.Lattice._hyg.8138 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8136 x._@.Mathlib.Order.Lattice._hyg.8138)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8154 : α) (x._@.Mathlib.Order.Lattice._hyg.8156 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8154 x._@.Mathlib.Order.Lattice._hyg.8156)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8172 : α) (x._@.Mathlib.Order.Lattice._hyg.8174 : α) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8172 x._@.Mathlib.Order.Lattice._hyg.8174) (maxDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 Case conversion may be inaccurate. Consider using '#align sup_eq_max_default sup_eq_maxDefaultₓ'. -/
 theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊔ ·) = (maxDefault : α → α → α) :=
@@ -1693,7 +1693,7 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1)) (minDefault.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8249 : α) (x._@.Mathlib.Order.Lattice._hyg.8251 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8249 x._@.Mathlib.Order.Lattice._hyg.8251)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8267 : α) (x._@.Mathlib.Order.Lattice._hyg.8269 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8267 x._@.Mathlib.Order.Lattice._hyg.8269)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8285 : α) (x._@.Mathlib.Order.Lattice._hyg.8287 : α) => Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8285 x._@.Mathlib.Order.Lattice._hyg.8287) (minDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8250 : α) (x._@.Mathlib.Order.Lattice._hyg.8252 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8250 x._@.Mathlib.Order.Lattice._hyg.8252)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8268 : α) (x._@.Mathlib.Order.Lattice._hyg.8270 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8268 x._@.Mathlib.Order.Lattice._hyg.8270)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8286 : α) (x._@.Mathlib.Order.Lattice._hyg.8288 : α) => Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8286 x._@.Mathlib.Order.Lattice._hyg.8288) (minDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 Case conversion may be inaccurate. Consider using '#align inf_eq_min_default inf_eq_minDefaultₓ'. -/
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊓ ·) = (minDefault : α → α → α) :=
@@ -1708,7 +1708,7 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : DecidableRel.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))] [_inst_5 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))], LinearOrder.{u1} α
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8370 : α) (x._@.Mathlib.Order.Lattice._hyg.8372 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8370 x._@.Mathlib.Order.Lattice._hyg.8372)] [_inst_4 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8394 : α) (x._@.Mathlib.Order.Lattice._hyg.8396 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8394 x._@.Mathlib.Order.Lattice._hyg.8396)] [_inst_5 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8412 : α) (x._@.Mathlib.Order.Lattice._hyg.8414 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8412 x._@.Mathlib.Order.Lattice._hyg.8414)], LinearOrder.{u1} α
+  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8371 : α) (x._@.Mathlib.Order.Lattice._hyg.8373 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8371 x._@.Mathlib.Order.Lattice._hyg.8373)] [_inst_4 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8395 : α) (x._@.Mathlib.Order.Lattice._hyg.8397 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8395 x._@.Mathlib.Order.Lattice._hyg.8397)] [_inst_5 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8413 : α) (x._@.Mathlib.Order.Lattice._hyg.8415 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8413 x._@.Mathlib.Order.Lattice._hyg.8415)], LinearOrder.{u1} α
 Case conversion may be inaccurate. Consider using '#align lattice.to_linear_order Lattice.toLinearOrderₓ'. -/
 /-- A lattice with total order is a linear order.
 
Diff
@@ -66,13 +66,17 @@ attribute [ematch] le_trans lt_of_le_of_lt lt_of_lt_of_le lt_trans
 
 section
 
-#print le_antisymm' /-
+/- warning: le_antisymm' -> le_antisymm' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a b)
+Case conversion may be inaccurate. Consider using '#align le_antisymm' le_antisymm'ₓ'. -/
 -- TODO: this seems crazy, but it also seems to work reasonably well
 @[ematch]
 theorem le_antisymm' [PartialOrder α] : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
   @le_antisymm _ _
 #align le_antisymm' le_antisymm'
--/
 
 end
 
@@ -133,7 +137,7 @@ variable [SemilatticeSup α] {a b c d : α}
 
 /- warning: le_sup_left -> le_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_sup_left le_sup_leftₓ'. -/
@@ -144,7 +148,7 @@ theorem le_sup_left : a ≤ a ⊔ b :=
 
 /- warning: le_sup_left' -> le_sup_left' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_sup_left' le_sup_left'ₓ'. -/
@@ -155,7 +159,7 @@ theorem le_sup_left' : a ≤ a ⊔ b :=
 
 /- warning: le_sup_right -> le_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_sup_right le_sup_rightₓ'. -/
@@ -166,7 +170,7 @@ theorem le_sup_right : b ≤ a ⊔ b :=
 
 /- warning: le_sup_right' -> le_sup_right' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align le_sup_right' le_sup_right'ₓ'. -/
@@ -177,7 +181,7 @@ theorem le_sup_right' : b ≤ a ⊔ b :=
 
 /- warning: le_sup_of_le_left -> le_sup_of_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align le_sup_of_le_left le_sup_of_le_leftₓ'. -/
@@ -187,7 +191,7 @@ theorem le_sup_of_le_left (h : c ≤ a) : c ≤ a ⊔ b :=
 
 /- warning: le_sup_of_le_right -> le_sup_of_le_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align le_sup_of_le_right le_sup_of_le_rightₓ'. -/
@@ -197,7 +201,7 @@ theorem le_sup_of_le_right (h : c ≤ b) : c ≤ a ⊔ b :=
 
 /- warning: lt_sup_of_lt_left -> lt_sup_of_lt_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align lt_sup_of_lt_left lt_sup_of_lt_leftₓ'. -/
@@ -207,7 +211,7 @@ theorem lt_sup_of_lt_left (h : c < a) : c < a ⊔ b :=
 
 /- warning: lt_sup_of_lt_right -> lt_sup_of_lt_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align lt_sup_of_lt_right lt_sup_of_lt_rightₓ'. -/
@@ -217,7 +221,7 @@ theorem lt_sup_of_lt_right (h : c < b) : c < a ⊔ b :=
 
 /- warning: sup_le -> sup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align sup_le sup_leₓ'. -/
@@ -227,7 +231,7 @@ theorem sup_le : a ≤ c → b ≤ c → a ⊔ b ≤ c :=
 
 /- warning: sup_le_iff -> sup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c))
 Case conversion may be inaccurate. Consider using '#align sup_le_iff sup_le_iffₓ'. -/
@@ -239,7 +243,7 @@ theorem sup_le_iff : a ⊔ b ≤ c ↔ a ≤ c ∧ b ≤ c :=
 
 /- warning: sup_eq_left -> sup_eq_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
 Case conversion may be inaccurate. Consider using '#align sup_eq_left sup_eq_leftₓ'. -/
@@ -250,7 +254,7 @@ theorem sup_eq_left : a ⊔ b = a ↔ b ≤ a :=
 
 /- warning: sup_eq_right -> sup_eq_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align sup_eq_right sup_eq_rightₓ'. -/
@@ -261,7 +265,7 @@ theorem sup_eq_right : a ⊔ b = b ↔ a ≤ b :=
 
 /- warning: left_eq_sup -> left_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
 Case conversion may be inaccurate. Consider using '#align left_eq_sup left_eq_supₓ'. -/
@@ -272,7 +276,7 @@ theorem left_eq_sup : a = a ⊔ b ↔ b ≤ a :=
 
 /- warning: right_eq_sup -> right_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align right_eq_sup right_eq_supₓ'. -/
@@ -283,7 +287,7 @@ theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b :=
 
 /- warning: sup_of_le_left -> sup_of_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align sup_of_le_left sup_of_le_leftₓ'. -/
@@ -292,13 +296,13 @@ alias sup_eq_left ↔ _ sup_of_le_left
 
 /- warning: le_of_sup_eq -> le_of_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align le_of_sup_eq le_of_sup_eqₓ'. -/
 /- warning: sup_of_le_right -> sup_of_le_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align sup_of_le_right sup_of_le_rightₓ'. -/
@@ -310,7 +314,7 @@ attribute [simp] sup_of_le_left sup_of_le_right
 
 /- warning: left_lt_sup -> left_lt_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
 Case conversion may be inaccurate. Consider using '#align left_lt_sup left_lt_supₓ'. -/
@@ -321,7 +325,7 @@ theorem left_lt_sup : a < a ⊔ b ↔ ¬b ≤ a :=
 
 /- warning: right_lt_sup -> right_lt_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align right_lt_sup right_lt_supₓ'. -/
@@ -332,7 +336,7 @@ theorem right_lt_sup : b < a ⊔ b ↔ ¬a ≤ b :=
 
 /- warning: left_or_right_lt_sup -> left_or_right_lt_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
 Case conversion may be inaccurate. Consider using '#align left_or_right_lt_sup left_or_right_lt_supₓ'. -/
@@ -342,7 +346,7 @@ theorem left_or_right_lt_sup (h : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
 
 /- warning: le_iff_exists_sup -> le_iff_exists_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) (Exists.{succ u1} α (fun (c : α) => Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) (Exists.{succ u1} α (fun (c : α) => Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) (Exists.{succ u1} α (fun (c : α) => Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)))
 Case conversion may be inaccurate. Consider using '#align le_iff_exists_sup le_iff_exists_supₓ'. -/
@@ -357,7 +361,7 @@ theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
 
 /- warning: sup_le_sup -> sup_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b d))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b d))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b d))
 Case conversion may be inaccurate. Consider using '#align sup_le_sup sup_le_supₓ'. -/
@@ -367,7 +371,7 @@ theorem sup_le_sup (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊔ c ≤ b ⊔ d :=
 
 /- warning: sup_le_sup_left -> sup_le_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b))
 Case conversion may be inaccurate. Consider using '#align sup_le_sup_left sup_le_sup_leftₓ'. -/
@@ -377,7 +381,7 @@ theorem sup_le_sup_left (h₁ : a ≤ b) (c) : c ⊔ a ≤ c ⊔ b :=
 
 /- warning: sup_le_sup_right -> sup_le_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sup_le_sup_right sup_le_sup_rightₓ'. -/
@@ -508,7 +512,7 @@ theorem sup_sup_distrib_right (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ (b ⊔
 
 /- warning: sup_congr_left -> sup_congr_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align sup_congr_left sup_congr_leftₓ'. -/
@@ -518,7 +522,7 @@ theorem sup_congr_left (hb : b ≤ a ⊔ c) (hc : c ≤ a ⊔ b) : a ⊔ b = a 
 
 /- warning: sup_congr_right -> sup_congr_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sup_congr_right sup_congr_rightₓ'. -/
@@ -528,7 +532,7 @@ theorem sup_congr_right (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ⊔ c = b
 
 /- warning: sup_eq_sup_iff_left -> sup_eq_sup_iff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
 Case conversion may be inaccurate. Consider using '#align sup_eq_sup_iff_left sup_eq_sup_iff_leftₓ'. -/
@@ -538,7 +542,7 @@ theorem sup_eq_sup_iff_left : a ⊔ b = a ⊔ c ↔ b ≤ a ⊔ c ∧ c ≤ a 
 
 /- warning: sup_eq_sup_iff_right -> sup_eq_sup_iff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)))
 Case conversion may be inaccurate. Consider using '#align sup_eq_sup_iff_right sup_eq_sup_iff_rightₓ'. -/
@@ -548,7 +552,7 @@ theorem sup_eq_sup_iff_right : a ⊔ c = b ⊔ c ↔ a ≤ b ⊔ c ∧ b ≤ a 
 
 /- warning: ne.lt_sup_or_lt_sup -> Ne.lt_sup_or_lt_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
 Case conversion may be inaccurate. Consider using '#align ne.lt_sup_or_lt_sup Ne.lt_sup_or_lt_supₓ'. -/
@@ -558,7 +562,7 @@ theorem Ne.lt_sup_or_lt_sup (hab : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
 
 /- warning: monotone.forall_le_of_antitone -> Monotone.forall_le_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) _inst_2 f) -> (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) _inst_2 g) -> (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u2} β _inst_2)) f g) -> (forall (m : α) (n : α), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (f m) (g n))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) _inst_2 f) -> (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) _inst_2 g) -> (LE.le.{max u1 u2} (α -> β) (Pi.hasLe.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toHasLe.{u2} β _inst_2)) f g) -> (forall (m : α) (n : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (f m) (g n))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : SemilatticeSup.{u2} α] {β : Type.{u1}} [_inst_2 : Preorder.{u1} β] {f : α -> β} {g : α -> β}, (Monotone.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)) _inst_2 f) -> (Antitone.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_1)) _inst_2 g) -> (LE.le.{max u2 u1} (α -> β) (Pi.hasLe.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => Preorder.toLE.{u1} β _inst_2)) f g) -> (forall (m : α) (n : α), LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) (f m) (g n))
 Case conversion may be inaccurate. Consider using '#align monotone.forall_le_of_antitone Monotone.forall_le_of_antitoneₓ'. -/
@@ -574,7 +578,7 @@ theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α →
 
 /- warning: semilattice_sup.ext_sup -> SemilatticeSup.ext_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α A) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α B) x y))
+  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α A) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α B) x y))
 but is expected to have type
   forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α A) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α B) x y))
 Case conversion may be inaccurate. Consider using '#align semilattice_sup.ext_sup SemilatticeSup.ext_supₓ'. -/
@@ -591,7 +595,12 @@ theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff] <;> rw [← H, @sup_le_iff α A, H, H]
 #align semilattice_sup.ext_sup SemilatticeSup.ext_sup
 
-#print SemilatticeSup.ext /-
+/- warning: semilattice_sup.ext -> SemilatticeSup.ext is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeSup.{u1} α) A B)
+but is expected to have type
+  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeSup.{u1} α) A B)
+Case conversion may be inaccurate. Consider using '#align semilattice_sup.ext SemilatticeSup.extₓ'. -/
 theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
     (H :
       ∀ x y : α,
@@ -604,11 +613,10 @@ theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
   cases A; cases B
   injection this <;> congr
 #align semilattice_sup.ext SemilatticeSup.ext
--/
 
 /- warning: ite_le_sup -> ite_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (ite.{succ u1} α P _inst_2 s s') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) s s')
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (ite.{succ u1} α P _inst_2 s s') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) s s')
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (ite.{succ u1} α P _inst_2 s s') (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) s s')
 Case conversion may be inaccurate. Consider using '#align ite_le_sup ite_le_supₓ'. -/
@@ -662,7 +670,7 @@ variable [SemilatticeInf α] {a b c d : α}
 
 /- warning: inf_le_left -> inf_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a
 Case conversion may be inaccurate. Consider using '#align inf_le_left inf_le_leftₓ'. -/
@@ -673,7 +681,7 @@ theorem inf_le_left : a ⊓ b ≤ a :=
 
 /- warning: inf_le_left' -> inf_le_left' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a
 Case conversion may be inaccurate. Consider using '#align inf_le_left' inf_le_left'ₓ'. -/
@@ -684,7 +692,7 @@ theorem inf_le_left' : a ⊓ b ≤ a :=
 
 /- warning: inf_le_right -> inf_le_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b
 Case conversion may be inaccurate. Consider using '#align inf_le_right inf_le_rightₓ'. -/
@@ -695,7 +703,7 @@ theorem inf_le_right : a ⊓ b ≤ b :=
 
 /- warning: inf_le_right' -> inf_le_right' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b
 Case conversion may be inaccurate. Consider using '#align inf_le_right' inf_le_right'ₓ'. -/
@@ -706,7 +714,7 @@ theorem inf_le_right' : a ⊓ b ≤ b :=
 
 /- warning: le_inf -> le_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align le_inf le_infₓ'. -/
@@ -716,7 +724,7 @@ theorem le_inf : a ≤ b → a ≤ c → a ≤ b ⊓ c :=
 
 /- warning: inf_le_of_left_le -> inf_le_of_left_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align inf_le_of_left_le inf_le_of_left_leₓ'. -/
@@ -726,7 +734,7 @@ theorem inf_le_of_left_le (h : a ≤ c) : a ⊓ b ≤ c :=
 
 /- warning: inf_le_of_right_le -> inf_le_of_right_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align inf_le_of_right_le inf_le_of_right_leₓ'. -/
@@ -736,7 +744,7 @@ theorem inf_le_of_right_le (h : b ≤ c) : a ⊓ b ≤ c :=
 
 /- warning: inf_lt_of_left_lt -> inf_lt_of_left_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align inf_lt_of_left_lt inf_lt_of_left_ltₓ'. -/
@@ -746,7 +754,7 @@ theorem inf_lt_of_left_lt (h : a < c) : a ⊓ b < c :=
 
 /- warning: inf_lt_of_right_lt -> inf_lt_of_right_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
 Case conversion may be inaccurate. Consider using '#align inf_lt_of_right_lt inf_lt_of_right_ltₓ'. -/
@@ -756,7 +764,7 @@ theorem inf_lt_of_right_lt (h : b < c) : a ⊓ b < c :=
 
 /- warning: le_inf_iff -> le_inf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c))
 Case conversion may be inaccurate. Consider using '#align le_inf_iff le_inf_iffₓ'. -/
@@ -767,7 +775,7 @@ theorem le_inf_iff : a ≤ b ⊓ c ↔ a ≤ b ∧ a ≤ c :=
 
 /- warning: inf_eq_left -> inf_eq_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align inf_eq_left inf_eq_leftₓ'. -/
@@ -778,7 +786,7 @@ theorem inf_eq_left : a ⊓ b = a ↔ a ≤ b :=
 
 /- warning: inf_eq_right -> inf_eq_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
 Case conversion may be inaccurate. Consider using '#align inf_eq_right inf_eq_rightₓ'. -/
@@ -789,7 +797,7 @@ theorem inf_eq_right : a ⊓ b = b ↔ b ≤ a :=
 
 /- warning: left_eq_inf -> left_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align left_eq_inf left_eq_infₓ'. -/
@@ -800,7 +808,7 @@ theorem left_eq_inf : a = a ⊓ b ↔ a ≤ b :=
 
 /- warning: right_eq_inf -> right_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
 Case conversion may be inaccurate. Consider using '#align right_eq_inf right_eq_infₓ'. -/
@@ -811,13 +819,13 @@ theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a :=
 
 /- warning: le_of_inf_eq -> le_of_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align le_of_inf_eq le_of_inf_eqₓ'. -/
 /- warning: inf_of_le_left -> inf_of_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align inf_of_le_left inf_of_le_leftₓ'. -/
@@ -827,7 +835,7 @@ alias inf_eq_left ↔ le_of_inf_eq inf_of_le_left
 
 /- warning: inf_of_le_right -> inf_of_le_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align inf_of_le_right inf_of_le_rightₓ'. -/
@@ -838,7 +846,7 @@ attribute [simp] inf_of_le_left inf_of_le_right
 
 /- warning: inf_lt_left -> inf_lt_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align inf_lt_left inf_lt_leftₓ'. -/
@@ -849,7 +857,7 @@ theorem inf_lt_left : a ⊓ b < a ↔ ¬a ≤ b :=
 
 /- warning: inf_lt_right -> inf_lt_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
 Case conversion may be inaccurate. Consider using '#align inf_lt_right inf_lt_rightₓ'. -/
@@ -860,7 +868,7 @@ theorem inf_lt_right : a ⊓ b < b ↔ ¬b ≤ a :=
 
 /- warning: inf_lt_left_or_right -> inf_lt_left_or_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b))
 Case conversion may be inaccurate. Consider using '#align inf_lt_left_or_right inf_lt_left_or_rightₓ'. -/
@@ -870,7 +878,7 @@ theorem inf_lt_left_or_right (h : a ≠ b) : a ⊓ b < a ∨ a ⊓ b < b :=
 
 /- warning: inf_le_inf -> inf_le_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b d))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b d))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b d))
 Case conversion may be inaccurate. Consider using '#align inf_le_inf inf_le_infₓ'. -/
@@ -880,7 +888,7 @@ theorem inf_le_inf (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊓ c ≤ b ⊓ d :=
 
 /- warning: inf_le_inf_right -> inf_le_inf_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b a) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c a))
 Case conversion may be inaccurate. Consider using '#align inf_le_inf_right inf_le_inf_rightₓ'. -/
@@ -890,7 +898,7 @@ theorem inf_le_inf_right (a : α) {b c : α} (h : b ≤ c) : b ⊓ a ≤ c ⊓ a
 
 /- warning: inf_le_inf_left -> inf_le_inf_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align inf_le_inf_left inf_le_inf_leftₓ'. -/
@@ -1025,7 +1033,7 @@ theorem inf_inf_distrib_right (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ (b ⊓
 
 /- warning: inf_congr_left -> inf_congr_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align inf_congr_left inf_congr_leftₓ'. -/
@@ -1035,7 +1043,7 @@ theorem inf_congr_left (hb : a ⊓ c ≤ b) (hc : a ⊓ b ≤ c) : a ⊓ b = a 
 
 /- warning: inf_congr_right -> inf_congr_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align inf_congr_right inf_congr_rightₓ'. -/
@@ -1045,7 +1053,7 @@ theorem inf_congr_right (h1 : b ⊓ c ≤ a) (h2 : a ⊓ c ≤ b) : a ⊓ c = b
 
 /- warning: inf_eq_inf_iff_left -> inf_eq_inf_iff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c))
 Case conversion may be inaccurate. Consider using '#align inf_eq_inf_iff_left inf_eq_inf_iff_leftₓ'. -/
@@ -1055,7 +1063,7 @@ theorem inf_eq_inf_iff_left : a ⊓ b = a ⊓ c ↔ a ⊓ c ≤ b ∧ a ⊓ b 
 
 /- warning: inf_eq_inf_iff_right -> inf_eq_inf_iff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b))
 Case conversion may be inaccurate. Consider using '#align inf_eq_inf_iff_right inf_eq_inf_iff_rightₓ'. -/
@@ -1065,7 +1073,7 @@ theorem inf_eq_inf_iff_right : a ⊓ c = b ⊓ c ↔ b ⊓ c ≤ a ∧ a ⊓ c 
 
 /- warning: ne.inf_lt_or_inf_lt -> Ne.inf_lt_or_inf_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b))
 Case conversion may be inaccurate. Consider using '#align ne.inf_lt_or_inf_lt Ne.inf_lt_or_inf_ltₓ'. -/
@@ -1075,7 +1083,7 @@ theorem Ne.inf_lt_or_inf_lt : a ≠ b → a ⊓ b < a ∨ a ⊓ b < b :=
 
 /- warning: semilattice_inf.ext_inf -> SemilatticeInf.ext_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α A) x y) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α B) x y))
+  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α A) x y) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α B) x y))
 but is expected to have type
   forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α A) x y) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α B) x y))
 Case conversion may be inaccurate. Consider using '#align semilattice_inf.ext_inf SemilatticeInf.ext_infₓ'. -/
@@ -1092,7 +1100,12 @@ theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
   eq_of_forall_le_iff fun c => by simp only [le_inf_iff] <;> rw [← H, @le_inf_iff α A, H, H]
 #align semilattice_inf.ext_inf SemilatticeInf.ext_inf
 
-#print SemilatticeInf.ext /-
+/- warning: semilattice_inf.ext -> SemilatticeInf.ext is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeInf.{u1} α) A B)
+but is expected to have type
+  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (Eq.{succ u1} (SemilatticeInf.{u1} α) A B)
+Case conversion may be inaccurate. Consider using '#align semilattice_inf.ext SemilatticeInf.extₓ'. -/
 theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
     (H :
       ∀ x y : α,
@@ -1105,7 +1118,6 @@ theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
   cases A; cases B
   injection this <;> congr
 #align semilattice_inf.ext SemilatticeInf.ext
--/
 
 #print SemilatticeInf.dual_dual /-
 theorem SemilatticeInf.dual_dual (α : Type _) [H : SemilatticeInf α] :
@@ -1116,7 +1128,7 @@ theorem SemilatticeInf.dual_dual (α : Type _) [H : SemilatticeInf α] :
 
 /- warning: inf_le_ite -> inf_le_ite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) s s') (ite.{succ u1} α P _inst_2 s s')
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) s s') (ite.{succ u1} α P _inst_2 s s')
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) s s') (ite.{succ u1} α P _inst_2 s s')
 Case conversion may be inaccurate. Consider using '#align inf_le_ite inf_le_iteₓ'. -/
@@ -1224,7 +1236,7 @@ variable [Lattice α] {a b c d : α}
 
 /- warning: inf_le_sup -> inf_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align inf_le_sup inf_le_supₓ'. -/
@@ -1234,7 +1246,7 @@ theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
 
 /- warning: sup_le_inf -> sup_le_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b)) (Eq.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align sup_le_inf sup_le_infₓ'. -/
@@ -1271,7 +1283,7 @@ theorem sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b :=
 
 /- warning: inf_lt_sup -> inf_lt_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Ne.{succ u1} α a b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Ne.{succ u1} α a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Ne.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align inf_lt_sup inf_lt_supₓ'. -/
@@ -1301,7 +1313,7 @@ theorem inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c
 
 /- warning: sup_inf_le -> sup_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a c))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a c))
 Case conversion may be inaccurate. Consider using '#align sup_inf_le sup_inf_leₓ'. -/
@@ -1312,7 +1324,7 @@ theorem sup_inf_le : a ⊔ b ⊓ c ≤ (a ⊔ b) ⊓ (a ⊔ c) :=
 
 /- warning: le_inf_sup -> le_inf_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
 Case conversion may be inaccurate. Consider using '#align le_inf_sup le_inf_supₓ'. -/
@@ -1347,7 +1359,12 @@ Case conversion may be inaccurate. Consider using '#align sup_eq_iff_inf_eq sup_
 theorem sup_eq_iff_inf_eq : a ⊔ b = b ↔ a ⊓ b = a := by rw [sup_eq_right, ← inf_eq_left]
 #align sup_eq_iff_inf_eq sup_eq_iff_inf_eq
 
-#print Lattice.ext /-
+/- warning: lattice.ext -> Lattice.ext is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {A : Lattice.{u1} α} {B : Lattice.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α A)))) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α B)))) x y)) -> (Eq.{succ u1} (Lattice.{u1} α) A B)
+but is expected to have type
+  forall {α : Type.{u1}} {A : Lattice.{u1} α} {B : Lattice.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α A)))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α B)))) x y)) -> (Eq.{succ u1} (Lattice.{u1} α) A B)
+Case conversion may be inaccurate. Consider using '#align lattice.ext Lattice.extₓ'. -/
 theorem Lattice.ext {α} {A B : Lattice α}
     (H :
       ∀ x y : α,
@@ -1361,7 +1378,6 @@ theorem Lattice.ext {α} {A B : Lattice α}
   cases A; cases B
   injection SS <;> injection II <;> congr
 #align lattice.ext Lattice.ext
--/
 
 end Lattice
 
@@ -1394,7 +1410,7 @@ variable [DistribLattice α] {x y z : α}
 
 /- warning: le_sup_inf -> le_sup_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z))
 Case conversion may be inaccurate. Consider using '#align le_sup_inf le_sup_infₓ'. -/
@@ -1453,7 +1469,7 @@ theorem inf_sup_right : (y ⊔ z) ⊓ x = y ⊓ x ⊔ z ⊓ x := by
 
 /- warning: le_of_inf_le_sup_le -> le_of_inf_le_sup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y)
 Case conversion may be inaccurate. Consider using '#align le_of_inf_le_sup_le le_of_inf_le_sup_leₓ'. -/
@@ -1484,7 +1500,7 @@ end DistribLattice
 
 /- warning: distrib_lattice.of_inf_sup_le -> DistribLattice.ofInfSupLe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], (forall (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c))) -> (DistribLattice.{u1} α)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], (forall (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c))) -> (DistribLattice.{u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], (forall (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c))) -> (DistribLattice.{u1} α)
 Case conversion may be inaccurate. Consider using '#align distrib_lattice.of_inf_sup_le DistribLattice.ofInfSupLeₓ'. -/
@@ -1554,7 +1570,7 @@ theorem sup_ind (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊔ b)
 
 /- warning: le_sup_iff -> le_sup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
 Case conversion may be inaccurate. Consider using '#align le_sup_iff le_sup_iffₓ'. -/
@@ -1568,7 +1584,7 @@ theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
 
 /- warning: lt_sup_iff -> lt_sup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
 Case conversion may be inaccurate. Consider using '#align lt_sup_iff lt_sup_iffₓ'. -/
@@ -1582,7 +1598,7 @@ theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
 
 /- warning: sup_lt_iff -> sup_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
 Case conversion may be inaccurate. Consider using '#align sup_lt_iff sup_lt_iffₓ'. -/
@@ -1603,7 +1619,7 @@ theorem inf_ind (a b : α) {p : α → Prop} : p a → p b → p (a ⊓ b) :=
 
 /- warning: inf_le_iff -> inf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c) a) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
 Case conversion may be inaccurate. Consider using '#align inf_le_iff inf_le_iffₓ'. -/
@@ -1614,7 +1630,7 @@ theorem inf_le_iff : b ⊓ c ≤ a ↔ b ≤ a ∨ c ≤ a :=
 
 /- warning: inf_lt_iff -> inf_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c) a) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
 Case conversion may be inaccurate. Consider using '#align inf_lt_iff inf_lt_iffₓ'. -/
@@ -1625,7 +1641,7 @@ theorem inf_lt_iff : b ⊓ c < a ↔ b < a ∨ c < a :=
 
 /- warning: lt_inf_iff -> lt_inf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
 Case conversion may be inaccurate. Consider using '#align lt_inf_iff lt_inf_iffₓ'. -/
@@ -1660,7 +1676,7 @@ end LinearOrder
 
 /- warning: sup_eq_max_default -> sup_eq_maxDefault is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1)) (maxDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1)) (maxDefault.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8135 : α) (x._@.Mathlib.Order.Lattice._hyg.8137 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8135 x._@.Mathlib.Order.Lattice._hyg.8137)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8153 : α) (x._@.Mathlib.Order.Lattice._hyg.8155 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8153 x._@.Mathlib.Order.Lattice._hyg.8155)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8171 : α) (x._@.Mathlib.Order.Lattice._hyg.8173 : α) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8171 x._@.Mathlib.Order.Lattice._hyg.8173) (maxDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 Case conversion may be inaccurate. Consider using '#align sup_eq_max_default sup_eq_maxDefaultₓ'. -/
@@ -1675,7 +1691,7 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
 
 /- warning: inf_eq_min_default -> inf_eq_minDefault is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1)) (minDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1)) (minDefault.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8249 : α) (x._@.Mathlib.Order.Lattice._hyg.8251 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8249 x._@.Mathlib.Order.Lattice._hyg.8251)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8267 : α) (x._@.Mathlib.Order.Lattice._hyg.8269 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8267 x._@.Mathlib.Order.Lattice._hyg.8269)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8285 : α) (x._@.Mathlib.Order.Lattice._hyg.8287 : α) => Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8285 x._@.Mathlib.Order.Lattice._hyg.8287) (minDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
 Case conversion may be inaccurate. Consider using '#align inf_eq_min_default inf_eq_minDefaultₓ'. -/
@@ -1688,7 +1704,12 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   exacts[inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
 
-#print Lattice.toLinearOrder /-
+/- warning: lattice.to_linear_order -> Lattice.toLinearOrder is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : DecidableRel.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))] [_inst_5 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))], LinearOrder.{u1} α
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] [_inst_3 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8370 : α) (x._@.Mathlib.Order.Lattice._hyg.8372 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8370 x._@.Mathlib.Order.Lattice._hyg.8372)] [_inst_4 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8394 : α) (x._@.Mathlib.Order.Lattice._hyg.8396 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8394 x._@.Mathlib.Order.Lattice._hyg.8396)] [_inst_5 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8412 : α) (x._@.Mathlib.Order.Lattice._hyg.8414 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Lattice._hyg.8412 x._@.Mathlib.Order.Lattice._hyg.8414)], LinearOrder.{u1} α
+Case conversion may be inaccurate. Consider using '#align lattice.to_linear_order Lattice.toLinearOrderₓ'. -/
 /-- A lattice with total order is a linear order.
 
 See note [reducible non-instances]. -/
@@ -1706,7 +1727,6 @@ def Lattice.toLinearOrder (α : Type u) [Lattice α] [DecidableEq α]
     min := (· ⊓ ·)
     min_def := inf_eq_minDefault }
 #align lattice.to_linear_order Lattice.toLinearOrder
--/
 
 -- see Note [lower instance priority]
 instance (priority := 100) LinearOrder.toDistribLattice {α : Type u} [o : LinearOrder α] :
@@ -1924,7 +1944,7 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Mon
 
 /- warning: monotone.le_map_sup -> Monotone.le_map_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)) (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)))
 Case conversion may be inaccurate. Consider using '#align monotone.le_map_sup Monotone.le_map_supₓ'. -/
@@ -1935,7 +1955,7 @@ theorem le_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β} (h :
 
 /- warning: monotone.map_inf_le -> Monotone.map_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
 Case conversion may be inaccurate. Consider using '#align monotone.map_inf_le Monotone.map_inf_leₓ'. -/
@@ -2095,7 +2115,7 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Ant
 
 /- warning: antitone.map_sup_le -> Antitone.map_sup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
 Case conversion may be inaccurate. Consider using '#align antitone.map_sup_le Antitone.map_sup_leₓ'. -/
@@ -2106,7 +2126,7 @@ theorem map_sup_le [SemilatticeSup α] [SemilatticeInf β] {f : α → β} (h :
 
 /- warning: antitone.le_map_inf -> Antitone.le_map_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)) (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)))
 Case conversion may be inaccurate. Consider using '#align antitone.le_map_inf Antitone.le_map_infₓ'. -/
Diff
@@ -1845,11 +1845,23 @@ namespace Function
 
 variable {ι : Type _} {π : ι → Type _} [DecidableEq ι]
 
+/- warning: function.update_sup -> Function.update_sup is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeSup.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Sup.sup.{u2} (π i) (SemilatticeSup.toHasSup.{u2} (π i) (_inst_2 i)) a b)) (Sup.sup.{max u1 u2} (forall (a : ι), π a) (Pi.hasSup.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeSup.toHasSup.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
+but is expected to have type
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeSup.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Sup.sup.{u2} (π i) (SemilatticeSup.toSup.{u2} (π i) (_inst_2 i)) a b)) (Sup.sup.{max u1 u2} (forall (a : ι), π a) (Pi.instSupForAll.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeSup.toSup.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
+Case conversion may be inaccurate. Consider using '#align function.update_sup Function.update_supₓ'. -/
 theorem update_sup [∀ i, SemilatticeSup (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
     f.update i (a ⊔ b) = f.update i a ⊔ f.update i b :=
   funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
 #align function.update_sup Function.update_sup
 
+/- warning: function.update_inf -> Function.update_inf is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeInf.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Inf.inf.{u2} (π i) (SemilatticeInf.toHasInf.{u2} (π i) (_inst_2 i)) a b)) (Inf.inf.{max u1 u2} (forall (a : ι), π a) (Pi.hasInf.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeInf.toHasInf.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
+but is expected to have type
+  forall {ι : Type.{u1}} {π : ι -> Type.{u2}} [_inst_1 : DecidableEq.{succ u1} ι] [_inst_2 : forall (i : ι), SemilatticeInf.{u2} (π i)] (f : forall (i : ι), π i) (i : ι) (a : π i) (b : π i), Eq.{max (succ u1) (succ u2)} (forall (a : ι), π a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i (Inf.inf.{u2} (π i) (SemilatticeInf.toInf.{u2} (π i) (_inst_2 i)) a b)) (Inf.inf.{max u1 u2} (forall (a : ι), π a) (Pi.instInfForAll.{u1, u2} ι (fun (a : ι) => π a) (fun (i : ι) => SemilatticeInf.toInf.{u2} (π i) (_inst_2 i))) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i a) (Function.update.{succ u1, succ u2} ι (fun (i : ι) => π i) (fun (a : ι) (b : ι) => _inst_1 a b) f i b))
+Case conversion may be inaccurate. Consider using '#align function.update_inf Function.update_infₓ'. -/
 theorem update_inf [∀ i, SemilatticeInf (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
     f.update i (a ⊓ b) = f.update i a ⊓ f.update i b :=
   funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module order.lattice
-! leanprover-community/mathlib commit d6aad9528ddcac270ed35c6f7b5f1d8af25341d6
+! leanprover-community/mathlib commit e4bc74cbaf429d706cb9140902f7ca6c431e75a4
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1841,6 +1841,22 @@ instance [∀ i, DistribLattice (α' i)] : DistribLattice (∀ i, α' i) := by
 
 end Pi
 
+namespace Function
+
+variable {ι : Type _} {π : ι → Type _} [DecidableEq ι]
+
+theorem update_sup [∀ i, SemilatticeSup (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
+    f.update i (a ⊔ b) = f.update i a ⊔ f.update i b :=
+  funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
+#align function.update_sup Function.update_sup
+
+theorem update_inf [∀ i, SemilatticeInf (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
+    f.update i (a ⊓ b) = f.update i a ⊓ f.update i b :=
+  funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
+#align function.update_inf Function.update_inf
+
+end Function
+
 /-!
 ### Monotone functions and lattices
 -/
Diff
@@ -567,7 +567,7 @@ theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α →
     (hg : Antitone g) (h : f ≤ g) (m n : α) : f m ≤ g n :=
   calc
     f m ≤ f (m ⊔ n) := hf le_sup_left
-    _ ≤ g (m ⊔ n) := h _
+    _ ≤ g (m ⊔ n) := (h _)
     _ ≤ g n := hg le_sup_right
     
 #align monotone.forall_le_of_antitone Monotone.forall_le_of_antitone
@@ -1461,9 +1461,9 @@ theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y 
   calc
     x ≤ y ⊓ z ⊔ x := le_sup_right
     _ = (y ⊔ x) ⊓ (x ⊔ z) := by rw [sup_inf_right, @sup_comm _ _ x]
-    _ ≤ (y ⊔ x) ⊓ (y ⊔ z) := inf_le_inf_left _ h₂
+    _ ≤ (y ⊔ x) ⊓ (y ⊔ z) := (inf_le_inf_left _ h₂)
     _ = y ⊔ x ⊓ z := sup_inf_left.symm
-    _ ≤ y ⊔ y ⊓ z := sup_le_sup_left h₁ _
+    _ ≤ y ⊔ y ⊓ z := (sup_le_sup_left h₁ _)
     _ ≤ _ := sup_le (le_refl y) inf_le_left
     
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
Diff
@@ -87,7 +87,7 @@ end
   with a join (a.k.a. lub / least upper bound, sup / supremum) operation
   `⊔` which is the least element larger than both factors. -/
 @[protect_proj]
-class SemilatticeSup (α : Type u) extends HasSup α, PartialOrder α where
+class SemilatticeSup (α : Type u) extends Sup α, PartialOrder α where
   le_sup_left : ∀ a b : α, a ≤ a ⊔ b
   le_sup_right : ∀ a b : α, b ≤ a ⊔ b
   sup_le : ∀ a b c : α, a ≤ c → b ≤ c → a ⊔ b ≤ c
@@ -101,7 +101,7 @@ join-semilattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`.
 -/
-def SemilatticeSup.mk' {α : Type _} [HasSup α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
+def SemilatticeSup.mk' {α : Type _} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
     (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (sup_idem : ∀ a : α, a ⊔ a = a) :
     SemilatticeSup α where
   sup := (· ⊔ ·)
@@ -121,140 +121,231 @@ def SemilatticeSup.mk' {α : Type _} [HasSup α] (sup_comm : ∀ a b : α, a ⊔
 #align semilattice_sup.mk' SemilatticeSup.mk'
 -/
 
-instance (α : Type _) [HasInf α] : HasSup αᵒᵈ :=
+instance (α : Type _) [Inf α] : Sup αᵒᵈ :=
   ⟨((· ⊓ ·) : α → α → α)⟩
 
-instance (α : Type _) [HasSup α] : HasInf αᵒᵈ :=
+instance (α : Type _) [Sup α] : Inf αᵒᵈ :=
   ⟨((· ⊔ ·) : α → α → α)⟩
 
 section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c d : α}
 
-#print le_sup_left /-
+/- warning: le_sup_left -> le_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align le_sup_left le_sup_leftₓ'. -/
 @[simp]
 theorem le_sup_left : a ≤ a ⊔ b :=
   SemilatticeSup.le_sup_left a b
 #align le_sup_left le_sup_left
--/
 
-#print le_sup_left' /-
+/- warning: le_sup_left' -> le_sup_left' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align le_sup_left' le_sup_left'ₓ'. -/
 @[ematch]
 theorem le_sup_left' : a ≤ a ⊔ b :=
   le_sup_left
 #align le_sup_left' le_sup_left'
--/
 
-#print le_sup_right /-
+/- warning: le_sup_right -> le_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align le_sup_right le_sup_rightₓ'. -/
 @[simp]
 theorem le_sup_right : b ≤ a ⊔ b :=
   SemilatticeSup.le_sup_right a b
 #align le_sup_right le_sup_right
--/
 
-#print le_sup_right' /-
+/- warning: le_sup_right' -> le_sup_right' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align le_sup_right' le_sup_right'ₓ'. -/
 @[ematch]
 theorem le_sup_right' : b ≤ a ⊔ b :=
   le_sup_right
 #align le_sup_right' le_sup_right'
--/
 
-#print le_sup_of_le_left /-
+/- warning: le_sup_of_le_left -> le_sup_of_le_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align le_sup_of_le_left le_sup_of_le_leftₓ'. -/
 theorem le_sup_of_le_left (h : c ≤ a) : c ≤ a ⊔ b :=
   le_trans h le_sup_left
 #align le_sup_of_le_left le_sup_of_le_left
--/
 
-#print le_sup_of_le_right /-
+/- warning: le_sup_of_le_right -> le_sup_of_le_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align le_sup_of_le_right le_sup_of_le_rightₓ'. -/
 theorem le_sup_of_le_right (h : c ≤ b) : c ≤ a ⊔ b :=
   le_trans h le_sup_right
 #align le_sup_of_le_right le_sup_of_le_right
--/
 
-#print lt_sup_of_lt_left /-
+/- warning: lt_sup_of_lt_left -> lt_sup_of_lt_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align lt_sup_of_lt_left lt_sup_of_lt_leftₓ'. -/
 theorem lt_sup_of_lt_left (h : c < a) : c < a ⊔ b :=
   h.trans_le le_sup_left
 #align lt_sup_of_lt_left lt_sup_of_lt_left
--/
 
-#print lt_sup_of_lt_right /-
+/- warning: lt_sup_of_lt_right -> lt_sup_of_lt_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align lt_sup_of_lt_right lt_sup_of_lt_rightₓ'. -/
 theorem lt_sup_of_lt_right (h : c < b) : c < a ⊔ b :=
   h.trans_le le_sup_right
 #align lt_sup_of_lt_right lt_sup_of_lt_right
--/
 
-#print sup_le /-
+/- warning: sup_le -> sup_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c)
+Case conversion may be inaccurate. Consider using '#align sup_le sup_leₓ'. -/
 theorem sup_le : a ≤ c → b ≤ c → a ⊔ b ≤ c :=
   SemilatticeSup.sup_le a b c
 #align sup_le sup_le
--/
 
-#print sup_le_iff /-
+/- warning: sup_le_iff -> sup_le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b c))
+Case conversion may be inaccurate. Consider using '#align sup_le_iff sup_le_iffₓ'. -/
 @[simp]
 theorem sup_le_iff : a ⊔ b ≤ c ↔ a ≤ c ∧ b ≤ c :=
   ⟨fun h : a ⊔ b ≤ c => ⟨le_trans le_sup_left h, le_trans le_sup_right h⟩, fun ⟨h₁, h₂⟩ =>
     sup_le h₁ h₂⟩
 #align sup_le_iff sup_le_iff
--/
 
-#print sup_eq_left /-
+/- warning: sup_eq_left -> sup_eq_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
+Case conversion may be inaccurate. Consider using '#align sup_eq_left sup_eq_leftₓ'. -/
 @[simp]
 theorem sup_eq_left : a ⊔ b = a ↔ b ≤ a :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_left sup_eq_left
--/
 
-#print sup_eq_right /-
+/- warning: sup_eq_right -> sup_eq_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align sup_eq_right sup_eq_rightₓ'. -/
 @[simp]
 theorem sup_eq_right : a ⊔ b = b ↔ a ≤ b :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_right sup_eq_right
--/
 
-#print left_eq_sup /-
+/- warning: left_eq_sup -> left_eq_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)
+Case conversion may be inaccurate. Consider using '#align left_eq_sup left_eq_supₓ'. -/
 @[simp]
 theorem left_eq_sup : a = a ⊔ b ↔ b ≤ a :=
   eq_comm.trans sup_eq_left
 #align left_eq_sup left_eq_sup
--/
 
-#print right_eq_sup /-
+/- warning: right_eq_sup -> right_eq_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align right_eq_sup right_eq_supₓ'. -/
 @[simp]
 theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b :=
   eq_comm.trans sup_eq_right
 #align right_eq_sup right_eq_sup
--/
 
+/- warning: sup_of_le_left -> sup_of_le_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align sup_of_le_left sup_of_le_leftₓ'. -/
 alias sup_eq_left ↔ _ sup_of_le_left
 #align sup_of_le_left sup_of_le_left
 
+/- warning: le_of_sup_eq -> le_of_sup_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align le_of_sup_eq le_of_sup_eqₓ'. -/
+/- warning: sup_of_le_right -> sup_of_le_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b)
+Case conversion may be inaccurate. Consider using '#align sup_of_le_right sup_of_le_rightₓ'. -/
 alias sup_eq_right ↔ le_of_sup_eq sup_of_le_right
 #align le_of_sup_eq le_of_sup_eq
 #align sup_of_le_right sup_of_le_right
 
 attribute [simp] sup_of_le_left sup_of_le_right
 
-#print left_lt_sup /-
+/- warning: left_lt_sup -> left_lt_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
+Case conversion may be inaccurate. Consider using '#align left_lt_sup left_lt_supₓ'. -/
 @[simp]
 theorem left_lt_sup : a < a ⊔ b ↔ ¬b ≤ a :=
   le_sup_left.lt_iff_ne.trans <| not_congr left_eq_sup
 #align left_lt_sup left_lt_sup
--/
 
-#print right_lt_sup /-
+/- warning: right_lt_sup -> right_lt_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align right_lt_sup right_lt_supₓ'. -/
 @[simp]
 theorem right_lt_sup : b < a ⊔ b ↔ ¬a ≤ b :=
   le_sup_right.lt_iff_ne.trans <| not_congr right_eq_sup
 #align right_lt_sup right_lt_sup
--/
 
-#print left_or_right_lt_sup /-
+/- warning: left_or_right_lt_sup -> left_or_right_lt_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
+Case conversion may be inaccurate. Consider using '#align left_or_right_lt_sup left_or_right_lt_supₓ'. -/
 theorem left_or_right_lt_sup (h : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
   h.not_le_or_not_le.symm.imp left_lt_sup.2 right_lt_sup.2
 #align left_or_right_lt_sup left_or_right_lt_sup
--/
 
-#print le_iff_exists_sup /-
+/- warning: le_iff_exists_sup -> le_iff_exists_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) (Exists.{succ u1} α (fun (c : α) => Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) (Exists.{succ u1} α (fun (c : α) => Eq.{succ u1} α b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)))
+Case conversion may be inaccurate. Consider using '#align le_iff_exists_sup le_iff_exists_supₓ'. -/
 theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
   by
   constructor
@@ -263,132 +354,207 @@ theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c :=
   · rintro ⟨c, rfl : _ = _ ⊔ _⟩
     exact le_sup_left
 #align le_iff_exists_sup le_iff_exists_sup
--/
 
-#print sup_le_sup /-
+/- warning: sup_le_sup -> sup_le_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b d))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b d))
+Case conversion may be inaccurate. Consider using '#align sup_le_sup sup_le_supₓ'. -/
 theorem sup_le_sup (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊔ c ≤ b ⊔ d :=
   sup_le (le_sup_of_le_left h₁) (le_sup_of_le_right h₂)
 #align sup_le_sup sup_le_sup
--/
 
-#print sup_le_sup_left /-
+/- warning: sup_le_sup_left -> sup_le_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b))
+Case conversion may be inaccurate. Consider using '#align sup_le_sup_left sup_le_sup_leftₓ'. -/
 theorem sup_le_sup_left (h₁ : a ≤ b) (c) : c ⊔ a ≤ c ⊔ b :=
   sup_le_sup le_rfl h₁
 #align sup_le_sup_left sup_le_sup_left
--/
 
-#print sup_le_sup_right /-
+/- warning: sup_le_sup_right -> sup_le_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (forall (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align sup_le_sup_right sup_le_sup_rightₓ'. -/
 theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
   sup_le_sup h₁ le_rfl
 #align sup_le_sup_right sup_le_sup_right
--/
 
-#print sup_idem /-
+/- warning: sup_idem -> sup_idem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a a) a
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a a) a
+Case conversion may be inaccurate. Consider using '#align sup_idem sup_idemₓ'. -/
 @[simp]
 theorem sup_idem : a ⊔ a = a := by apply le_antisymm <;> simp
 #align sup_idem sup_idem
--/
 
 instance sup_isIdempotent : IsIdempotent α (· ⊔ ·) :=
   ⟨@sup_idem _ _⟩
 #align sup_is_idempotent sup_isIdempotent
 
-#print sup_comm /-
+/- warning: sup_comm -> sup_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b a)
+Case conversion may be inaccurate. Consider using '#align sup_comm sup_commₓ'. -/
 theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
 #align sup_comm sup_comm
--/
 
 instance sup_isCommutative : IsCommutative α (· ⊔ ·) :=
   ⟨@sup_comm _ _⟩
 #align sup_is_commutative sup_isCommutative
 
-#print sup_assoc /-
+/- warning: sup_assoc -> sup_assoc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align sup_assoc sup_assocₓ'. -/
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
   eq_of_forall_ge_iff fun x => by simp only [sup_le_iff, and_assoc']
 #align sup_assoc sup_assoc
--/
 
 instance sup_isAssociative : IsAssociative α (· ⊔ ·) :=
   ⟨@sup_assoc _ _⟩
 #align sup_is_associative sup_isAssociative
 
-#print sup_left_right_swap /-
+/- warning: sup_left_right_swap -> sup_left_right_swap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b) a)
+Case conversion may be inaccurate. Consider using '#align sup_left_right_swap sup_left_right_swapₓ'. -/
 theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
   rw [sup_comm, @sup_comm _ _ a, sup_assoc]
 #align sup_left_right_swap sup_left_right_swap
--/
 
-#print sup_left_idem /-
+/- warning: sup_left_idem -> sup_left_idem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align sup_left_idem sup_left_idemₓ'. -/
 @[simp]
 theorem sup_left_idem : a ⊔ (a ⊔ b) = a ⊔ b := by rw [← sup_assoc, sup_idem]
 #align sup_left_idem sup_left_idem
--/
 
-#print sup_right_idem /-
+/- warning: sup_right_idem -> sup_right_idem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align sup_right_idem sup_right_idemₓ'. -/
 @[simp]
 theorem sup_right_idem : a ⊔ b ⊔ b = a ⊔ b := by rw [sup_assoc, sup_idem]
 #align sup_right_idem sup_right_idem
--/
 
-#print sup_left_comm /-
+/- warning: sup_left_comm -> sup_left_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align sup_left_comm sup_left_commₓ'. -/
 theorem sup_left_comm (a b c : α) : a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c) := by
   rw [← sup_assoc, ← sup_assoc, @sup_comm α _ a]
 #align sup_left_comm sup_left_comm
--/
 
-#print sup_right_comm /-
+/- warning: sup_right_comm -> sup_right_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
+Case conversion may be inaccurate. Consider using '#align sup_right_comm sup_right_commₓ'. -/
 theorem sup_right_comm (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ b := by
   rw [sup_assoc, sup_assoc, @sup_comm _ _ b]
 #align sup_right_comm sup_right_comm
--/
 
-#print sup_sup_sup_comm /-
+/- warning: sup_sup_sup_comm -> sup_sup_sup_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c d)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b d))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c d)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b d))
+Case conversion may be inaccurate. Consider using '#align sup_sup_sup_comm sup_sup_sup_commₓ'. -/
 theorem sup_sup_sup_comm (a b c d : α) : a ⊔ b ⊔ (c ⊔ d) = a ⊔ c ⊔ (b ⊔ d) := by
   rw [sup_assoc, sup_left_comm b, ← sup_assoc]
 #align sup_sup_sup_comm sup_sup_sup_comm
--/
 
-#print sup_sup_distrib_left /-
+/- warning: sup_sup_distrib_left -> sup_sup_distrib_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align sup_sup_distrib_left sup_sup_distrib_leftₓ'. -/
 theorem sup_sup_distrib_left (a b c : α) : a ⊔ (b ⊔ c) = a ⊔ b ⊔ (a ⊔ c) := by
   rw [sup_sup_sup_comm, sup_idem]
 #align sup_sup_distrib_left sup_sup_distrib_left
--/
 
-#print sup_sup_distrib_right /-
+/- warning: sup_sup_distrib_right -> sup_sup_distrib_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align sup_sup_distrib_right sup_sup_distrib_rightₓ'. -/
 theorem sup_sup_distrib_right (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ (b ⊔ c) := by
   rw [sup_sup_sup_comm, sup_idem]
 #align sup_sup_distrib_right sup_sup_distrib_right
--/
 
-#print sup_congr_left /-
+/- warning: sup_congr_left -> sup_congr_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align sup_congr_left sup_congr_leftₓ'. -/
 theorem sup_congr_left (hb : b ≤ a ⊔ c) (hc : c ≤ a ⊔ b) : a ⊔ b = a ⊔ c :=
   (sup_le le_sup_left hb).antisymm <| sup_le le_sup_left hc
 #align sup_congr_left sup_congr_left
--/
 
-#print sup_congr_right /-
+/- warning: sup_congr_right -> sup_congr_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align sup_congr_right sup_congr_rightₓ'. -/
 theorem sup_congr_right (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ⊔ c = b ⊔ c :=
   (sup_le ha le_sup_right).antisymm <| sup_le hb le_sup_right
 #align sup_congr_right sup_congr_right
--/
 
-#print sup_eq_sup_iff_left /-
+/- warning: sup_eq_sup_iff_left -> sup_eq_sup_iff_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
+Case conversion may be inaccurate. Consider using '#align sup_eq_sup_iff_left sup_eq_sup_iff_leftₓ'. -/
 theorem sup_eq_sup_iff_left : a ⊔ b = a ⊔ c ↔ b ≤ a ⊔ c ∧ c ≤ a ⊔ b :=
   ⟨fun h => ⟨h ▸ le_sup_right, h.symm ▸ le_sup_right⟩, fun h => sup_congr_left h.1 h.2⟩
 #align sup_eq_sup_iff_left sup_eq_sup_iff_left
--/
 
-#print sup_eq_sup_iff_right /-
+/- warning: sup_eq_sup_iff_right -> sup_eq_sup_iff_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c)))
+Case conversion may be inaccurate. Consider using '#align sup_eq_sup_iff_right sup_eq_sup_iff_rightₓ'. -/
 theorem sup_eq_sup_iff_right : a ⊔ c = b ⊔ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c :=
   ⟨fun h => ⟨h ▸ le_sup_left, h.symm ▸ le_sup_left⟩, fun h => sup_congr_right h.1 h.2⟩
 #align sup_eq_sup_iff_right sup_eq_sup_iff_right
--/
 
-#print Ne.lt_sup_or_lt_sup /-
+/- warning: ne.lt_sup_or_lt_sup -> Ne.lt_sup_or_lt_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b)))
+Case conversion may be inaccurate. Consider using '#align ne.lt_sup_or_lt_sup Ne.lt_sup_or_lt_supₓ'. -/
 theorem Ne.lt_sup_or_lt_sup (hab : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
   hab.symm.not_le_or_not_le.imp left_lt_sup.2 right_lt_sup.2
 #align ne.lt_sup_or_lt_sup Ne.lt_sup_or_lt_sup
--/
 
 /- warning: monotone.forall_le_of_antitone -> Monotone.forall_le_of_antitone is a dubious translation:
 lean 3 declaration is
@@ -406,7 +572,12 @@ theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α →
     
 #align monotone.forall_le_of_antitone Monotone.forall_le_of_antitone
 
-#print SemilatticeSup.ext_sup /-
+/- warning: semilattice_sup.ext_sup -> SemilatticeSup.ext_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α A) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α B) x y))
+but is expected to have type
+  forall {α : Type.{u1}} {A : SemilatticeSup.{u1} α} {B : SemilatticeSup.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α A) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α B) x y))
+Case conversion may be inaccurate. Consider using '#align semilattice_sup.ext_sup SemilatticeSup.ext_supₓ'. -/
 theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
     (H :
       ∀ x y : α,
@@ -419,7 +590,6 @@ theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
       x ⊔ y :=
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff] <;> rw [← H, @sup_le_iff α A, H, H]
 #align semilattice_sup.ext_sup SemilatticeSup.ext_sup
--/
 
 #print SemilatticeSup.ext /-
 theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
@@ -436,11 +606,15 @@ theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
 #align semilattice_sup.ext SemilatticeSup.ext
 -/
 
-#print ite_le_sup /-
+/- warning: ite_le_sup -> ite_le_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (ite.{succ u1} α P _inst_2 s s') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) s s')
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (ite.{succ u1} α P _inst_2 s s') (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) s s')
+Case conversion may be inaccurate. Consider using '#align ite_le_sup ite_le_supₓ'. -/
 theorem ite_le_sup (s s' : α) (P : Prop) [Decidable P] : ite P s s' ≤ s ⊔ s' :=
   if h : P then (if_pos h).trans_le le_sup_left else (if_neg h).trans_le le_sup_right
 #align ite_le_sup ite_le_sup
--/
 
 end SemilatticeSup
 
@@ -454,7 +628,7 @@ end SemilatticeSup
   with a meet (a.k.a. glb / greatest lower bound, inf / infimum) operation
   `⊓` which is the greatest element smaller than both factors. -/
 @[protect_proj]
-class SemilatticeInf (α : Type u) extends HasInf α, PartialOrder α where
+class SemilatticeInf (α : Type u) extends Inf α, PartialOrder α where
   inf_le_left : ∀ a b : α, a ⊓ b ≤ a
   inf_le_right : ∀ a b : α, a ⊓ b ≤ b
   le_inf : ∀ a b c : α, a ≤ b → a ≤ c → a ≤ b ⊓ c
@@ -486,258 +660,425 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c d : α}
 
-#print inf_le_left /-
+/- warning: inf_le_left -> inf_le_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a
+Case conversion may be inaccurate. Consider using '#align inf_le_left inf_le_leftₓ'. -/
 @[simp]
 theorem inf_le_left : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left inf_le_left
--/
 
-#print inf_le_left' /-
+/- warning: inf_le_left' -> inf_le_left' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a
+Case conversion may be inaccurate. Consider using '#align inf_le_left' inf_le_left'ₓ'. -/
 @[ematch]
 theorem inf_le_left' : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left' inf_le_left'
--/
 
-#print inf_le_right /-
+/- warning: inf_le_right -> inf_le_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b
+Case conversion may be inaccurate. Consider using '#align inf_le_right inf_le_rightₓ'. -/
 @[simp]
 theorem inf_le_right : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right inf_le_right
--/
 
-#print inf_le_right' /-
+/- warning: inf_le_right' -> inf_le_right' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b
+Case conversion may be inaccurate. Consider using '#align inf_le_right' inf_le_right'ₓ'. -/
 @[ematch]
 theorem inf_le_right' : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right' inf_le_right'
--/
 
-#print le_inf /-
+/- warning: le_inf -> le_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align le_inf le_infₓ'. -/
 theorem le_inf : a ≤ b → a ≤ c → a ≤ b ⊓ c :=
   SemilatticeInf.le_inf a b c
 #align le_inf le_inf
--/
 
-#print inf_le_of_left_le /-
+/- warning: inf_le_of_left_le -> inf_le_of_left_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
+Case conversion may be inaccurate. Consider using '#align inf_le_of_left_le inf_le_of_left_leₓ'. -/
 theorem inf_le_of_left_le (h : a ≤ c) : a ⊓ b ≤ c :=
   le_trans inf_le_left h
 #align inf_le_of_left_le inf_le_of_left_le
--/
 
-#print inf_le_of_right_le /-
+/- warning: inf_le_of_right_le -> inf_le_of_right_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
+Case conversion may be inaccurate. Consider using '#align inf_le_of_right_le inf_le_of_right_leₓ'. -/
 theorem inf_le_of_right_le (h : b ≤ c) : a ⊓ b ≤ c :=
   le_trans inf_le_right h
 #align inf_le_of_right_le inf_le_of_right_le
--/
 
-#print inf_lt_of_left_lt /-
+/- warning: inf_lt_of_left_lt -> inf_lt_of_left_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
+Case conversion may be inaccurate. Consider using '#align inf_lt_of_left_lt inf_lt_of_left_ltₓ'. -/
 theorem inf_lt_of_left_lt (h : a < c) : a ⊓ b < c :=
   lt_of_le_of_lt inf_le_left h
 #align inf_lt_of_left_lt inf_lt_of_left_lt
--/
 
-#print inf_lt_of_right_lt /-
+/- warning: inf_lt_of_right_lt -> inf_lt_of_right_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
+Case conversion may be inaccurate. Consider using '#align inf_lt_of_right_lt inf_lt_of_right_ltₓ'. -/
 theorem inf_lt_of_right_lt (h : b < c) : a ⊓ b < c :=
   lt_of_le_of_lt inf_le_right h
 #align inf_lt_of_right_lt inf_lt_of_right_lt
--/
 
-#print le_inf_iff /-
+/- warning: le_inf_iff -> le_inf_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c))
+Case conversion may be inaccurate. Consider using '#align le_inf_iff le_inf_iffₓ'. -/
 @[simp]
 theorem le_inf_iff : a ≤ b ⊓ c ↔ a ≤ b ∧ a ≤ c :=
   @sup_le_iff αᵒᵈ _ _ _ _
 #align le_inf_iff le_inf_iff
--/
 
-#print inf_eq_left /-
+/- warning: inf_eq_left -> inf_eq_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align inf_eq_left inf_eq_leftₓ'. -/
 @[simp]
 theorem inf_eq_left : a ⊓ b = a ↔ a ≤ b :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_left inf_eq_left
--/
 
-#print inf_eq_right /-
+/- warning: inf_eq_right -> inf_eq_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
+Case conversion may be inaccurate. Consider using '#align inf_eq_right inf_eq_rightₓ'. -/
 @[simp]
 theorem inf_eq_right : a ⊓ b = b ↔ b ≤ a :=
   le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_right inf_eq_right
--/
 
-#print left_eq_inf /-
+/- warning: left_eq_inf -> left_eq_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align left_eq_inf left_eq_infₓ'. -/
 @[simp]
 theorem left_eq_inf : a = a ⊓ b ↔ a ≤ b :=
   eq_comm.trans inf_eq_left
 #align left_eq_inf left_eq_inf
--/
 
-#print right_eq_inf /-
+/- warning: right_eq_inf -> right_eq_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a)
+Case conversion may be inaccurate. Consider using '#align right_eq_inf right_eq_infₓ'. -/
 @[simp]
 theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a :=
   eq_comm.trans inf_eq_right
 #align right_eq_inf right_eq_inf
--/
 
+/- warning: le_of_inf_eq -> le_of_inf_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align le_of_inf_eq le_of_inf_eqₓ'. -/
+/- warning: inf_of_le_left -> inf_of_le_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align inf_of_le_left inf_of_le_leftₓ'. -/
 alias inf_eq_left ↔ le_of_inf_eq inf_of_le_left
 #align le_of_inf_eq le_of_inf_eq
 #align inf_of_le_left inf_of_le_left
 
+/- warning: inf_of_le_right -> inf_of_le_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b)
+Case conversion may be inaccurate. Consider using '#align inf_of_le_right inf_of_le_rightₓ'. -/
 alias inf_eq_right ↔ _ inf_of_le_right
 #align inf_of_le_right inf_of_le_right
 
 attribute [simp] inf_of_le_left inf_of_le_right
 
-#print inf_lt_left /-
+/- warning: inf_lt_left -> inf_lt_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align inf_lt_left inf_lt_leftₓ'. -/
 @[simp]
 theorem inf_lt_left : a ⊓ b < a ↔ ¬a ≤ b :=
   @left_lt_sup αᵒᵈ _ _ _
 #align inf_lt_left inf_lt_left
--/
 
-#print inf_lt_right /-
+/- warning: inf_lt_right -> inf_lt_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+Case conversion may be inaccurate. Consider using '#align inf_lt_right inf_lt_rightₓ'. -/
 @[simp]
 theorem inf_lt_right : a ⊓ b < b ↔ ¬b ≤ a :=
   @right_lt_sup αᵒᵈ _ _ _
 #align inf_lt_right inf_lt_right
--/
 
-#print inf_lt_left_or_right /-
+/- warning: inf_lt_left_or_right -> inf_lt_left_or_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b))
+Case conversion may be inaccurate. Consider using '#align inf_lt_left_or_right inf_lt_left_or_rightₓ'. -/
 theorem inf_lt_left_or_right (h : a ≠ b) : a ⊓ b < a ∨ a ⊓ b < b :=
   @left_or_right_lt_sup αᵒᵈ _ _ _ h
 #align inf_lt_left_or_right inf_lt_left_or_right
--/
 
-#print inf_le_inf /-
+/- warning: inf_le_inf -> inf_le_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b d))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b d))
+Case conversion may be inaccurate. Consider using '#align inf_le_inf inf_le_infₓ'. -/
 theorem inf_le_inf (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊓ c ≤ b ⊓ d :=
   @sup_le_sup αᵒᵈ _ _ _ _ _ h₁ h₂
 #align inf_le_inf inf_le_inf
--/
 
-#print inf_le_inf_right /-
+/- warning: inf_le_inf_right -> inf_le_inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b a) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c a))
+Case conversion may be inaccurate. Consider using '#align inf_le_inf_right inf_le_inf_rightₓ'. -/
 theorem inf_le_inf_right (a : α) {b c : α} (h : b ≤ c) : b ⊓ a ≤ c ⊓ a :=
   inf_le_inf h le_rfl
 #align inf_le_inf_right inf_le_inf_right
--/
 
-#print inf_le_inf_left /-
+/- warning: inf_le_inf_left -> inf_le_inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align inf_le_inf_left inf_le_inf_leftₓ'. -/
 theorem inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c :=
   inf_le_inf le_rfl h
 #align inf_le_inf_left inf_le_inf_left
--/
 
-#print inf_idem /-
+/- warning: inf_idem -> inf_idem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a a) a
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a a) a
+Case conversion may be inaccurate. Consider using '#align inf_idem inf_idemₓ'. -/
 @[simp]
 theorem inf_idem : a ⊓ a = a :=
   @sup_idem αᵒᵈ _ _
 #align inf_idem inf_idem
--/
 
 instance inf_isIdempotent : IsIdempotent α (· ⊓ ·) :=
   ⟨@inf_idem _ _⟩
 #align inf_is_idempotent inf_isIdempotent
 
-#print inf_comm /-
+/- warning: inf_comm -> inf_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b a)
+Case conversion may be inaccurate. Consider using '#align inf_comm inf_commₓ'. -/
 theorem inf_comm : a ⊓ b = b ⊓ a :=
   @sup_comm αᵒᵈ _ _ _
 #align inf_comm inf_comm
--/
 
 instance inf_isCommutative : IsCommutative α (· ⊓ ·) :=
   ⟨@inf_comm _ _⟩
 #align inf_is_commutative inf_isCommutative
 
-#print inf_assoc /-
+/- warning: inf_assoc -> inf_assoc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align inf_assoc inf_assocₓ'. -/
 theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
   @sup_assoc αᵒᵈ _ a b c
 #align inf_assoc inf_assoc
--/
 
 instance inf_isAssociative : IsAssociative α (· ⊓ ·) :=
   ⟨@inf_assoc _ _⟩
 #align inf_is_associative inf_isAssociative
 
-#print inf_left_right_swap /-
+/- warning: inf_left_right_swap -> inf_left_right_swap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c b) a)
+Case conversion may be inaccurate. Consider using '#align inf_left_right_swap inf_left_right_swapₓ'. -/
 theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
   @sup_left_right_swap αᵒᵈ _ _ _ _
 #align inf_left_right_swap inf_left_right_swap
--/
 
-#print inf_left_idem /-
+/- warning: inf_left_idem -> inf_left_idem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align inf_left_idem inf_left_idemₓ'. -/
 @[simp]
 theorem inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b :=
   @sup_left_idem αᵒᵈ _ a b
 #align inf_left_idem inf_left_idem
--/
 
-#print inf_right_idem /-
+/- warning: inf_right_idem -> inf_right_idem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align inf_right_idem inf_right_idemₓ'. -/
 @[simp]
 theorem inf_right_idem : a ⊓ b ⊓ b = a ⊓ b :=
   @sup_right_idem αᵒᵈ _ a b
 #align inf_right_idem inf_right_idem
--/
 
-#print inf_left_comm /-
+/- warning: inf_left_comm -> inf_left_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align inf_left_comm inf_left_commₓ'. -/
 theorem inf_left_comm (a b c : α) : a ⊓ (b ⊓ c) = b ⊓ (a ⊓ c) :=
   @sup_left_comm αᵒᵈ _ a b c
 #align inf_left_comm inf_left_comm
--/
 
-#print inf_right_comm /-
+/- warning: inf_right_comm -> inf_right_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
+Case conversion may be inaccurate. Consider using '#align inf_right_comm inf_right_commₓ'. -/
 theorem inf_right_comm (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ b :=
   @sup_right_comm αᵒᵈ _ a b c
 #align inf_right_comm inf_right_comm
--/
 
-#print inf_inf_inf_comm /-
+/- warning: inf_inf_inf_comm -> inf_inf_inf_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c d)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b d))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α) (d : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c d)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b d))
+Case conversion may be inaccurate. Consider using '#align inf_inf_inf_comm inf_inf_inf_commₓ'. -/
 theorem inf_inf_inf_comm (a b c d : α) : a ⊓ b ⊓ (c ⊓ d) = a ⊓ c ⊓ (b ⊓ d) :=
   @sup_sup_sup_comm αᵒᵈ _ _ _ _ _
 #align inf_inf_inf_comm inf_inf_inf_comm
--/
 
-#print inf_inf_distrib_left /-
+/- warning: inf_inf_distrib_left -> inf_inf_distrib_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align inf_inf_distrib_left inf_inf_distrib_leftₓ'. -/
 theorem inf_inf_distrib_left (a b c : α) : a ⊓ (b ⊓ c) = a ⊓ b ⊓ (a ⊓ c) :=
   @sup_sup_distrib_left αᵒᵈ _ _ _ _
 #align inf_inf_distrib_left inf_inf_distrib_left
--/
 
-#print inf_inf_distrib_right /-
+/- warning: inf_inf_distrib_right -> inf_inf_distrib_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align inf_inf_distrib_right inf_inf_distrib_rightₓ'. -/
 theorem inf_inf_distrib_right (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ (b ⊓ c) :=
   @sup_sup_distrib_right αᵒᵈ _ _ _ _
 #align inf_inf_distrib_right inf_inf_distrib_right
--/
 
-#print inf_congr_left /-
+/- warning: inf_congr_left -> inf_congr_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align inf_congr_left inf_congr_leftₓ'. -/
 theorem inf_congr_left (hb : a ⊓ c ≤ b) (hc : a ⊓ b ≤ c) : a ⊓ b = a ⊓ c :=
   @sup_congr_left αᵒᵈ _ _ _ _ hb hc
 #align inf_congr_left inf_congr_left
--/
 
-#print inf_congr_right /-
+/- warning: inf_congr_right -> inf_congr_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align inf_congr_right inf_congr_rightₓ'. -/
 theorem inf_congr_right (h1 : b ⊓ c ≤ a) (h2 : a ⊓ c ≤ b) : a ⊓ c = b ⊓ c :=
   @sup_congr_right αᵒᵈ _ _ _ _ h1 h2
 #align inf_congr_right inf_congr_right
--/
 
-#print inf_eq_inf_iff_left /-
+/- warning: inf_eq_inf_iff_left -> inf_eq_inf_iff_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c))
+Case conversion may be inaccurate. Consider using '#align inf_eq_inf_iff_left inf_eq_inf_iff_leftₓ'. -/
 theorem inf_eq_inf_iff_left : a ⊓ b = a ⊓ c ↔ a ⊓ c ≤ b ∧ a ⊓ b ≤ c :=
   @sup_eq_sup_iff_left αᵒᵈ _ _ _ _
 #align inf_eq_inf_iff_left inf_eq_inf_iff_left
--/
 
-#print inf_eq_inf_iff_right /-
+/- warning: inf_eq_inf_iff_right -> inf_eq_inf_iff_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c) a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b))
+Case conversion may be inaccurate. Consider using '#align inf_eq_inf_iff_right inf_eq_inf_iff_rightₓ'. -/
 theorem inf_eq_inf_iff_right : a ⊓ c = b ⊓ c ↔ b ⊓ c ≤ a ∧ a ⊓ c ≤ b :=
   @sup_eq_sup_iff_right αᵒᵈ _ _ _ _
 #align inf_eq_inf_iff_right inf_eq_inf_iff_right
--/
 
-#print Ne.inf_lt_or_inf_lt /-
+/- warning: ne.inf_lt_or_inf_lt -> Ne.inf_lt_or_inf_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) b))
+Case conversion may be inaccurate. Consider using '#align ne.inf_lt_or_inf_lt Ne.inf_lt_or_inf_ltₓ'. -/
 theorem Ne.inf_lt_or_inf_lt : a ≠ b → a ⊓ b < a ∨ a ⊓ b < b :=
   @Ne.lt_sup_or_lt_sup αᵒᵈ _ _ _
 #align ne.inf_lt_or_inf_lt Ne.inf_lt_or_inf_lt
--/
 
-#print SemilatticeInf.ext_inf /-
+/- warning: semilattice_inf.ext_inf -> SemilatticeInf.ext_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α A) x y) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α B) x y))
+but is expected to have type
+  forall {α : Type.{u1}} {A : SemilatticeInf.{u1} α} {B : SemilatticeInf.{u1} α}, (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α A))) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α B))) x y)) -> (forall (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α A) x y) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α B) x y))
+Case conversion may be inaccurate. Consider using '#align semilattice_inf.ext_inf SemilatticeInf.ext_infₓ'. -/
 theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
     (H :
       ∀ x y : α,
@@ -750,7 +1091,6 @@ theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
       x ⊓ y :=
   eq_of_forall_le_iff fun c => by simp only [le_inf_iff] <;> rw [← H, @le_inf_iff α A, H, H]
 #align semilattice_inf.ext_inf SemilatticeInf.ext_inf
--/
 
 #print SemilatticeInf.ext /-
 theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
@@ -774,11 +1114,15 @@ theorem SemilatticeInf.dual_dual (α : Type _) [H : SemilatticeInf α] :
 #align semilattice_inf.dual_dual SemilatticeInf.dual_dual
 -/
 
-#print inf_le_ite /-
+/- warning: inf_le_ite -> inf_le_ite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) s s') (ite.{succ u1} α P _inst_2 s s')
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] (s : α) (s' : α) (P : Prop) [_inst_2 : Decidable P], LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) s s') (ite.{succ u1} α P _inst_2 s s')
+Case conversion may be inaccurate. Consider using '#align inf_le_ite inf_le_iteₓ'. -/
 theorem inf_le_ite (s s' : α) (P : Prop) [Decidable P] : s ⊓ s' ≤ ite P s s' :=
   @ite_le_sup αᵒᵈ _ _ _ _ _
 #align inf_le_ite inf_le_ite
--/
 
 end SemilatticeInf
 
@@ -789,7 +1133,7 @@ meet-semilattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `b ⊓ a = a`; cf. `inf_eq_right`.
 -/
-def SemilatticeInf.mk' {α : Type _} [HasInf α] (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
+def SemilatticeInf.mk' {α : Type _} [Inf α] (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ a : α, a ⊓ a = a) :
     SemilatticeInf α :=
   by
@@ -818,12 +1162,11 @@ instance (α) [Lattice α] : Lattice αᵒᵈ :=
 /-- The partial orders from `semilattice_sup_mk'` and `semilattice_inf_mk'` agree
 if `sup` and `inf` satisfy the lattice absorption laws `sup_inf_self` (`a ⊔ a ⊓ b = a`)
 and `inf_sup_self` (`a ⊓ (a ⊔ b) = a`). -/
-theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder {α : Type _} [HasSup α]
-    [HasInf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
-    (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (sup_idem : ∀ a : α, a ⊔ a = a)
-    (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a) (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c))
-    (inf_idem : ∀ a : α, a ⊓ a = a) (sup_inf_self : ∀ a b : α, a ⊔ a ⊓ b = a)
-    (inf_sup_self : ∀ a b : α, a ⊓ (a ⊔ b) = a) :
+theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder {α : Type _} [Sup α]
+    [Inf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a) (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
+    (sup_idem : ∀ a : α, a ⊔ a = a) (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
+    (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ a : α, a ⊓ a = a)
+    (sup_inf_self : ∀ a b : α, a ⊔ a ⊓ b = a) (inf_sup_self : ∀ a b : α, a ⊓ (a ⊔ b) = a) :
     @SemilatticeSup.toPartialOrder _ (SemilatticeSup.mk' sup_comm sup_assoc sup_idem) =
       @SemilatticeInf.toPartialOrder _ (SemilatticeInf.mk' inf_comm inf_assoc inf_idem) :=
   PartialOrder.ext fun a b =>
@@ -838,7 +1181,7 @@ laws relating the two operations has the structure of a lattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`.
 -/
-def Lattice.mk' {α : Type _} [HasSup α] [HasInf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
+def Lattice.mk' {α : Type _} [Sup α] [Inf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
     (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (sup_inf_self : ∀ a b : α, a ⊔ a ⊓ b = a)
     (inf_sup_self : ∀ a b : α, a ⊓ (a ⊔ b) = a) : Lattice α :=
@@ -879,13 +1222,22 @@ section Lattice
 
 variable [Lattice α] {a b c d : α}
 
-#print inf_le_sup /-
+/- warning: inf_le_sup -> inf_le_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)
+Case conversion may be inaccurate. Consider using '#align inf_le_sup inf_le_supₓ'. -/
 theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
   inf_le_left.trans le_sup_left
 #align inf_le_sup inf_le_sup
--/
 
-#print sup_le_inf /-
+/- warning: sup_le_inf -> sup_le_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b)) (Eq.{succ u1} α a b)
+Case conversion may be inaccurate. Consider using '#align sup_le_inf sup_le_infₓ'. -/
 @[simp]
 theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
   ⟨fun h =>
@@ -895,28 +1247,44 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b :=
     rintro rfl
     simp⟩
 #align sup_le_inf sup_le_inf
--/
 
-#print inf_eq_sup /-
+/- warning: inf_eq_sup -> inf_eq_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
+Case conversion may be inaccurate. Consider using '#align inf_eq_sup inf_eq_supₓ'. -/
 @[simp]
 theorem inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [← inf_le_sup.ge_iff_eq, sup_le_inf]
 #align inf_eq_sup inf_eq_sup
--/
 
-#print sup_eq_inf /-
+/- warning: sup_eq_inf -> sup_eq_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) (Eq.{succ u1} α a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b)) (Eq.{succ u1} α a b)
+Case conversion may be inaccurate. Consider using '#align sup_eq_inf sup_eq_infₓ'. -/
 @[simp]
 theorem sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b :=
   eq_comm.trans inf_eq_sup
 #align sup_eq_inf sup_eq_inf
--/
 
-#print inf_lt_sup /-
+/- warning: inf_lt_sup -> inf_lt_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Ne.{succ u1} α a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) (Ne.{succ u1} α a b)
+Case conversion may be inaccurate. Consider using '#align inf_lt_sup inf_lt_supₓ'. -/
 @[simp]
 theorem inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
 #align inf_lt_sup inf_lt_sup
--/
 
-#print inf_eq_and_sup_eq_iff /-
+/- warning: inf_eq_and_sup_eq_iff -> inf_eq_and_sup_eq_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, Iff (And (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) c) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)) (And (Eq.{succ u1} α a c) (Eq.{succ u1} α b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, Iff (And (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) c) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)) (And (Eq.{succ u1} α a c) (Eq.{succ u1} α b c))
+Case conversion may be inaccurate. Consider using '#align inf_eq_and_sup_eq_iff inf_eq_and_sup_eq_iffₓ'. -/
 theorem inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c :=
   by
   refine' ⟨fun h => _, _⟩
@@ -925,40 +1293,59 @@ theorem inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c
   · rintro ⟨rfl, rfl⟩
     exact ⟨inf_idem, sup_idem⟩
 #align inf_eq_and_sup_eq_iff inf_eq_and_sup_eq_iff
--/
 
 /-!
 #### Distributivity laws
 -/
 
 
-#print sup_inf_le /-
+/- warning: sup_inf_le -> sup_inf_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a c))
+Case conversion may be inaccurate. Consider using '#align sup_inf_le sup_inf_leₓ'. -/
 -- TODO: better names?
 theorem sup_inf_le : a ⊔ b ⊓ c ≤ (a ⊔ b) ⊓ (a ⊔ c) :=
   le_inf (sup_le_sup_left inf_le_left _) (sup_le_sup_left inf_le_right _)
 #align sup_inf_le sup_inf_le
--/
 
-#print le_inf_sup /-
+/- warning: le_inf_sup -> le_inf_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
+Case conversion may be inaccurate. Consider using '#align le_inf_sup le_inf_supₓ'. -/
 theorem le_inf_sup : a ⊓ b ⊔ a ⊓ c ≤ a ⊓ (b ⊔ c) :=
   sup_le (inf_le_inf_left _ le_sup_left) (inf_le_inf_left _ le_sup_right)
 #align le_inf_sup le_inf_sup
--/
 
-#print inf_sup_self /-
+/- warning: inf_sup_self -> inf_sup_self is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) a
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) a
+Case conversion may be inaccurate. Consider using '#align inf_sup_self inf_sup_selfₓ'. -/
 theorem inf_sup_self : a ⊓ (a ⊔ b) = a := by simp
 #align inf_sup_self inf_sup_self
--/
 
-#print sup_inf_self /-
+/- warning: sup_inf_self -> sup_inf_self is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b)) a
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b)) a
+Case conversion may be inaccurate. Consider using '#align sup_inf_self sup_inf_selfₓ'. -/
 theorem sup_inf_self : a ⊔ a ⊓ b = a := by simp
 #align sup_inf_self sup_inf_self
--/
 
-#print sup_eq_iff_inf_eq /-
+/- warning: sup_eq_iff_inf_eq -> sup_eq_iff_inf_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) b) (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align sup_eq_iff_inf_eq sup_eq_iff_inf_eqₓ'. -/
 theorem sup_eq_iff_inf_eq : a ⊔ b = b ↔ a ⊓ b = a := by rw [sup_eq_right, ← inf_eq_left]
 #align sup_eq_iff_inf_eq sup_eq_iff_inf_eq
--/
 
 #print Lattice.ext /-
 theorem Lattice.ext {α} {A B : Lattice α}
@@ -1005,25 +1392,42 @@ section DistribLattice
 
 variable [DistribLattice α] {x y z : α}
 
-#print le_sup_inf /-
+/- warning: le_sup_inf -> le_sup_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z))
+Case conversion may be inaccurate. Consider using '#align le_sup_inf le_sup_infₓ'. -/
 theorem le_sup_inf : ∀ {x y z : α}, (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z :=
   DistribLattice.le_sup_inf
 #align le_sup_inf le_sup_inf
--/
 
-#print sup_inf_left /-
+/- warning: sup_inf_left -> sup_inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z))
+Case conversion may be inaccurate. Consider using '#align sup_inf_left sup_inf_leftₓ'. -/
 theorem sup_inf_left : x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z) :=
   le_antisymm sup_inf_le le_sup_inf
 #align sup_inf_left sup_inf_left
--/
 
-#print sup_inf_right /-
+/- warning: sup_inf_right -> sup_inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z) x) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y x) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) z x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z) x) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y x) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) z x))
+Case conversion may be inaccurate. Consider using '#align sup_inf_right sup_inf_rightₓ'. -/
 theorem sup_inf_right : y ⊓ z ⊔ x = (y ⊔ x) ⊓ (z ⊔ x) := by
   simp only [sup_inf_left, fun y : α => @sup_comm α _ y x, eq_self_iff_true]
 #align sup_inf_right sup_inf_right
--/
 
-#print inf_sup_left /-
+/- warning: inf_sup_left -> inf_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x y) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z))
+Case conversion may be inaccurate. Consider using '#align inf_sup_left inf_sup_leftₓ'. -/
 theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
   calc
     x ⊓ (y ⊔ z) = x ⊓ (x ⊔ z) ⊓ (y ⊔ z) := by rw [inf_sup_self]
@@ -1033,18 +1437,26 @@ theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
     _ = x ⊓ y ⊔ x ⊓ z := by rw [sup_inf_left]
     
 #align inf_sup_left inf_sup_left
--/
 
 instance (α : Type _) [DistribLattice α] : DistribLattice αᵒᵈ :=
   { OrderDual.lattice α with le_sup_inf := fun x y z => le_of_eq inf_sup_left.symm }
 
-#print inf_sup_right /-
+/- warning: inf_sup_right -> inf_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z) x) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y x) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) z x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z) x) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y x) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) z x))
+Case conversion may be inaccurate. Consider using '#align inf_sup_right inf_sup_rightₓ'. -/
 theorem inf_sup_right : (y ⊔ z) ⊓ x = y ⊓ x ⊔ z ⊓ x := by
   simp only [inf_sup_left, fun y : α => @inf_comm α _ y x, eq_self_iff_true]
 #align inf_sup_right inf_sup_right
--/
 
-#print le_of_inf_le_sup_le /-
+/- warning: le_of_inf_le_sup_le -> le_of_inf_le_sup_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y)
+Case conversion may be inaccurate. Consider using '#align le_of_inf_le_sup_le le_of_inf_le_sup_leₓ'. -/
 theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y ⊔ z) : x ≤ y :=
   calc
     x ≤ y ⊓ z ⊔ x := le_sup_right
@@ -1055,19 +1467,27 @@ theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y 
     _ ≤ _ := sup_le (le_refl y) inf_le_left
     
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
--/
 
-#print eq_of_inf_eq_sup_eq /-
+/- warning: eq_of_inf_eq_sup_eq -> eq_of_inf_eq_sup_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_2 : DistribLattice.{u1} α] {a : α} {b : α} {c : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) b a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) c a)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) b a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) c a)) -> (Eq.{succ u1} α b c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_2 : DistribLattice.{u1} α] {a : α} {b : α} {c : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2)) b a) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_2)) c a)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) b a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_2))) c a)) -> (Eq.{succ u1} α b c)
+Case conversion may be inaccurate. Consider using '#align eq_of_inf_eq_sup_eq eq_of_inf_eq_sup_eqₓ'. -/
 theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a)
     (h₂ : b ⊔ a = c ⊔ a) : b = c :=
   le_antisymm (le_of_inf_le_sup_le (le_of_eq h₁) (le_of_eq h₂))
     (le_of_inf_le_sup_le (le_of_eq h₁.symm) (le_of_eq h₂.symm))
 #align eq_of_inf_eq_sup_eq eq_of_inf_eq_sup_eq
--/
 
 end DistribLattice
 
-#print DistribLattice.ofInfSupLe /-
+/- warning: distrib_lattice.of_inf_sup_le -> DistribLattice.ofInfSupLe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], (forall (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c))) -> (DistribLattice.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], (forall (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c))) -> (DistribLattice.{u1} α)
+Case conversion may be inaccurate. Consider using '#align distrib_lattice.of_inf_sup_le DistribLattice.ofInfSupLeₓ'. -/
 -- See note [reducible non-instances]
 /-- Prove distributivity of an existing lattice from the dual distributive law. -/
 @[reducible]
@@ -1076,7 +1496,6 @@ def DistribLattice.ofInfSupLe [Lattice α] (inf_sup_le : ∀ a b c : α, a ⊓ (
   { ‹Lattice α›,
     @OrderDual.distribLattice αᵒᵈ { OrderDual.lattice _ with le_sup_inf := inf_sup_le } with }
 #align distrib_lattice.of_inf_sup_le DistribLattice.ofInfSupLe
--/
 
 /-!
 ### Lattices derived from linear orders
@@ -1104,9 +1523,9 @@ variable [LinearOrder α] {a b c d : α}
 
 /- warning: sup_eq_max -> sup_eq_max is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (LinearOrder.max.{u1} α _inst_1 a b)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (LinearOrder.max.{u1} α _inst_1 a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align sup_eq_max sup_eq_maxₓ'. -/
 theorem sup_eq_max : a ⊔ b = max a b :=
   rfl
@@ -1114,22 +1533,31 @@ theorem sup_eq_max : a ⊔ b = max a b :=
 
 /- warning: inf_eq_min -> inf_eq_min is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (LinearOrder.min.{u1} α _inst_1 a b)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b) (LinearOrder.min.{u1} α _inst_1 a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) a b) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) a b) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align inf_eq_min inf_eq_minₓ'. -/
 theorem inf_eq_min : a ⊓ b = min a b :=
   rfl
 #align inf_eq_min inf_eq_min
 
-#print sup_ind /-
+/- warning: sup_ind -> sup_ind is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align sup_ind sup_indₓ'. -/
 theorem sup_ind (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊔ b) :=
   (IsTotal.total a b).elim (fun h : a ≤ b => by rwa [sup_eq_right.2 h]) fun h => by
     rwa [sup_eq_left.2 h]
 #align sup_ind sup_ind
--/
 
-#print le_sup_iff /-
+/- warning: le_sup_iff -> le_sup_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+Case conversion may be inaccurate. Consider using '#align le_sup_iff le_sup_iffₓ'. -/
 @[simp]
 theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
   ⟨fun h =>
@@ -1137,9 +1565,13 @@ theorem le_sup_iff : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c :=
       rwa [sup_eq_right.2 bc] at h,
     fun h => h.elim le_sup_of_le_left le_sup_of_le_right⟩
 #align le_sup_iff le_sup_iff
--/
 
-#print lt_sup_iff /-
+/- warning: lt_sup_iff -> lt_sup_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+Case conversion may be inaccurate. Consider using '#align lt_sup_iff lt_sup_iffₓ'. -/
 @[simp]
 theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
   ⟨fun h =>
@@ -1147,41 +1579,60 @@ theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c :=
       rwa [sup_eq_right.2 bc] at h,
     fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩
 #align lt_sup_iff lt_sup_iff
--/
 
-#print sup_lt_iff /-
+/- warning: sup_lt_iff -> sup_lt_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+Case conversion may be inaccurate. Consider using '#align sup_lt_iff sup_lt_iffₓ'. -/
 @[simp]
 theorem sup_lt_iff : b ⊔ c < a ↔ b < a ∧ c < a :=
   ⟨fun h => ⟨le_sup_left.trans_lt h, le_sup_right.trans_lt h⟩, fun h => sup_ind b c h.1 h.2⟩
 #align sup_lt_iff sup_lt_iff
--/
 
-#print inf_ind /-
+/- warning: inf_ind -> inf_ind is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] (a : α) (b : α) {p : α -> Prop}, (p a) -> (p b) -> (p (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align inf_ind inf_indₓ'. -/
 theorem inf_ind (a b : α) {p : α → Prop} : p a → p b → p (a ⊓ b) :=
   @sup_ind αᵒᵈ _ _ _ _
 #align inf_ind inf_ind
--/
 
-#print inf_le_iff /-
+/- warning: inf_le_iff -> inf_le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c) a) (Or (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+Case conversion may be inaccurate. Consider using '#align inf_le_iff inf_le_iffₓ'. -/
 @[simp]
 theorem inf_le_iff : b ⊓ c ≤ a ↔ b ≤ a ∨ c ≤ a :=
   @le_sup_iff αᵒᵈ _ _ _ _
 #align inf_le_iff inf_le_iff
--/
 
-#print inf_lt_iff /-
+/- warning: inf_lt_iff -> inf_lt_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c) a) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c) a) (Or (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a))
+Case conversion may be inaccurate. Consider using '#align inf_lt_iff inf_lt_iffₓ'. -/
 @[simp]
 theorem inf_lt_iff : b ⊓ c < a ↔ b < a ∨ c < a :=
   @lt_sup_iff αᵒᵈ _ _ _ _
 #align inf_lt_iff inf_lt_iff
--/
 
-#print lt_inf_iff /-
+/- warning: lt_inf_iff -> lt_inf_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) b c)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)) b c)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c))
+Case conversion may be inaccurate. Consider using '#align lt_inf_iff lt_inf_iffₓ'. -/
 @[simp]
 theorem lt_inf_iff : a < b ⊓ c ↔ a < b ∧ a < c :=
   @sup_lt_iff αᵒᵈ _ _ _ _
 #align lt_inf_iff lt_inf_iff
--/
 
 variable (a b c d)
 
@@ -1207,7 +1658,12 @@ theorem min_min_min_comm : min (min a b) (min c d) = min (min a c) (min b d) :=
 
 end LinearOrder
 
-#print sup_eq_maxDefault /-
+/- warning: sup_eq_max_default -> sup_eq_maxDefault is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1)) (maxDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8135 : α) (x._@.Mathlib.Order.Lattice._hyg.8137 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8135 x._@.Mathlib.Order.Lattice._hyg.8137)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8153 : α) (x._@.Mathlib.Order.Lattice._hyg.8155 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8153 x._@.Mathlib.Order.Lattice._hyg.8155)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8171 : α) (x._@.Mathlib.Order.Lattice._hyg.8173 : α) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8171 x._@.Mathlib.Order.Lattice._hyg.8173) (maxDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+Case conversion may be inaccurate. Consider using '#align sup_eq_max_default sup_eq_maxDefaultₓ'. -/
 theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊔ ·) = (maxDefault : α → α → α) :=
   by
@@ -1216,9 +1672,13 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
   split_ifs with h'
   exacts[sup_of_le_right h', sup_of_le_left <| (total_of (· ≤ ·) x y).resolve_left h']
 #align sup_eq_max_default sup_eq_maxDefault
--/
 
-#print inf_eq_minDefault /-
+/- warning: inf_eq_min_default -> inf_eq_minDefault is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))] [_inst_3 : IsTotal.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))))], Eq.{succ u1} (α -> α -> α) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1)) (minDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8249 : α) (x._@.Mathlib.Order.Lattice._hyg.8251 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8249 x._@.Mathlib.Order.Lattice._hyg.8251)] [_inst_3 : IsTotal.{u1} α (fun (x._@.Mathlib.Order.Lattice._hyg.8267 : α) (x._@.Mathlib.Order.Lattice._hyg.8269 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Lattice._hyg.8267 x._@.Mathlib.Order.Lattice._hyg.8269)], Eq.{succ u1} (α -> α -> α) (fun (x._@.Mathlib.Order.Lattice._hyg.8285 : α) (x._@.Mathlib.Order.Lattice._hyg.8287 : α) => Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x._@.Mathlib.Order.Lattice._hyg.8285 x._@.Mathlib.Order.Lattice._hyg.8287) (minDefault.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (fun (a : α) (b : α) => _inst_2 a b))
+Case conversion may be inaccurate. Consider using '#align inf_eq_min_default inf_eq_minDefaultₓ'. -/
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] : (· ⊓ ·) = (minDefault : α → α → α) :=
   by
@@ -1227,7 +1687,6 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   split_ifs with h'
   exacts[inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
--/
 
 #print Lattice.toLinearOrder /-
 /-- A lattice with total order is a linear order.
@@ -1269,28 +1728,28 @@ open OrderDual
 
 #print ofDual_inf /-
 @[simp]
-theorem ofDual_inf [HasSup α] (a b : αᵒᵈ) : ofDual (a ⊓ b) = ofDual a ⊔ ofDual b :=
+theorem ofDual_inf [Sup α] (a b : αᵒᵈ) : ofDual (a ⊓ b) = ofDual a ⊔ ofDual b :=
   rfl
 #align of_dual_inf ofDual_inf
 -/
 
 #print ofDual_sup /-
 @[simp]
-theorem ofDual_sup [HasInf α] (a b : αᵒᵈ) : ofDual (a ⊔ b) = ofDual a ⊓ ofDual b :=
+theorem ofDual_sup [Inf α] (a b : αᵒᵈ) : ofDual (a ⊔ b) = ofDual a ⊓ ofDual b :=
   rfl
 #align of_dual_sup ofDual_sup
 -/
 
 #print toDual_inf /-
 @[simp]
-theorem toDual_inf [HasInf α] (a b : α) : toDual (a ⊓ b) = toDual a ⊔ toDual b :=
+theorem toDual_inf [Inf α] (a b : α) : toDual (a ⊓ b) = toDual a ⊔ toDual b :=
   rfl
 #align to_dual_inf toDual_inf
 -/
 
 #print toDual_sup /-
 @[simp]
-theorem toDual_sup [HasSup α] (a b : α) : toDual (a ⊔ b) = toDual a ⊓ toDual b :=
+theorem toDual_sup [Sup α] (a b : α) : toDual (a ⊔ b) = toDual a ⊓ toDual b :=
   rfl
 #align to_dual_sup toDual_sup
 -/
@@ -1336,34 +1795,34 @@ namespace Pi
 
 variable {ι : Type _} {α' : ι → Type _}
 
-instance [∀ i, HasSup (α' i)] : HasSup (∀ i, α' i) :=
+instance [∀ i, Sup (α' i)] : Sup (∀ i, α' i) :=
   ⟨fun f g i => f i ⊔ g i⟩
 
 #print Pi.sup_apply /-
 @[simp]
-theorem sup_apply [∀ i, HasSup (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊔ g) i = f i ⊔ g i :=
+theorem sup_apply [∀ i, Sup (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊔ g) i = f i ⊔ g i :=
   rfl
 #align pi.sup_apply Pi.sup_apply
 -/
 
 #print Pi.sup_def /-
-theorem sup_def [∀ i, HasSup (α' i)] (f g : ∀ i, α' i) : f ⊔ g = fun i => f i ⊔ g i :=
+theorem sup_def [∀ i, Sup (α' i)] (f g : ∀ i, α' i) : f ⊔ g = fun i => f i ⊔ g i :=
   rfl
 #align pi.sup_def Pi.sup_def
 -/
 
-instance [∀ i, HasInf (α' i)] : HasInf (∀ i, α' i) :=
+instance [∀ i, Inf (α' i)] : Inf (∀ i, α' i) :=
   ⟨fun f g i => f i ⊓ g i⟩
 
 #print Pi.inf_apply /-
 @[simp]
-theorem inf_apply [∀ i, HasInf (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊓ g) i = f i ⊓ g i :=
+theorem inf_apply [∀ i, Inf (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊓ g) i = f i ⊓ g i :=
   rfl
 #align pi.inf_apply Pi.inf_apply
 -/
 
 #print Pi.inf_def /-
-theorem inf_def [∀ i, HasInf (α' i)] (f g : ∀ i, α' i) : f ⊓ g = fun i => f i ⊓ g i :=
+theorem inf_def [∀ i, Inf (α' i)] (f g : ∀ i, α' i) : f ⊓ g = fun i => f i ⊓ g i :=
   rfl
 #align pi.inf_def Pi.inf_def
 -/
@@ -1389,19 +1848,27 @@ end Pi
 
 namespace Monotone
 
-#print Monotone.sup /-
+/- warning: monotone.sup -> Monotone.sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g))
+Case conversion may be inaccurate. Consider using '#align monotone.sup Monotone.supₓ'. -/
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone (f ⊔ g) := fun x y h => sup_le_sup (hf h) (hg h)
 #align monotone.sup Monotone.sup
--/
 
-#print Monotone.inf /-
+/- warning: monotone.inf -> Monotone.inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g))
+Case conversion may be inaccurate. Consider using '#align monotone.inf Monotone.infₓ'. -/
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} (hf : Monotone f)
     (hg : Monotone g) : Monotone (f ⊓ g) := fun x y h => inf_le_inf (hf h) (hg h)
 #align monotone.inf Monotone.inf
--/
 
 /- warning: monotone.max -> Monotone.max is a dubious translation:
 lean 3 declaration is
@@ -1427,70 +1894,102 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Mon
   hf.inf hg
 #align monotone.min Monotone.min
 
-#print Monotone.le_map_sup /-
+/- warning: monotone.le_map_sup -> Monotone.le_map_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)) (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)))
+Case conversion may be inaccurate. Consider using '#align monotone.le_map_sup Monotone.le_map_supₓ'. -/
 theorem le_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β} (h : Monotone f) (x y : α) :
     f x ⊔ f y ≤ f (x ⊔ y) :=
   sup_le (h le_sup_left) (h le_sup_right)
 #align monotone.le_map_sup Monotone.le_map_sup
--/
 
-#print Monotone.map_inf_le /-
+/- warning: monotone.map_inf_le -> Monotone.map_inf_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align monotone.map_inf_le Monotone.map_inf_leₓ'. -/
 theorem map_inf_le [SemilatticeInf α] [SemilatticeInf β] {f : α → β} (h : Monotone f) (x y : α) :
     f (x ⊓ y) ≤ f x ⊓ f y :=
   le_inf (h inf_le_left) (h inf_le_right)
 #align monotone.map_inf_le Monotone.map_inf_le
--/
 
-#print Monotone.of_map_inf /-
+/- warning: monotone.of_map_inf -> Monotone.of_map_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f)
+Case conversion may be inaccurate. Consider using '#align monotone.of_map_inf Monotone.of_map_infₓ'. -/
 theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β] {f : α → β}
     (h : ∀ x y, f (x ⊓ y) = f x ⊓ f y) : Monotone f := fun x y hxy =>
   inf_eq_left.1 <| by rw [← h, inf_eq_left.2 hxy]
 #align monotone.of_map_inf Monotone.of_map_inf
--/
 
-#print Monotone.of_map_sup /-
+/- warning: monotone.of_map_sup -> Monotone.of_map_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y))) -> (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f)
+Case conversion may be inaccurate. Consider using '#align monotone.of_map_sup Monotone.of_map_supₓ'. -/
 theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
     (h : ∀ x y, f (x ⊔ y) = f x ⊔ f y) : Monotone f :=
   (@of_map_inf (OrderDual α) (OrderDual β) _ _ _ h).dual
 #align monotone.of_map_sup Monotone.of_map_sup
--/
 
 variable [LinearOrder α]
 
-#print Monotone.map_sup /-
+/- warning: monotone.map_sup -> Monotone.map_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align monotone.map_sup Monotone.map_supₓ'. -/
 theorem map_sup [SemilatticeSup β] {f : α → β} (hf : Monotone f) (x y : α) :
     f (x ⊔ y) = f x ⊔ f y :=
   (IsTotal.total x y).elim (fun h : x ≤ y => by simp only [h, hf h, sup_of_le_right]) fun h => by
     simp only [h, hf h, sup_of_le_left]
 #align monotone.map_sup Monotone.map_sup
--/
 
-#print Monotone.map_inf /-
+/- warning: monotone.map_inf -> Monotone.map_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align monotone.map_inf Monotone.map_infₓ'. -/
 theorem map_inf [SemilatticeInf β] {f : α → β} (hf : Monotone f) (x y : α) :
     f (x ⊓ y) = f x ⊓ f y :=
   hf.dual.map_sup _ _
 #align monotone.map_inf Monotone.map_inf
--/
 
 end Monotone
 
 namespace MonotoneOn
 
-#print MonotoneOn.sup /-
+/- warning: monotone_on.sup -> MonotoneOn.sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g) s)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g) s)
+Case conversion may be inaccurate. Consider using '#align monotone_on.sup MonotoneOn.supₓ'. -/
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
     (hf : MonotoneOn f s) (hg : MonotoneOn g s) : MonotoneOn (f ⊔ g) s := fun x hx y hy h =>
   sup_le_sup (hf hx hy h) (hg hx hy h)
 #align monotone_on.sup MonotoneOn.sup
--/
 
-#print MonotoneOn.inf /-
+/- warning: monotone_on.inf -> MonotoneOn.inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g) s)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (MonotoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g) s)
+Case conversion may be inaccurate. Consider using '#align monotone_on.inf MonotoneOn.infₓ'. -/
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} {s : Set α}
     (hf : MonotoneOn f s) (hg : MonotoneOn g s) : MonotoneOn (f ⊓ g) s :=
   (hf.dual.sup hg.dual).dual
 #align monotone_on.inf MonotoneOn.inf
--/
 
 /- warning: monotone_on.max -> MonotoneOn.max is a dubious translation:
 lean 3 declaration is
@@ -1520,19 +2019,27 @@ end MonotoneOn
 
 namespace Antitone
 
-#print Antitone.sup /-
+/- warning: antitone.sup -> Antitone.sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g))
+Case conversion may be inaccurate. Consider using '#align antitone.sup Antitone.supₓ'. -/
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone (f ⊔ g) := fun x y h => sup_le_sup (hf h) (hg h)
 #align antitone.sup Antitone.sup
--/
 
-#print Antitone.inf /-
+/- warning: antitone.inf -> Antitone.inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β}, (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g) -> (Antitone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g))
+Case conversion may be inaccurate. Consider using '#align antitone.inf Antitone.infₓ'. -/
 /-- Pointwise infimum of two monotone functions is a monotone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} (hf : Antitone f)
     (hg : Antitone g) : Antitone (f ⊓ g) := fun x y h => inf_le_inf (hf h) (hg h)
 #align antitone.inf Antitone.inf
--/
 
 /- warning: antitone.max -> Antitone.max is a dubious translation:
 lean 3 declaration is
@@ -1558,55 +2065,79 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} (hf : Ant
   hf.inf hg
 #align antitone.min Antitone.min
 
-#print Antitone.map_sup_le /-
+/- warning: antitone.map_sup_le -> Antitone.map_sup_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align antitone.map_sup_le Antitone.map_sup_leₓ'. -/
 theorem map_sup_le [SemilatticeSup α] [SemilatticeInf β] {f : α → β} (h : Antitone f) (x y : α) :
     f (x ⊔ y) ≤ f x ⊓ f y :=
   h.dual_right.le_map_sup x y
 #align antitone.map_sup_le Antitone.map_sup_le
--/
 
-#print Antitone.le_map_inf /-
+/- warning: antitone.le_map_inf -> Antitone.le_map_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)) (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)) (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)))
+Case conversion may be inaccurate. Consider using '#align antitone.le_map_inf Antitone.le_map_infₓ'. -/
 theorem le_map_inf [SemilatticeInf α] [SemilatticeSup β] {f : α → β} (h : Antitone f) (x y : α) :
     f x ⊔ f y ≤ f (x ⊓ y) :=
   h.dual_right.map_inf_le x y
 #align antitone.le_map_inf Antitone.le_map_inf
--/
 
 variable [LinearOrder α]
 
-#print Antitone.map_sup /-
+/- warning: antitone.map_sup -> Antitone.map_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align antitone.map_sup Antitone.map_supₓ'. -/
 theorem map_sup [SemilatticeInf β] {f : α → β} (hf : Antitone f) (x y : α) :
     f (x ⊔ y) = f x ⊓ f y :=
   hf.dual_right.map_sup x y
 #align antitone.map_sup Antitone.map_sup
--/
 
-#print Antitone.map_inf /-
+/- warning: antitone.map_inf -> Antitone.map_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align antitone.map_inf Antitone.map_infₓ'. -/
 theorem map_inf [SemilatticeSup β] {f : α → β} (hf : Antitone f) (x y : α) :
     f (x ⊓ y) = f x ⊔ f y :=
   hf.dual_right.map_inf x y
 #align antitone.map_inf Antitone.map_inf
--/
 
 end Antitone
 
 namespace AntitoneOn
 
-#print AntitoneOn.sup /-
+/- warning: antitone_on.sup -> AntitoneOn.sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u1 u2} (α -> β) (Pi.hasSup.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toHasSup.{u2} β _inst_2)) f g) s)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (Sup.sup.{max u2 u1} (α -> β) (Pi.instSupForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeSup.toSup.{u2} β _inst_2)) f g) s)
+Case conversion may be inaccurate. Consider using '#align antitone_on.sup AntitoneOn.supₓ'. -/
 /-- Pointwise supremum of two antitone functions is a antitone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊔ g) s := fun x hx y hy h =>
   sup_le_sup (hf hx hy h) (hg hx hy h)
 #align antitone_on.sup AntitoneOn.sup
--/
 
-#print AntitoneOn.inf /-
+/- warning: antitone_on.inf -> AntitoneOn.inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u1 u2} (α -> β) (Pi.hasInf.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toHasInf.{u2} β _inst_2)) f g) s)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} {g : α -> β} {s : Set.{u1} α}, (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) g s) -> (AntitoneOn.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) (Inf.inf.{max u2 u1} (α -> β) (Pi.instInfForAll.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SemilatticeInf.toInf.{u2} β _inst_2)) f g) s)
+Case conversion may be inaccurate. Consider using '#align antitone_on.inf AntitoneOn.infₓ'. -/
 /-- Pointwise infimum of two antitone functions is a antitone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊓ g) s :=
   (hf.dual.sup hg.dual).dual
 #align antitone_on.inf AntitoneOn.inf
--/
 
 /- warning: antitone_on.max -> AntitoneOn.max is a dubious translation:
 lean 3 declaration is
@@ -1643,15 +2174,15 @@ namespace Prod
 
 variable (α β)
 
-instance [HasSup α] [HasSup β] : HasSup (α × β) :=
+instance [Sup α] [Sup β] : Sup (α × β) :=
   ⟨fun p q => ⟨p.1 ⊔ q.1, p.2 ⊔ q.2⟩⟩
 
-instance [HasInf α] [HasInf β] : HasInf (α × β) :=
+instance [Inf α] [Inf β] : Inf (α × β) :=
   ⟨fun p q => ⟨p.1 ⊓ q.1, p.2 ⊓ q.2⟩⟩
 
 #print Prod.mk_sup_mk /-
 @[simp]
-theorem mk_sup_mk [HasSup α] [HasSup β] (a₁ a₂ : α) (b₁ b₂ : β) :
+theorem mk_sup_mk [Sup α] [Sup β] (a₁ a₂ : α) (b₁ b₂ : β) :
     (a₁, b₁) ⊔ (a₂, b₂) = (a₁ ⊔ a₂, b₁ ⊔ b₂) :=
   rfl
 #align prod.mk_sup_mk Prod.mk_sup_mk
@@ -1659,7 +2190,7 @@ theorem mk_sup_mk [HasSup α] [HasSup β] (a₁ a₂ : α) (b₁ b₂ : β) :
 
 #print Prod.mk_inf_mk /-
 @[simp]
-theorem mk_inf_mk [HasInf α] [HasInf β] (a₁ a₂ : α) (b₁ b₂ : β) :
+theorem mk_inf_mk [Inf α] [Inf β] (a₁ a₂ : α) (b₁ b₂ : β) :
     (a₁, b₁) ⊓ (a₂, b₂) = (a₁ ⊓ a₂, b₁ ⊓ b₂) :=
   rfl
 #align prod.mk_inf_mk Prod.mk_inf_mk
@@ -1667,54 +2198,54 @@ theorem mk_inf_mk [HasInf α] [HasInf β] (a₁ a₂ : α) (b₁ b₂ : β) :
 
 #print Prod.fst_sup /-
 @[simp]
-theorem fst_sup [HasSup α] [HasSup β] (p q : α × β) : (p ⊔ q).fst = p.fst ⊔ q.fst :=
+theorem fst_sup [Sup α] [Sup β] (p q : α × β) : (p ⊔ q).fst = p.fst ⊔ q.fst :=
   rfl
 #align prod.fst_sup Prod.fst_sup
 -/
 
 #print Prod.fst_inf /-
 @[simp]
-theorem fst_inf [HasInf α] [HasInf β] (p q : α × β) : (p ⊓ q).fst = p.fst ⊓ q.fst :=
+theorem fst_inf [Inf α] [Inf β] (p q : α × β) : (p ⊓ q).fst = p.fst ⊓ q.fst :=
   rfl
 #align prod.fst_inf Prod.fst_inf
 -/
 
 #print Prod.snd_sup /-
 @[simp]
-theorem snd_sup [HasSup α] [HasSup β] (p q : α × β) : (p ⊔ q).snd = p.snd ⊔ q.snd :=
+theorem snd_sup [Sup α] [Sup β] (p q : α × β) : (p ⊔ q).snd = p.snd ⊔ q.snd :=
   rfl
 #align prod.snd_sup Prod.snd_sup
 -/
 
 #print Prod.snd_inf /-
 @[simp]
-theorem snd_inf [HasInf α] [HasInf β] (p q : α × β) : (p ⊓ q).snd = p.snd ⊓ q.snd :=
+theorem snd_inf [Inf α] [Inf β] (p q : α × β) : (p ⊓ q).snd = p.snd ⊓ q.snd :=
   rfl
 #align prod.snd_inf Prod.snd_inf
 -/
 
 #print Prod.swap_sup /-
 @[simp]
-theorem swap_sup [HasSup α] [HasSup β] (p q : α × β) : (p ⊔ q).symm = p.symm ⊔ q.symm :=
+theorem swap_sup [Sup α] [Sup β] (p q : α × β) : (p ⊔ q).symm = p.symm ⊔ q.symm :=
   rfl
 #align prod.swap_sup Prod.swap_sup
 -/
 
 #print Prod.swap_inf /-
 @[simp]
-theorem swap_inf [HasInf α] [HasInf β] (p q : α × β) : (p ⊓ q).symm = p.symm ⊓ q.symm :=
+theorem swap_inf [Inf α] [Inf β] (p q : α × β) : (p ⊓ q).symm = p.symm ⊓ q.symm :=
   rfl
 #align prod.swap_inf Prod.swap_inf
 -/
 
 #print Prod.sup_def /-
-theorem sup_def [HasSup α] [HasSup β] (p q : α × β) : p ⊔ q = (p.fst ⊔ q.fst, p.snd ⊔ q.snd) :=
+theorem sup_def [Sup α] [Sup β] (p q : α × β) : p ⊔ q = (p.fst ⊔ q.fst, p.snd ⊔ q.snd) :=
   rfl
 #align prod.sup_def Prod.sup_def
 -/
 
 #print Prod.inf_def /-
-theorem inf_def [HasInf α] [HasInf β] (p q : α × β) : p ⊓ q = (p.fst ⊓ q.fst, p.snd ⊓ q.snd) :=
+theorem inf_def [Inf α] [Inf β] (p q : α × β) : p ⊓ q = (p.fst ⊓ q.fst, p.snd ⊓ q.snd) :=
   rfl
 #align prod.inf_def Prod.inf_def
 -/
@@ -1750,7 +2281,12 @@ end Prod
 
 namespace Subtype
 
-#print Subtype.semilatticeSup /-
+/- warning: subtype.semilattice_sup -> Subtype.semilatticeSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))) -> (SemilatticeSup.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y))) -> (SemilatticeSup.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
+Case conversion may be inaccurate. Consider using '#align subtype.semilattice_sup Subtype.semilatticeSupₓ'. -/
 /-- A subtype forms a `⊔`-semilattice if `⊔` preserves the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -1762,9 +2298,13 @@ protected def semilatticeSup [SemilatticeSup α] {P : α → Prop}
     le_sup_right := fun x y => @le_sup_right _ _ (x : α) y
     sup_le := fun x y z h1 h2 => @sup_le α _ _ _ _ h1 h2 }
 #align subtype.semilattice_sup Subtype.semilatticeSup
--/
 
-#print Subtype.semilatticeInf /-
+/- warning: subtype.semilattice_inf -> Subtype.semilatticeInf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y))) -> (SemilatticeInf.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y))) -> (SemilatticeInf.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
+Case conversion may be inaccurate. Consider using '#align subtype.semilattice_inf Subtype.semilatticeInfₓ'. -/
 /-- A subtype forms a `⊓`-semilattice if `⊓` preserves the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -1776,9 +2316,13 @@ protected def semilatticeInf [SemilatticeInf α] {P : α → Prop}
     inf_le_right := fun x y => @inf_le_right _ _ (x : α) y
     le_inf := fun x y z h1 h2 => @le_inf α _ _ _ _ h1 h2 }
 #align subtype.semilattice_inf Subtype.semilatticeInf
--/
 
-#print Subtype.lattice /-
+/- warning: subtype.lattice -> Subtype.lattice is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y))) -> (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y))) -> (Lattice.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] {P : α -> Prop}, (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y))) -> (forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y))) -> (Lattice.{u1} (Subtype.{succ u1} α (fun (x : α) => P x)))
+Case conversion may be inaccurate. Consider using '#align subtype.lattice Subtype.latticeₓ'. -/
 /-- A subtype forms a lattice if `⊔` and `⊓` preserve the property.
 See note [reducible non-instances]. -/
 @[reducible]
@@ -1786,9 +2330,13 @@ protected def lattice [Lattice α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x
     (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y)) : Lattice { x : α // P x } :=
   { Subtype.semilatticeInf Pinf, Subtype.semilatticeSup Psup with }
 #align subtype.lattice Subtype.lattice
--/
 
-#print Subtype.coe_sup /-
+/- warning: subtype.coe_sup -> Subtype.coe_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toHasSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) x y)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) x) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) y))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α (Subtype.val.{succ u1} α P (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) x y)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Subtype.val.{succ u1} α P x) (Subtype.val.{succ u1} α P y))
+Case conversion may be inaccurate. Consider using '#align subtype.coe_sup Subtype.coe_supₓ'. -/
 @[simp, norm_cast]
 theorem coe_sup [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y))
     (x y : Subtype P) :
@@ -1798,9 +2346,13 @@ theorem coe_sup [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x
       x ⊔ y :=
   rfl
 #align subtype.coe_sup Subtype.coe_sup
--/
 
-#print Subtype.coe_inf /-
+/- warning: subtype.coe_inf -> Subtype.coe_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toHasInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) x y)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) x) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α P) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α P) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α P) α (coeSubtype.{succ u1} α (fun (x : α) => P x))))) y))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y))) (x : Subtype.{succ u1} α P) (y : Subtype.{succ u1} α P), Eq.{succ u1} α (Subtype.val.{succ u1} α P (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) x y)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Subtype.val.{succ u1} α P x) (Subtype.val.{succ u1} α P y))
+Case conversion may be inaccurate. Consider using '#align subtype.coe_inf Subtype.coe_infₓ'. -/
 @[simp, norm_cast]
 theorem coe_inf [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y))
     (x y : Subtype P) :
@@ -1810,9 +2362,13 @@ theorem coe_inf [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x
       x ⊓ y :=
   rfl
 #align subtype.coe_inf Subtype.coe_inf
--/
 
-#print Subtype.mk_sup_mk /-
+/- warning: subtype.mk_sup_mk -> Subtype.mk_sup_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toHasSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y) (Psup x y hx hy))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} (Psup : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Sup.sup.{u1} (Subtype.{succ u1} α P) (SemilatticeSup.toSup.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeSup.{u1} α _inst_1 (fun (x : α) => P x) Psup)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y) (Psup x y hx hy))
+Case conversion may be inaccurate. Consider using '#align subtype.mk_sup_mk Subtype.mk_sup_mkₓ'. -/
 @[simp]
 theorem mk_sup_mk [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y))
     {x y : α} (hx : P x) (hy : P y) :
@@ -1821,9 +2377,13 @@ theorem mk_sup_mk [SemilatticeSup α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P
       ⟨x ⊔ y, Psup hx hy⟩ :=
   rfl
 #align subtype.mk_sup_mk Subtype.mk_sup_mk
--/
 
-#print Subtype.mk_inf_mk /-
+/- warning: subtype.mk_inf_mk -> Subtype.mk_inf_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toHasInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y) (Pinf x y hx hy))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} (Pinf : forall {{x : α}} {{y : α}}, (P x) -> (P y) -> (P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y))) {x : α} {y : α} (hx : P x) (hy : P y), Eq.{succ u1} (Subtype.{succ u1} α P) (Inf.inf.{u1} (Subtype.{succ u1} α P) (SemilatticeInf.toInf.{u1} (Subtype.{succ u1} α P) (Subtype.semilatticeInf.{u1} α _inst_1 (fun (x : α) => P x) Pinf)) (Subtype.mk.{succ u1} α P x hx) (Subtype.mk.{succ u1} α P y hy)) (Subtype.mk.{succ u1} α P (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y) (Pinf x y hx hy))
+Case conversion may be inaccurate. Consider using '#align subtype.mk_inf_mk Subtype.mk_inf_mkₓ'. -/
 @[simp]
 theorem mk_inf_mk [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y))
     {x y : α} (hx : P x) (hy : P y) :
@@ -1832,21 +2392,25 @@ theorem mk_inf_mk [SemilatticeInf α] {P : α → Prop} (Pinf : ∀ ⦃x y⦄, P
       ⟨x ⊓ y, Pinf hx hy⟩ :=
   rfl
 #align subtype.mk_inf_mk Subtype.mk_inf_mk
--/
 
 end Subtype
 
 section lift
 
-#print Function.Injective.semilatticeSup /-
+/- warning: function.injective.semilattice_sup -> Function.Injective.semilatticeSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeSup.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeSup.{u1} α)
+Case conversion may be inaccurate. Consider using '#align function.injective.semilattice_sup Function.Injective.semilatticeSupₓ'. -/
 /-- A type endowed with `⊔` is a `semilattice_sup`, if it admits an injective map that
 preserves `⊔` to a `semilattice_sup`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.semilatticeSup [HasSup α] [SemilatticeSup β] (f : α → β)
+protected def Function.Injective.semilatticeSup [Sup α] [SemilatticeSup β] (f : α → β)
     (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) : SemilatticeSup α :=
   { PartialOrder.lift f hf_inj with
-    sup := HasSup.sup
+    sup := Sup.sup
     le_sup_left := fun a b => by
       change f a ≤ f (a ⊔ b)
       rw [map_sup]
@@ -1860,17 +2424,21 @@ protected def Function.Injective.semilatticeSup [HasSup α] [SemilatticeSup β]
       rw [map_sup]
       exact sup_le ha hb }
 #align function.injective.semilattice_sup Function.Injective.semilatticeSup
--/
 
-#print Function.Injective.semilatticeInf /-
+/- warning: function.injective.semilattice_inf -> Function.Injective.semilatticeInf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_1 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeInf.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Inf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_1 a b)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f a) (f b))) -> (SemilatticeInf.{u1} α)
+Case conversion may be inaccurate. Consider using '#align function.injective.semilattice_inf Function.Injective.semilatticeInfₓ'. -/
 /-- A type endowed with `⊓` is a `semilattice_inf`, if it admits an injective map that
 preserves `⊓` to a `semilattice_inf`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.semilatticeInf [HasInf α] [SemilatticeInf β] (f : α → β)
+protected def Function.Injective.semilatticeInf [Inf α] [SemilatticeInf β] (f : α → β)
     (hf_inj : Function.Injective f) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : SemilatticeInf α :=
   { PartialOrder.lift f hf_inj with
-    inf := HasInf.inf
+    inf := Inf.inf
     inf_le_left := fun a b => by
       change f (a ⊓ b) ≤ f a
       rw [map_inf]
@@ -1884,26 +2452,34 @@ protected def Function.Injective.semilatticeInf [HasInf α] [SemilatticeInf β]
       rw [map_inf]
       exact le_inf ha hb }
 #align function.injective.semilattice_inf Function.Injective.semilatticeInf
--/
 
-#print Function.Injective.lattice /-
+/- warning: function.injective.lattice -> Function.Injective.lattice is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Lattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_3)) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_3)) (f a) (f b))) -> (Lattice.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Lattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_3)) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β _inst_3) (f a) (f b))) -> (Lattice.{u1} α)
+Case conversion may be inaccurate. Consider using '#align function.injective.lattice Function.Injective.latticeₓ'. -/
 /-- A type endowed with `⊔` and `⊓` is a `lattice`, if it admits an injective map that
 preserves `⊔` and `⊓` to a `lattice`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.lattice [HasSup α] [HasInf α] [Lattice β] (f : α → β)
+protected def Function.Injective.lattice [Sup α] [Inf α] [Lattice β] (f : α → β)
     (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : Lattice α :=
   { hf_inj.SemilatticeSup f map_sup, hf_inj.SemilatticeInf f map_inf with }
 #align function.injective.lattice Function.Injective.lattice
--/
 
-#print Function.Injective.distribLattice /-
+/- warning: function.injective.distrib_lattice -> Function.Injective.distribLattice is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : DistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β _inst_3))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β _inst_3))) (f a) (f b))) -> (DistribLattice.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : DistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (DistribLattice.toLattice.{u2} β _inst_3))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (DistribLattice.toLattice.{u2} β _inst_3)) (f a) (f b))) -> (DistribLattice.{u1} α)
+Case conversion may be inaccurate. Consider using '#align function.injective.distrib_lattice Function.Injective.distribLatticeₓ'. -/
 /-- A type endowed with `⊔` and `⊓` is a `distrib_lattice`, if it admits an injective map that
 preserves `⊔` and `⊓` to a `distrib_lattice`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.distribLattice [HasSup α] [HasInf α] [DistribLattice β] (f : α → β)
+protected def Function.Injective.distribLattice [Sup α] [Inf α] [DistribLattice β] (f : α → β)
     (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : DistribLattice α :=
   { hf_inj.Lattice f map_sup map_inf with
@@ -1913,7 +2489,6 @@ protected def Function.Injective.distribLattice [HasSup α] [HasInf α] [Distrib
       rw [map_inf, map_sup, map_sup, map_sup, map_inf]
       exact le_sup_inf }
 #align function.injective.distrib_lattice Function.Injective.distribLattice
--/
 
 end lift
 

Changes in mathlib4

mathlib3
mathlib4
doc(Order): fix join/meet inversion for lattices (#12172)

Currently, this doc-string describes Mathlib.Order.Lattice:

Semilattices are partially ordered sets with join (greatest lower bound, or sup) or meet (least upper bound, or inf) operations.

It seems to be the other way around: https://en.wikipedia.org/wiki/Semilattice

This commit fixes this.

Diff
@@ -14,9 +14,9 @@ import Mathlib.Tactic.GCongr.Core
 /-!
 # (Semi-)lattices
 
-Semilattices are partially ordered sets with join (greatest lower bound, or `sup`) or
-meet (least upper bound, or `inf`) operations. Lattices are posets that are both
-join-semilattices and meet-semilattices.
+Semilattices are partially ordered sets with join (least upper bound, or `sup`) or meet (greatest
+lower bound, or `inf`) operations. Lattices are posets that are both join-semilattices and
+meet-semilattices.
 
 Distributive lattices are lattices which satisfy any of four equivalent distributivity properties,
 of `sup` over `inf`, on the left or on the right.
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -645,7 +645,7 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff,
 #align inf_eq_sup inf_eq_sup
 @[simp] lemma sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b := eq_comm.trans inf_eq_sup
 #align sup_eq_inf sup_eq_inf
-@[simp] lemma inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
+@[simp] lemma inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne, inf_eq_sup]
 #align inf_lt_sup inf_lt_sup
 
 lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c := by
chore(Order): add missing inst prefix to instance names (#11238)

This is not exhaustive; it largely does not rename instances that relate to algebra, and only focuses on the "core" order files.

Diff
@@ -98,10 +98,10 @@ def SemilatticeSup.mk' {α : Type*} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b =
   sup_le a b c hac hbc := by dsimp; rwa [sup_assoc, hbc]
 #align semilattice_sup.mk' SemilatticeSup.mk'
 
-instance instSupOrderDual (α : Type*) [Inf α] : Sup αᵒᵈ :=
+instance OrderDual.instSup (α : Type*) [Inf α] : Sup αᵒᵈ :=
   ⟨((· ⊓ ·) : α → α → α)⟩
 
-instance instInfOrderDual (α : Type*) [Sup α] : Inf αᵒᵈ :=
+instance OrderDual.instInf (α : Type*) [Sup α] : Inf αᵒᵈ :=
   ⟨((· ⊔ ·) : α → α → α)⟩
 
 section SemilatticeSup
@@ -333,14 +333,14 @@ class SemilatticeInf (α : Type u) extends Inf α, PartialOrder α where
   protected le_inf : ∀ a b c : α, a ≤ b → a ≤ c → a ≤ b ⊓ c
 #align semilattice_inf SemilatticeInf
 
-instance OrderDual.semilatticeSup (α) [SemilatticeInf α] : SemilatticeSup αᵒᵈ where
+instance OrderDual.instSemilatticeSup (α) [SemilatticeInf α] : SemilatticeSup αᵒᵈ where
   __ := inferInstanceAs (PartialOrder αᵒᵈ)
   __ := inferInstanceAs (Sup αᵒᵈ)
   le_sup_left := @SemilatticeInf.inf_le_left α _
   le_sup_right := @SemilatticeInf.inf_le_right α _
   sup_le := fun _ _ _ hca hcb => @SemilatticeInf.le_inf α _ _ _ _ hca hcb
 
-instance OrderDual.semilatticeInf (α) [SemilatticeSup α] : SemilatticeInf αᵒᵈ where
+instance OrderDual.instSemilatticeInf (α) [SemilatticeSup α] : SemilatticeInf αᵒᵈ where
   __ := inferInstanceAs (PartialOrder αᵒᵈ)
   __ := inferInstanceAs (Inf αᵒᵈ)
   inf_le_left := @le_sup_left α _
@@ -348,7 +348,7 @@ instance OrderDual.semilatticeInf (α) [SemilatticeSup α] : SemilatticeInf α
   le_inf := fun _ _ _ hca hcb => @sup_le α _ _ _ _ hca hcb
 
 theorem SemilatticeSup.dual_dual (α : Type*) [H : SemilatticeSup α] :
-    OrderDual.semilatticeSup αᵒᵈ = H :=
+    OrderDual.instSemilatticeSup αᵒᵈ = H :=
   SemilatticeSup.ext fun _ _ => Iff.rfl
 #align semilattice_sup.dual_dual SemilatticeSup.dual_dual
 
@@ -540,7 +540,7 @@ theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
 #align semilattice_inf.ext SemilatticeInf.ext
 
 theorem SemilatticeInf.dual_dual (α : Type*) [H : SemilatticeInf α] :
-    OrderDual.semilatticeInf αᵒᵈ = H :=
+    OrderDual.instSemilatticeInf αᵒᵈ = H :=
   SemilatticeInf.ext fun _ _ => Iff.rfl
 #align semilattice_inf.dual_dual SemilatticeInf.dual_dual
 
@@ -560,7 +560,7 @@ def SemilatticeInf.mk' {α : Type*} [Inf α] (inf_comm : ∀ a b : α, a ⊓ b =
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ a : α, a ⊓ a = a) :
     SemilatticeInf α := by
   haveI : SemilatticeSup αᵒᵈ := SemilatticeSup.mk' inf_comm inf_assoc inf_idem
-  haveI i := OrderDual.semilatticeInf αᵒᵈ
+  haveI i := OrderDual.instSemilatticeInf αᵒᵈ
   exact i
 #align semilattice_inf.mk' SemilatticeInf.mk'
 
@@ -573,9 +573,9 @@ def SemilatticeInf.mk' {α : Type*} [Inf α] (inf_comm : ∀ a b : α, a ⊓ b =
 class Lattice (α : Type u) extends SemilatticeSup α, SemilatticeInf α
 #align lattice Lattice
 
-instance OrderDual.lattice (α) [Lattice α] : Lattice αᵒᵈ where
-  __ := OrderDual.semilatticeSup α
-  __ := OrderDual.semilatticeInf α
+instance OrderDual.instLattice (α) [Lattice α] : Lattice αᵒᵈ where
+  __ := OrderDual.instSemilatticeSup α
+  __ := OrderDual.instSemilatticeInf α
 
 /-- The partial orders from `SemilatticeSup_mk'` and `SemilatticeInf_mk'` agree
 if `sup` and `inf` satisfy the lattice absorption laws `sup_inf_self` (`a ⊔ a ⊓ b = a`)
@@ -736,7 +736,7 @@ theorem inf_sup_left (a b c : α) : a ⊓ (b ⊔ c) = a ⊓ b ⊔ a ⊓ c :=
     _ = a ⊓ b ⊔ a ⊓ c := by rw [sup_inf_left]
 #align inf_sup_left inf_sup_left
 
-instance OrderDual.distribLattice (α : Type*) [DistribLattice α] : DistribLattice αᵒᵈ where
+instance OrderDual.instDistribLattice (α : Type*) [DistribLattice α] : DistribLattice αᵒᵈ where
   __ := inferInstanceAs (Lattice αᵒᵈ)
   le_sup_inf _ _ _ := (inf_sup_left _ _ _).le
 
@@ -766,7 +766,7 @@ end DistribLattice
 @[reducible]
 def DistribLattice.ofInfSupLe [Lattice α] (inf_sup_le : ∀ a b c : α, a ⊓ (b ⊔ c) ≤ a ⊓ b ⊔ a ⊓ c) :
     DistribLattice α where
-  le_sup_inf := (@OrderDual.distribLattice αᵒᵈ {inferInstanceAs (Lattice αᵒᵈ) with
+  le_sup_inf := (@OrderDual.instDistribLattice αᵒᵈ {inferInstanceAs (Lattice αᵒᵈ) with
       le_sup_inf := inf_sup_le}).le_sup_inf
 #align distrib_lattice.of_inf_sup_le DistribLattice.ofInfSupLe
 
@@ -984,21 +984,21 @@ theorem inf_def [∀ i, Inf (α' i)] (f g : ∀ i, α' i) : f ⊓ g = fun i => f
   rfl
 #align pi.inf_def Pi.inf_def
 
-instance semilatticeSup [∀ i, SemilatticeSup (α' i)] : SemilatticeSup (∀ i, α' i) where
+instance instSemilatticeSup [∀ i, SemilatticeSup (α' i)] : SemilatticeSup (∀ i, α' i) where
   le_sup_left _ _ _ := le_sup_left
   le_sup_right _ _ _ := le_sup_right
   sup_le _ _ _ ac bc i := sup_le (ac i) (bc i)
 
-instance semilatticeInf [∀ i, SemilatticeInf (α' i)] : SemilatticeInf (∀ i, α' i) where
+instance instSemilatticeInf [∀ i, SemilatticeInf (α' i)] : SemilatticeInf (∀ i, α' i) where
   inf_le_left _ _ _ := inf_le_left
   inf_le_right _ _ _ := inf_le_right
   le_inf _ _ _ ac bc i := le_inf (ac i) (bc i)
 
-instance lattice [∀ i, Lattice (α' i)] : Lattice (∀ i, α' i) where
+instance instLattice [∀ i, Lattice (α' i)] : Lattice (∀ i, α' i) where
   __ := inferInstanceAs (SemilatticeSup (∀ i, α' i))
   __ := inferInstanceAs (SemilatticeInf (∀ i, α' i))
 
-instance distribLattice [∀ i, DistribLattice (α' i)] : DistribLattice (∀ i, α' i) where
+instance instDistribLattice [∀ i, DistribLattice (α' i)] : DistribLattice (∀ i, α' i) where
   le_sup_inf _ _ _ _ := le_sup_inf
 
 end Pi
@@ -1313,25 +1313,25 @@ theorem inf_def [Inf α] [Inf β] (p q : α × β) : p ⊓ q = (p.fst ⊓ q.fst,
   rfl
 #align prod.inf_def Prod.inf_def
 
-instance semilatticeSup [SemilatticeSup α] [SemilatticeSup β] : SemilatticeSup (α × β) where
+instance instSemilatticeSup [SemilatticeSup α] [SemilatticeSup β] : SemilatticeSup (α × β) where
   __ := inferInstanceAs (PartialOrder (α × β))
   __ := inferInstanceAs (Sup (α × β))
   sup_le _ _ _ h₁ h₂ := ⟨sup_le h₁.1 h₂.1, sup_le h₁.2 h₂.2⟩
   le_sup_left _ _ := ⟨le_sup_left, le_sup_left⟩
   le_sup_right _ _ := ⟨le_sup_right, le_sup_right⟩
 
-instance semilatticeInf [SemilatticeInf α] [SemilatticeInf β] : SemilatticeInf (α × β) where
+instance instSemilatticeInf [SemilatticeInf α] [SemilatticeInf β] : SemilatticeInf (α × β) where
   __ := inferInstanceAs (PartialOrder (α × β))
   __ := inferInstanceAs (Inf (α × β))
   le_inf _ _ _ h₁ h₂ := ⟨le_inf h₁.1 h₂.1, le_inf h₁.2 h₂.2⟩
   inf_le_left _ _ := ⟨inf_le_left, inf_le_left⟩
   inf_le_right _ _ := ⟨inf_le_right, inf_le_right⟩
 
-instance lattice [Lattice α] [Lattice β] : Lattice (α × β) where
+instance instLattice [Lattice α] [Lattice β] : Lattice (α × β) where
   __ := inferInstanceAs (SemilatticeSup (α × β))
   __ := inferInstanceAs (SemilatticeInf (α × β))
 
-instance distribLattice [DistribLattice α] [DistribLattice β] : DistribLattice (α × β) where
+instance instDistribLattice [DistribLattice α] [DistribLattice β] : DistribLattice (α × β) where
   __ := inferInstanceAs (Lattice (α × β))
   le_sup_inf _ _ _ := ⟨le_sup_inf, le_sup_inf⟩
 
chore(Order): Make more arguments explicit (#11033)

Those lemmas have historically been very annoying to use in rw since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.

Downstream code broken by this change can fix it by adding appropriately many _s.

Also marks CauSeq.ext @[ext].

Order.BoundedOrder

  • top_sup_eq
  • sup_top_eq
  • bot_sup_eq
  • sup_bot_eq
  • top_inf_eq
  • inf_top_eq
  • bot_inf_eq
  • inf_bot_eq

Order.Lattice

  • sup_idem
  • sup_comm
  • sup_assoc
  • sup_left_idem
  • sup_right_idem
  • inf_idem
  • inf_comm
  • inf_assoc
  • inf_left_idem
  • inf_right_idem
  • sup_inf_left
  • sup_inf_right
  • inf_sup_left
  • inf_sup_right

Order.MinMax

  • max_min_distrib_left
  • max_min_distrib_right
  • min_max_distrib_left
  • min_max_distrib_right

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -218,30 +218,30 @@ theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
   sup_le_sup h₁ le_rfl
 #align sup_le_sup_right sup_le_sup_right
 
-theorem sup_idem : a ⊔ a = a := by simp
+theorem sup_idem (a : α) : a ⊔ a = a := by simp
 #align sup_idem sup_idem
 
-instance : Std.IdempotentOp (α := α) (· ⊔ ·) := ⟨@sup_idem _ _⟩
+instance : Std.IdempotentOp (α := α) (· ⊔ ·) := ⟨sup_idem⟩
 
-theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
+theorem sup_comm (a b : α) : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
 #align sup_comm sup_comm
 
-instance : Std.Commutative (α := α) (· ⊔ ·) := ⟨@sup_comm _ _⟩
+instance : Std.Commutative (α := α) (· ⊔ ·) := ⟨sup_comm⟩
 
-theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
+theorem sup_assoc (a b c : α) : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
   eq_of_forall_ge_iff fun x => by simp only [sup_le_iff]; rw [and_assoc]
 #align sup_assoc sup_assoc
 
-instance : Std.Associative (α := α)  (· ⊔ ·) := ⟨@sup_assoc _ _⟩
+instance : Std.Associative (α := α)  (· ⊔ ·) := ⟨sup_assoc⟩
 
 theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
-  rw [sup_comm, @sup_comm _ _ a, sup_assoc]
+  rw [sup_comm, sup_comm a, sup_assoc]
 #align sup_left_right_swap sup_left_right_swap
 
-theorem sup_left_idem : a ⊔ (a ⊔ b) = a ⊔ b := by simp
+theorem sup_left_idem (a b : α) : a ⊔ (a ⊔ b) = a ⊔ b := by simp
 #align sup_left_idem sup_left_idem
 
-theorem sup_right_idem : a ⊔ b ⊔ b = a ⊔ b := by simp
+theorem sup_right_idem (a b : α) : a ⊔ b ⊔ b = a ⊔ b := by simp
 #align sup_right_idem sup_right_idem
 
 theorem sup_left_comm (a b c : α) : a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c) := by
@@ -249,7 +249,7 @@ theorem sup_left_comm (a b c : α) : a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c) := by
 #align sup_left_comm sup_left_comm
 
 theorem sup_right_comm (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ b := by
-  rw [sup_assoc, sup_assoc, @sup_comm _ _ b]
+  rw [sup_assoc, sup_assoc, sup_comm b]
 #align sup_right_comm sup_right_comm
 
 theorem sup_sup_sup_comm (a b c d : α) : a ⊔ b ⊔ (c ⊔ d) = a ⊔ c ⊔ (b ⊔ d) := by
@@ -457,34 +457,29 @@ theorem inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c
   inf_le_inf le_rfl h
 #align inf_le_inf_left inf_le_inf_left
 
-theorem inf_idem : a ⊓ a = a := by simp
+theorem inf_idem (a : α) : a ⊓ a = a := by simp
 #align inf_idem inf_idem
 
-instance : Std.IdempotentOp (α := α) (· ⊓ ·) :=
-  ⟨@inf_idem _ _⟩
+instance : Std.IdempotentOp (α := α) (· ⊓ ·) := ⟨inf_idem⟩
 
-theorem inf_comm : a ⊓ b = b ⊓ a :=
-  @sup_comm αᵒᵈ _ _ _
+theorem inf_comm (a b : α) : a ⊓ b = b ⊓ a := @sup_comm αᵒᵈ _ _ _
 #align inf_comm inf_comm
 
-instance : Std.Commutative (α := α) (· ⊓ ·) :=
-  ⟨@inf_comm _ _⟩
+instance : Std.Commutative (α := α) (· ⊓ ·) := ⟨inf_comm⟩
 
-theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
-  @sup_assoc αᵒᵈ _ a b c
+theorem inf_assoc (a b c : α) : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) := @sup_assoc αᵒᵈ _ _ _ _
 #align inf_assoc inf_assoc
 
-instance : Std.Associative (α := α) (· ⊓ ·) :=
-  ⟨@inf_assoc _ _⟩
+instance : Std.Associative (α := α) (· ⊓ ·) := ⟨inf_assoc⟩
 
 theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
   @sup_left_right_swap αᵒᵈ _ _ _ _
 #align inf_left_right_swap inf_left_right_swap
 
-theorem inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b := by simp
+theorem inf_left_idem (a b : α) : a ⊓ (a ⊓ b) = a ⊓ b := by simp
 #align inf_left_idem inf_left_idem
 
-theorem inf_right_idem : a ⊓ b ⊓ b = a ⊓ b := by simp
+theorem inf_right_idem (a b : α) : a ⊓ b ⊓ b = a ⊓ b := by simp
 #align inf_right_idem inf_right_idem
 
 theorem inf_left_comm (a b c : α) : a ⊓ (b ⊓ c) = b ⊓ (a ⊓ c) :=
@@ -654,11 +649,11 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff,
 #align inf_lt_sup inf_lt_sup
 
 lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c := by
-  refine' ⟨fun h ↦ _, _⟩
-  { obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm)
-    simpa using h }
-  { rintro ⟨rfl, rfl⟩
-    exact ⟨inf_idem, sup_idem⟩ }
+  refine ⟨fun h ↦ ?_, ?_⟩
+  · obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm)
+    simpa using h
+  · rintro ⟨rfl, rfl⟩
+    exact ⟨inf_idem _, sup_idem _⟩
 #align inf_eq_and_sup_eq_iff inf_eq_and_sup_eq_iff
 
 /-!
@@ -724,44 +719,42 @@ theorem le_sup_inf : ∀ {x y z : α}, (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
   fun {x y z} => DistribLattice.le_sup_inf x y z
 #align le_sup_inf le_sup_inf
 
-theorem sup_inf_left : x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z) :=
+theorem sup_inf_left (a b c : α) : a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c) :=
   le_antisymm sup_inf_le le_sup_inf
 #align sup_inf_left sup_inf_left
 
-theorem sup_inf_right : y ⊓ z ⊔ x = (y ⊔ x) ⊓ (z ⊔ x) := by
-  simp only [sup_inf_left, fun y : α => @sup_comm α _ y x, eq_self_iff_true]
+theorem sup_inf_right (a b c : α) : a ⊓ b ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) := by
+  simp only [sup_inf_left, sup_comm _ c, eq_self_iff_true]
 #align sup_inf_right sup_inf_right
 
-theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
+theorem inf_sup_left (a b c : α) : a ⊓ (b ⊔ c) = a ⊓ b ⊔ a ⊓ c :=
   calc
-    x ⊓ (y ⊔ z) = x ⊓ (x ⊔ z) ⊓ (y ⊔ z) := by rw [inf_sup_self]
-    _ = x ⊓ (x ⊓ y ⊔ z) := by simp only [inf_assoc, sup_inf_right, eq_self_iff_true]
-    _ = (x ⊔ x ⊓ y) ⊓ (x ⊓ y ⊔ z) := by rw [sup_inf_self]
-    _ = (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z) := by rw [sup_comm]
-    _ = x ⊓ y ⊔ x ⊓ z := by rw [sup_inf_left]
+    a ⊓ (b ⊔ c) = a ⊓ (a ⊔ c) ⊓ (b ⊔ c) := by rw [inf_sup_self]
+    _ = a ⊓ (a ⊓ b ⊔ c) := by simp only [inf_assoc, sup_inf_right, eq_self_iff_true]
+    _ = (a ⊔ a ⊓ b) ⊓ (a ⊓ b ⊔ c) := by rw [sup_inf_self]
+    _ = (a ⊓ b ⊔ a) ⊓ (a ⊓ b ⊔ c) := by rw [sup_comm]
+    _ = a ⊓ b ⊔ a ⊓ c := by rw [sup_inf_left]
 #align inf_sup_left inf_sup_left
 
 instance OrderDual.distribLattice (α : Type*) [DistribLattice α] : DistribLattice αᵒᵈ where
   __ := inferInstanceAs (Lattice αᵒᵈ)
-  le_sup_inf := fun _ _ _ => le_of_eq (@inf_sup_left α).symm
+  le_sup_inf _ _ _ := (inf_sup_left _ _ _).le
 
-theorem inf_sup_right : (y ⊔ z) ⊓ x = y ⊓ x ⊔ z ⊓ x := by
-  simp only [inf_sup_left, fun y : α => @inf_comm α _ y x, eq_self_iff_true]
+theorem inf_sup_right (a b c : α) : (a ⊔ b) ⊓ c = a ⊓ c ⊔ b ⊓ c := by
+  simp only [inf_sup_left, inf_comm _ c, eq_self_iff_true]
 #align inf_sup_right inf_sup_right
 
 theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y ⊔ z) : x ≤ y :=
   calc
     x ≤ y ⊓ z ⊔ x := le_sup_right
-    _ = (y ⊔ x) ⊓ (x ⊔ z) := by rw [sup_inf_right, @sup_comm _ _ x]
+    _ = (y ⊔ x) ⊓ (x ⊔ z) := by rw [sup_inf_right, sup_comm x]
     _ ≤ (y ⊔ x) ⊓ (y ⊔ z) := inf_le_inf_left _ h₂
-    _ = y ⊔ x ⊓ z := sup_inf_left.symm
+    _ = y ⊔ x ⊓ z := by rw [← sup_inf_left]
     _ ≤ y ⊔ y ⊓ z := sup_le_sup_left h₁ _
     _ ≤ _ := sup_le (le_refl y) inf_le_left
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
 
-theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a)
-    (h₂ : b ⊔ a = c ⊔ a) :
-    b = c :=
+theorem eq_of_inf_eq_sup_eq {a b c : α} (h₁ : b ⊓ a = c ⊓ a) (h₂ : b ⊔ a = c ⊔ a) : b = c :=
   le_antisymm (le_of_inf_le_sup_le (le_of_eq h₁) (le_of_eq h₂))
     (le_of_inf_le_sup_le (le_of_eq h₁.symm) (le_of_eq h₂.symm))
 #align eq_of_inf_eq_sup_eq eq_of_inf_eq_sup_eq
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -1014,7 +1014,7 @@ namespace Function
 
 variable {ι : Type*} {π : ι → Type*} [DecidableEq ι]
 
--- porting note: Dot notation on `Function.update` broke
+-- Porting note: Dot notation on `Function.update` broke
 theorem update_sup [∀ i, SemilatticeSup (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
     update f i (a ⊔ b) = update f i a ⊔ update f i b :=
   funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
chore(Order/Lattice): Resolve porting notes (#11034)
  • The dsimp issue has been resolved.
  • I knew that the lemmas provable by simp were provable by simp in Lean 3, but the simp nf linter was more lax. Now there's definitely no need to tag them.
  • ematch is not coming back (and was already completely unused for years in Lean 3).
  • Unification has changed in Lean 4, so it's really unsurprising that we need to provide an extra argument to sup_ind. It's not expectable that this will ever change, neither is it necessary.
  • Dot notation on Function.update is still broken. This is the last remaining porting note.
Diff
@@ -91,18 +91,11 @@ def SemilatticeSup.mk' {α : Type*} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b =
   sup := (· ⊔ ·)
   le a b := a ⊔ b = b
   le_refl := sup_idem
-  le_trans a b c hab hbc := by
-    -- Porting note: dsimp doesn't work here?
-    -- This is the same issue as discussed at https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/unfolding.20earlier.20fields
-    show a ⊔ c = c
-    rw [← hbc, ← sup_assoc, hab]
-  le_antisymm a b hab hba := by
-    rwa [← hba, sup_comm]
-  le_sup_left a b := show a ⊔ (a ⊔ b) = a ⊔ b by rw [← sup_assoc, sup_idem]
-  le_sup_right a b := show b ⊔ (a ⊔ b) = a ⊔ b by rw [sup_comm, sup_assoc, sup_idem]
-  sup_le a b c hac hbc := by
-    show (a ⊔ b) ⊔ c = c
-    rwa [sup_assoc, hbc]
+  le_trans a b c hab hbc := by dsimp; rw [← hbc, ← sup_assoc, hab]
+  le_antisymm a b hab hba := by rwa [← hba, sup_comm]
+  le_sup_left a b := by dsimp; rw [← sup_assoc, sup_idem]
+  le_sup_right a b := by dsimp; rw [sup_comm, sup_assoc, sup_idem]
+  sup_le a b c hac hbc := by dsimp; rwa [sup_assoc, hbc]
 #align semilattice_sup.mk' SemilatticeSup.mk'
 
 instance instSupOrderDual (α : Type*) [Inf α] : Sup αᵒᵈ :=
@@ -120,8 +113,6 @@ theorem le_sup_left : a ≤ a ⊔ b :=
   SemilatticeSup.le_sup_left a b
 #align le_sup_left le_sup_left
 
--- Porting note: no ematch attribute
---@[ematch]
 theorem le_sup_left' : a ≤ a ⊔ b :=
   le_sup_left
 #align le_sup_left' le_sup_left'
@@ -131,8 +122,6 @@ theorem le_sup_right : b ≤ a ⊔ b :=
   SemilatticeSup.le_sup_right a b
 #align le_sup_right le_sup_right
 
--- Porting note: no ematch attribute
---@[ematch]
 theorem le_sup_right' : b ≤ a ⊔ b :=
   le_sup_right
 #align le_sup_right' le_sup_right'
@@ -229,7 +218,6 @@ theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
   sup_le_sup h₁ le_rfl
 #align sup_le_sup_right sup_le_sup_right
 
--- Porting note (#10618): was @[simp], but now proved by simp so not needed.
 theorem sup_idem : a ⊔ a = a := by simp
 #align sup_idem sup_idem
 
@@ -250,11 +238,9 @@ theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
   rw [sup_comm, @sup_comm _ _ a, sup_assoc]
 #align sup_left_right_swap sup_left_right_swap
 
--- Porting note (#10618): was @[simp], but now proved by simp so not needed.
 theorem sup_left_idem : a ⊔ (a ⊔ b) = a ⊔ b := by simp
 #align sup_left_idem sup_left_idem
 
--- Porting note (#10618): was @[simp], but now proved by simp so not needed.
 theorem sup_right_idem : a ⊔ b ⊔ b = a ⊔ b := by simp
 #align sup_right_idem sup_right_idem
 
@@ -375,8 +361,6 @@ theorem inf_le_left : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left inf_le_left
 
--- Porting note: no ematch attribute
---@[ematch]
 theorem inf_le_left' : a ⊓ b ≤ a :=
   SemilatticeInf.inf_le_left a b
 #align inf_le_left' inf_le_left'
@@ -386,8 +370,6 @@ theorem inf_le_right : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right inf_le_right
 
--- Porting note: no ematch attribute
---@[ematch]
 theorem inf_le_right' : a ⊓ b ≤ b :=
   SemilatticeInf.inf_le_right a b
 #align inf_le_right' inf_le_right'
@@ -475,9 +457,7 @@ theorem inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c
   inf_le_inf le_rfl h
 #align inf_le_inf_left inf_le_inf_left
 
--- Porting note (#10618): was @[simp]
-theorem inf_idem : a ⊓ a = a :=
-  @sup_idem αᵒᵈ _ _
+theorem inf_idem : a ⊓ a = a := by simp
 #align inf_idem inf_idem
 
 instance : Std.IdempotentOp (α := α) (· ⊓ ·) :=
@@ -501,14 +481,10 @@ theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
   @sup_left_right_swap αᵒᵈ _ _ _ _
 #align inf_left_right_swap inf_left_right_swap
 
--- Porting note (#10618): was @[simp]
-theorem inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b :=
-  @sup_left_idem αᵒᵈ _ a b
+theorem inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b := by simp
 #align inf_left_idem inf_left_idem
 
--- Porting note (#10618): was @[simp]
-theorem inf_right_idem : a ⊓ b ⊓ b = a ⊓ b :=
-  @sup_right_idem αᵒᵈ _ a b
+theorem inf_right_idem : a ⊓ b ⊓ b = a ⊓ b := by simp
 #align inf_right_idem inf_right_idem
 
 theorem inf_left_comm (a b c : α) : a ⊓ (b ⊓ c) = b ⊓ (a ⊓ c) :=
@@ -667,7 +643,6 @@ theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
   inf_le_left.trans le_sup_left
 #align inf_le_sup inf_le_sup
 
--- Porting note (#10618): was @[simp]
 theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff, and_comm]
 #align sup_le_inf sup_le_inf
 
@@ -850,11 +825,10 @@ theorem lt_sup_iff : a < b ⊔ c ↔ a < b ∨ a < c := by
     fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩
 #align lt_sup_iff lt_sup_iff
 
--- Porting note: why does sup_ind need an explicit motive?
 @[simp]
 theorem sup_lt_iff : b ⊔ c < a ↔ b < a ∧ c < a :=
   ⟨fun h => ⟨le_sup_left.trans_lt h, le_sup_right.trans_lt h⟩,
-   fun h => @sup_ind α _ b c (fun x => x < a) h.1 h.2⟩
+   fun h => sup_ind (p := (· < a)) b c h.1 h.2⟩
 #align sup_lt_iff sup_lt_iff
 
 theorem inf_ind (a b : α) {p : α → Prop} : p a → p b → p (a ⊓ b) :=
chore: classify simp can prove porting notes (#10930)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to

  • "simp can prove this"
  • "simp can simplify this`"
  • "was @[simp], now can be proved by simp"
  • "was @[simp], but simp can prove it"
  • "removed simp attribute as the equality can already be obtained by simp"
  • "simp can already prove this"
  • "simp already proves this"
  • "simp can prove these"
Diff
@@ -229,7 +229,7 @@ theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
   sup_le_sup h₁ le_rfl
 #align sup_le_sup_right sup_le_sup_right
 
--- Porting note: was @[simp], but now proved by simp so not needed.
+-- Porting note (#10618): was @[simp], but now proved by simp so not needed.
 theorem sup_idem : a ⊔ a = a := by simp
 #align sup_idem sup_idem
 
@@ -250,11 +250,11 @@ theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
   rw [sup_comm, @sup_comm _ _ a, sup_assoc]
 #align sup_left_right_swap sup_left_right_swap
 
--- Porting note: was @[simp], but now proved by simp so not needed.
+-- Porting note (#10618): was @[simp], but now proved by simp so not needed.
 theorem sup_left_idem : a ⊔ (a ⊔ b) = a ⊔ b := by simp
 #align sup_left_idem sup_left_idem
 
--- Porting note: was @[simp], but now proved by simp so not needed.
+-- Porting note (#10618): was @[simp], but now proved by simp so not needed.
 theorem sup_right_idem : a ⊔ b ⊔ b = a ⊔ b := by simp
 #align sup_right_idem sup_right_idem
 
@@ -475,7 +475,7 @@ theorem inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c
   inf_le_inf le_rfl h
 #align inf_le_inf_left inf_le_inf_left
 
--- Porting note: was @[simp]
+-- Porting note (#10618): was @[simp]
 theorem inf_idem : a ⊓ a = a :=
   @sup_idem αᵒᵈ _ _
 #align inf_idem inf_idem
@@ -501,12 +501,12 @@ theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
   @sup_left_right_swap αᵒᵈ _ _ _ _
 #align inf_left_right_swap inf_left_right_swap
 
--- Porting note: was @[simp]
+-- Porting note (#10618): was @[simp]
 theorem inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b :=
   @sup_left_idem αᵒᵈ _ a b
 #align inf_left_idem inf_left_idem
 
--- Porting note: was @[simp]
+-- Porting note (#10618): was @[simp]
 theorem inf_right_idem : a ⊓ b ⊓ b = a ⊓ b :=
   @sup_right_idem αᵒᵈ _ a b
 #align inf_right_idem inf_right_idem
@@ -667,7 +667,7 @@ theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
   inf_le_left.trans le_sup_left
 #align inf_le_sup inf_le_sup
 
--- Porting note: was @[simp]
+-- Porting note (#10618): was @[simp]
 theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff, and_comm]
 #align sup_le_inf sup_le_inf
 
style(Order): use where __ := x instead of := { x with } (#10588)

The former style encourages one parent per line, which is easier to review and see diffs of. It also allows a handful of := fun a b =>s to be replaced with the less noisy a b :=.

A small number of inferInstanceAs _ withs were removed, as they are automatic in those places anyway.

Diff
@@ -602,8 +602,9 @@ def SemilatticeInf.mk' {α : Type*} [Inf α] (inf_comm : ∀ a b : α, a ⊓ b =
 class Lattice (α : Type u) extends SemilatticeSup α, SemilatticeInf α
 #align lattice Lattice
 
-instance OrderDual.lattice (α) [Lattice α] : Lattice αᵒᵈ :=
-  { OrderDual.semilatticeSup α, OrderDual.semilatticeInf α with }
+instance OrderDual.lattice (α) [Lattice α] : Lattice αᵒᵈ where
+  __ := OrderDual.semilatticeSup α
+  __ := OrderDual.semilatticeInf α
 
 /-- The partial orders from `SemilatticeSup_mk'` and `SemilatticeInf_mk'` agree
 if `sup` and `inf` satisfy the lattice absorption laws `sup_inf_self` (`a ⊔ a ⊓ b = a`)
@@ -796,9 +797,9 @@ end DistribLattice
 /-- Prove distributivity of an existing lattice from the dual distributive law. -/
 @[reducible]
 def DistribLattice.ofInfSupLe [Lattice α] (inf_sup_le : ∀ a b c : α, a ⊓ (b ⊔ c) ≤ a ⊓ b ⊔ a ⊓ c) :
-    DistribLattice α :=
-  { le_sup_inf := (@OrderDual.distribLattice αᵒᵈ {inferInstanceAs (Lattice αᵒᵈ) with
-      le_sup_inf := inf_sup_le}).le_sup_inf, }
+    DistribLattice α where
+  le_sup_inf := (@OrderDual.distribLattice αᵒᵈ {inferInstanceAs (Lattice αᵒᵈ) with
+      le_sup_inf := inf_sup_le}).le_sup_inf
 #align distrib_lattice.of_inf_sup_le DistribLattice.ofInfSupLe
 
 /-!
@@ -807,12 +808,12 @@ def DistribLattice.ofInfSupLe [Lattice α] (inf_sup_le : ∀ a b c : α, a ⊓ (
 
 
 -- see Note [lower instance priority]
-instance (priority := 100) LinearOrder.toLattice {α : Type u} [o : LinearOrder α] : Lattice α :=
-  { o with
-    sup := max,
-    le_sup_left := le_max_left, le_sup_right := le_max_right, sup_le := fun _ _ _ => max_le,
-    inf := min,
-    inf_le_left := min_le_left, inf_le_right := min_le_right, le_inf := fun _ _ _ => le_min }
+instance (priority := 100) LinearOrder.toLattice {α : Type u} [o : LinearOrder α] : Lattice α where
+  __ := o
+  sup := max
+  le_sup_left := le_max_left; le_sup_right := le_max_right; sup_le _ _ _ := max_le
+  inf := min
+  inf_le_left := min_le_left; inf_le_right := min_le_right; le_inf _ _ _ := le_min
 
 section LinearOrder
 
@@ -911,21 +912,20 @@ See note [reducible non-instances]. -/
 @[reducible]
 def Lattice.toLinearOrder (α : Type u) [Lattice α] [DecidableEq α]
     [DecidableRel ((· ≤ ·) : α → α → Prop)]
-    [DecidableRel ((· < ·) : α → α → Prop)] [IsTotal α (· ≤ ·)] : LinearOrder α :=
-  { ‹Lattice α› with
-    decidableLE := ‹_›,
-    decidableEq := ‹_›,
-    decidableLT := ‹_›,
-    le_total := total_of (· ≤ ·),
-    max := (· ⊔ ·),
-    max_def := by exact congr_fun₂ sup_eq_maxDefault,
-    min := (· ⊓ ·),
-    min_def := by exact congr_fun₂ inf_eq_minDefault }
+    [DecidableRel ((· < ·) : α → α → Prop)] [IsTotal α (· ≤ ·)] : LinearOrder α where
+  __ := ‹Lattice α›
+  decidableLE := ‹_›
+  decidableEq := ‹_›
+  decidableLT := ‹_›
+  le_total := total_of (· ≤ ·)
+  max := (· ⊔ ·)
+  max_def := by exact congr_fun₂ sup_eq_maxDefault
+  min := (· ⊓ ·)
+  min_def := by exact congr_fun₂ inf_eq_minDefault
 #align lattice.to_linear_order Lattice.toLinearOrder
 
 -- see Note [lower instance priority]
-instance (priority := 100) {α : Type u} [LinearOrder α] :
-  DistribLattice α where
+instance (priority := 100) {α : Type u} [LinearOrder α] : DistribLattice α where
   __ := inferInstanceAs (Lattice α)
   le_sup_inf _ b c :=
     match le_total b c with
@@ -1382,12 +1382,11 @@ See note [reducible non-instances]. -/
 @[reducible]
 protected def semilatticeSup [SemilatticeSup α] {P : α → Prop}
     (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y)) :
-    SemilatticeSup { x : α // P x } :=
-  { inferInstanceAs (PartialOrder (Subtype P)) with
-    sup := fun x y => ⟨x.1 ⊔ y.1, Psup x.2 y.2⟩,
-    le_sup_left := fun _ _ => le_sup_left,
-    le_sup_right := fun _ _ => le_sup_right,
-    sup_le := fun _ _ _ h1 h2 => sup_le h1 h2 }
+    SemilatticeSup { x : α // P x } where
+  sup x y := ⟨x.1 ⊔ y.1, Psup x.2 y.2⟩
+  le_sup_left _ _ := le_sup_left
+  le_sup_right _ _ := le_sup_right
+  sup_le _ _ _ h1 h2 := sup_le h1 h2
 #align subtype.semilattice_sup Subtype.semilatticeSup
 
 /-- A subtype forms a `⊓`-semilattice if `⊓` preserves the property.
@@ -1395,20 +1394,20 @@ See note [reducible non-instances]. -/
 @[reducible]
 protected def semilatticeInf [SemilatticeInf α] {P : α → Prop}
     (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y)) :
-    SemilatticeInf { x : α // P x } :=
-  { inferInstanceAs (PartialOrder (Subtype P)) with
-    inf := fun x y => ⟨x.1 ⊓ y.1, Pinf x.2 y.2⟩,
-    inf_le_left := fun _ _ => inf_le_left,
-    inf_le_right := fun _ _ => inf_le_right,
-    le_inf := fun _ _ _ h1 h2 => le_inf h1 h2 }
+    SemilatticeInf { x : α // P x } where
+  inf x y := ⟨x.1 ⊓ y.1, Pinf x.2 y.2⟩
+  inf_le_left _ _ := inf_le_left
+  inf_le_right _ _ := inf_le_right
+  le_inf _ _ _ h1 h2 := le_inf h1 h2
 #align subtype.semilattice_inf Subtype.semilatticeInf
 
 /-- A subtype forms a lattice if `⊔` and `⊓` preserve the property.
 See note [reducible non-instances]. -/
 @[reducible]
 protected def lattice [Lattice α] {P : α → Prop} (Psup : ∀ ⦃x y⦄, P x → P y → P (x ⊔ y))
-    (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y)) : Lattice { x : α // P x } :=
-  { Subtype.semilatticeInf Pinf, Subtype.semilatticeSup Psup with }
+    (Pinf : ∀ ⦃x y⦄, P x → P y → P (x ⊓ y)) : Lattice { x : α // P x } where
+  __ := Subtype.semilatticeInf Pinf
+  __ := Subtype.semilatticeSup Psup
 #align subtype.lattice Subtype.lattice
 
 @[simp, norm_cast]
@@ -1450,21 +1449,22 @@ preserves `⊔` to a `SemilatticeSup`.
 See note [reducible non-instances]. -/
 @[reducible]
 protected def Function.Injective.semilatticeSup [Sup α] [SemilatticeSup β] (f : α → β)
-    (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) : SemilatticeSup α :=
-  { PartialOrder.lift f hf_inj with
-    sup := Sup.sup,
-    le_sup_left := fun a b => by
-      change f a ≤ f (a ⊔ b)
-      rw [map_sup]
-      exact le_sup_left,
-    le_sup_right := fun a b => by
-      change f b ≤ f (a ⊔ b)
-      rw [map_sup]
-      exact le_sup_right,
-    sup_le := fun a b c ha hb => by
-      change f (a ⊔ b) ≤ f c
-      rw [map_sup]
-      exact sup_le ha hb }
+    (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) :
+    SemilatticeSup α where
+  __ := PartialOrder.lift f hf_inj
+  sup := Sup.sup
+  le_sup_left a b := by
+    change f a ≤ f (a ⊔ b)
+    rw [map_sup]
+    exact le_sup_left
+  le_sup_right a b := by
+    change f b ≤ f (a ⊔ b)
+    rw [map_sup]
+    exact le_sup_right
+  sup_le a b c ha hb := by
+    change f (a ⊔ b) ≤ f c
+    rw [map_sup]
+    exact sup_le ha hb
 #align function.injective.semilattice_sup Function.Injective.semilatticeSup
 
 /-- A type endowed with `⊓` is a `SemilatticeInf`, if it admits an injective map that
@@ -1472,21 +1472,22 @@ preserves `⊓` to a `SemilatticeInf`.
 See note [reducible non-instances]. -/
 @[reducible]
 protected def Function.Injective.semilatticeInf [Inf α] [SemilatticeInf β] (f : α → β)
-    (hf_inj : Function.Injective f) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : SemilatticeInf α :=
-  { PartialOrder.lift f hf_inj with
-    inf := Inf.inf,
-    inf_le_left := fun a b => by
-      change f (a ⊓ b) ≤ f a
-      rw [map_inf]
-      exact inf_le_left,
-    inf_le_right := fun a b => by
-      change f (a ⊓ b) ≤ f b
-      rw [map_inf]
-      exact inf_le_right,
-    le_inf := fun a b c ha hb => by
-      change f a ≤ f (b ⊓ c)
-      rw [map_inf]
-      exact le_inf ha hb }
+    (hf_inj : Function.Injective f) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) :
+    SemilatticeInf α where
+  __ := PartialOrder.lift f hf_inj
+  inf := Inf.inf
+  inf_le_left a b := by
+    change f (a ⊓ b) ≤ f a
+    rw [map_inf]
+    exact inf_le_left
+  inf_le_right a b := by
+    change f (a ⊓ b) ≤ f b
+    rw [map_inf]
+    exact inf_le_right
+  le_inf a b c ha hb := by
+    change f a ≤ f (b ⊓ c)
+    rw [map_inf]
+    exact le_inf ha hb
 #align function.injective.semilattice_inf Function.Injective.semilatticeInf
 
 /-- A type endowed with `⊔` and `⊓` is a `Lattice`, if it admits an injective map that
@@ -1495,8 +1496,10 @@ See note [reducible non-instances]. -/
 @[reducible]
 protected def Function.Injective.lattice [Sup α] [Inf α] [Lattice β] (f : α → β)
     (hf_inj : Function.Injective f)
-    (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : Lattice α :=
-  { hf_inj.semilatticeSup f map_sup, hf_inj.semilatticeInf f map_inf with }
+    (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) :
+    Lattice α where
+  __ := hf_inj.semilatticeSup f map_sup
+  __ := hf_inj.semilatticeInf f map_inf
 #align function.injective.lattice Function.Injective.lattice
 
 /-- A type endowed with `⊔` and `⊓` is a `DistribLattice`, if it admits an injective map that
@@ -1506,12 +1509,12 @@ See note [reducible non-instances]. -/
 protected def Function.Injective.distribLattice [Sup α] [Inf α] [DistribLattice β] (f : α → β)
     (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) :
-    DistribLattice α :=
-  { hf_inj.lattice f map_sup map_inf with
-    le_sup_inf := fun a b c => by
-      change f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c)
-      rw [map_inf, map_sup, map_sup, map_sup, map_inf]
-      exact le_sup_inf }
+    DistribLattice α where
+  __ := hf_inj.lattice f map_sup map_inf
+  le_sup_inf a b c := by
+    change f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c)
+    rw [map_inf, map_sup, map_sup, map_sup, map_inf]
+    exact le_sup_inf
 #align function.injective.distrib_lattice Function.Injective.distribLattice
 
 end lift
chore(Tactic/GCongr): move @[gcongr] tags around (#9393)
  • Add import Mathlib.Tactic.GCongr.Core to Algebra/Order/Ring/Lemmas.
  • Move most @[gcongr] tags next to the lemmas.

See Zulip thread

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -52,6 +52,9 @@ semilattice, lattice
 
 -/
 
+/-- See if the term is `a ⊂ b` and the goal is `a ⊆ b`. -/
+@[gcongr_forward] def exactSubsetOfSSubset : Mathlib.Tactic.GCongr.ForwardExt where
+  eval h goal := do goal.assignIfDefeq (← Lean.Meta.mkAppM ``subset_of_ssubset #[h])
 
 universe u v w
 
@@ -63,7 +66,6 @@ variable {α : Type u} {β : Type v}
 ### Join-semilattices
 -/
 
-
 -- TODO: automatic construction of dual definitions / theorems
 /-- A `SemilatticeSup` is a join-semilattice, that is, a partial order
   with a join (a.k.a. lub / least upper bound, sup / supremum) operation
chore: move to v4.6.0-rc1, merging adaptations from bump/v4.6.0 (#10176)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Joachim Breitner <mail@joachim-breitner.de>

Diff
@@ -231,21 +231,18 @@ theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
 theorem sup_idem : a ⊔ a = a := by simp
 #align sup_idem sup_idem
 
-instance : IsIdempotent α (· ⊔ ·) :=
-  ⟨@sup_idem _ _⟩
+instance : Std.IdempotentOp (α := α) (· ⊔ ·) := ⟨@sup_idem _ _⟩
 
 theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm <;> simp
 #align sup_comm sup_comm
 
-instance : IsCommutative α (· ⊔ ·) :=
-  ⟨@sup_comm _ _⟩
+instance : Std.Commutative (α := α) (· ⊔ ·) := ⟨@sup_comm _ _⟩
 
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
   eq_of_forall_ge_iff fun x => by simp only [sup_le_iff]; rw [and_assoc]
 #align sup_assoc sup_assoc
 
-instance : IsAssociative α (· ⊔ ·) :=
-  ⟨@sup_assoc _ _⟩
+instance : Std.Associative (α := α)  (· ⊔ ·) := ⟨@sup_assoc _ _⟩
 
 theorem sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by
   rw [sup_comm, @sup_comm _ _ a, sup_assoc]
@@ -481,21 +478,21 @@ theorem inf_idem : a ⊓ a = a :=
   @sup_idem αᵒᵈ _ _
 #align inf_idem inf_idem
 
-instance : IsIdempotent α (· ⊓ ·) :=
+instance : Std.IdempotentOp (α := α) (· ⊓ ·) :=
   ⟨@inf_idem _ _⟩
 
 theorem inf_comm : a ⊓ b = b ⊓ a :=
   @sup_comm αᵒᵈ _ _ _
 #align inf_comm inf_comm
 
-instance : IsCommutative α (· ⊓ ·) :=
+instance : Std.Commutative (α := α) (· ⊓ ·) :=
   ⟨@inf_comm _ _⟩
 
 theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) :=
   @sup_assoc αᵒᵈ _ a b c
 #align inf_assoc inf_assoc
 
-instance : IsAssociative α (· ⊓ ·) :=
+instance : Std.Associative (α := α) (· ⊓ ·) :=
   ⟨@inf_assoc _ _⟩
 
 theorem inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a :=
Add Lattice ℤ instance for computability (#9946)

The file Data.Int.ConditionallyCompleteOrder defines a noncomputable instance of ConditionallyCompleteLinearOrder on .

This noncomputable instance is picked up by the typeclass search when looking for a Lattice instance on , making, for instance, abs noncomputable on .

This PR restores the computability of Lattice ℤ.

Zulip discussion

Diff
@@ -934,6 +934,7 @@ instance (priority := 100) {α : Type u} [LinearOrder α] :
     | Or.inr h => inf_le_of_right_le <| sup_le_sup_left (le_inf h (le_refl c)) _
 
 instance : DistribLattice ℕ := inferInstance
+instance : Lattice ℤ := inferInstance
 
 /-! ### Dual order -/
 
chore(*): replace $ with <| (#9319)

See Zulip thread for the discussion.

Diff
@@ -163,12 +163,12 @@ theorem sup_le_iff : a ⊔ b ≤ c ↔ a ≤ c ∧ b ≤ c :=
 
 @[simp]
 theorem sup_eq_left : a ⊔ b = a ↔ b ≤ a :=
-  le_antisymm_iff.trans $ by simp [le_rfl]
+  le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_left sup_eq_left
 
 @[simp]
 theorem sup_eq_right : a ⊔ b = b ↔ a ≤ b :=
-  le_antisymm_iff.trans $ by simp [le_rfl]
+  le_antisymm_iff.trans <| by simp [le_rfl]
 #align sup_eq_right sup_eq_right
 
 @[simp]
@@ -192,12 +192,12 @@ attribute [simp] sup_of_le_left sup_of_le_right
 
 @[simp]
 theorem left_lt_sup : a < a ⊔ b ↔ ¬b ≤ a :=
-  le_sup_left.lt_iff_ne.trans $ not_congr left_eq_sup
+  le_sup_left.lt_iff_ne.trans <| not_congr left_eq_sup
 #align left_lt_sup left_lt_sup
 
 @[simp]
 theorem right_lt_sup : b < a ⊔ b ↔ ¬a ≤ b :=
-  le_sup_right.lt_iff_ne.trans $ not_congr right_eq_sup
+  le_sup_right.lt_iff_ne.trans <| not_congr right_eq_sup
 #align right_lt_sup right_lt_sup
 
 theorem left_or_right_lt_sup (h : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
@@ -280,11 +280,11 @@ theorem sup_sup_distrib_right (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ (b ⊔
 #align sup_sup_distrib_right sup_sup_distrib_right
 
 theorem sup_congr_left (hb : b ≤ a ⊔ c) (hc : c ≤ a ⊔ b) : a ⊔ b = a ⊔ c :=
-  (sup_le le_sup_left hb).antisymm $ sup_le le_sup_left hc
+  (sup_le le_sup_left hb).antisymm <| sup_le le_sup_left hc
 #align sup_congr_left sup_congr_left
 
 theorem sup_congr_right (ha : a ≤ b ⊔ c) (hb : b ≤ a ⊔ c) : a ⊔ c = b ⊔ c :=
-  (sup_le ha le_sup_right).antisymm $ sup_le hb le_sup_right
+  (sup_le ha le_sup_right).antisymm <| sup_le hb le_sup_right
 #align sup_congr_right sup_congr_right
 
 theorem sup_eq_sup_iff_left : a ⊔ b = a ⊔ c ↔ b ≤ a ⊔ c ∧ c ≤ a ⊔ b :=
@@ -420,12 +420,12 @@ theorem le_inf_iff : a ≤ b ⊓ c ↔ a ≤ b ∧ a ≤ c :=
 
 @[simp]
 theorem inf_eq_left : a ⊓ b = a ↔ a ≤ b :=
-  le_antisymm_iff.trans $ by simp [le_rfl]
+  le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_left inf_eq_left
 
 @[simp]
 theorem inf_eq_right : a ⊓ b = b ↔ b ≤ a :=
-  le_antisymm_iff.trans $ by simp [le_rfl]
+  le_antisymm_iff.trans <| by simp [le_rfl]
 #align inf_eq_right inf_eq_right
 
 @[simp]
@@ -894,7 +894,7 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
   ext x y
   unfold maxDefault
   split_ifs with h'
-  exacts [sup_of_le_right h', sup_of_le_left $ (total_of (· ≤ ·) x y).resolve_left h']
+  exacts [sup_of_le_right h', sup_of_le_left <| (total_of (· ≤ ·) x y).resolve_left h']
 #align sup_eq_max_default sup_eq_maxDefault
 
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
@@ -903,7 +903,7 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   ext x y
   unfold minDefault
   split_ifs with h'
-  exacts [inf_of_le_left h', inf_of_le_right $ (total_of (· ≤ ·) x y).resolve_left h']
+  exacts [inf_of_le_left h', inf_of_le_right <| (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
 
 /-- A lattice with total order is a linear order.
@@ -930,8 +930,8 @@ instance (priority := 100) {α : Type u} [LinearOrder α] :
   __ := inferInstanceAs (Lattice α)
   le_sup_inf _ b c :=
     match le_total b c with
-    | Or.inl h => inf_le_of_left_le $ sup_le_sup_left (le_inf (le_refl b) h) _
-    | Or.inr h => inf_le_of_right_le $ sup_le_sup_left (le_inf h (le_refl c)) _
+    | Or.inl h => inf_le_of_left_le <| sup_le_sup_left (le_inf (le_refl b) h) _
+    | Or.inr h => inf_le_of_right_le <| sup_le_sup_left (le_inf h (le_refl c)) _
 
 instance : DistribLattice ℕ := inferInstance
 
@@ -1098,7 +1098,7 @@ theorem map_inf_le [SemilatticeInf α] [SemilatticeInf β] {f : α → β} (h :
 
 theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β] {f : α → β}
     (h : ∀ x y, f (x ⊓ y) = f x ⊓ f y) : Monotone f :=
-  fun x y hxy => inf_eq_left.1 $ by rw [← h, inf_eq_left.2 hxy]
+  fun x y hxy => inf_eq_left.1 <| by rw [← h, inf_eq_left.2 hxy]
 #align monotone.of_map_inf Monotone.of_map_inf
 
 theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
chore(*): drop $/<| before fun (#9361)

Subset of #9319

Diff
@@ -241,7 +241,7 @@ instance : IsCommutative α (· ⊔ ·) :=
   ⟨@sup_comm _ _⟩
 
 theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) :=
-  eq_of_forall_ge_iff $ fun x => by simp only [sup_le_iff]; rw [and_assoc]
+  eq_of_forall_ge_iff fun x => by simp only [sup_le_iff]; rw [and_assoc]
 #align sup_assoc sup_assoc
 
 instance : IsAssociative α (· ⊔ ·) :=
@@ -312,7 +312,7 @@ theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
     (H : ∀ x y : α, (haveI := A; x ≤ y) ↔ x ≤ y)
     (x y : α) :
     (haveI := A; x ⊔ y) = x ⊔ y :=
-  eq_of_forall_ge_iff $ fun c => by simp only [sup_le_iff]; rw [← H, @sup_le_iff α A, H, H]
+  eq_of_forall_ge_iff fun c => by simp only [sup_le_iff]; rw [← H, @sup_le_iff α A, H, H]
 #align semilattice_sup.ext_sup SemilatticeSup.ext_sup
 
 theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
@@ -364,7 +364,7 @@ instance OrderDual.semilatticeInf (α) [SemilatticeSup α] : SemilatticeInf α
 
 theorem SemilatticeSup.dual_dual (α : Type*) [H : SemilatticeSup α] :
     OrderDual.semilatticeSup αᵒᵈ = H :=
-  SemilatticeSup.ext $ fun _ _ => Iff.rfl
+  SemilatticeSup.ext fun _ _ => Iff.rfl
 #align semilattice_sup.dual_dual SemilatticeSup.dual_dual
 
 section SemilatticeInf
@@ -556,7 +556,7 @@ theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
     (H : ∀ x y : α, (haveI := A; x ≤ y) ↔ x ≤ y)
     (x y : α) :
     (haveI := A; x ⊓ y) = x ⊓ y :=
-  eq_of_forall_le_iff $ fun c => by simp only [le_inf_iff]; rw [← H, @le_inf_iff α A, H, H]
+  eq_of_forall_le_iff fun c => by simp only [le_inf_iff]; rw [← H, @le_inf_iff α A, H, H]
 #align semilattice_inf.ext_inf SemilatticeInf.ext_inf
 
 theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
@@ -571,7 +571,7 @@ theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
 
 theorem SemilatticeInf.dual_dual (α : Type*) [H : SemilatticeInf α] :
     OrderDual.semilatticeInf αᵒᵈ = H :=
-  SemilatticeInf.ext $ fun _ _ => Iff.rfl
+  SemilatticeInf.ext fun _ _ => Iff.rfl
 #align semilattice_inf.dual_dual SemilatticeInf.dual_dual
 
 theorem inf_le_ite (s s' : α) (P : Prop) [Decidable P] : s ⊓ s' ≤ ite P s s' :=
@@ -617,7 +617,7 @@ theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder
     (sup_inf_self : ∀ a b : α, a ⊔ a ⊓ b = a) (inf_sup_self : ∀ a b : α, a ⊓ (a ⊔ b) = a) :
     @SemilatticeSup.toPartialOrder _ (SemilatticeSup.mk' sup_comm sup_assoc sup_idem) =
       @SemilatticeInf.toPartialOrder _ (SemilatticeInf.mk' inf_comm inf_assoc inf_idem) :=
-  PartialOrder.ext $ fun a b =>
+  PartialOrder.ext fun a b =>
     show a ⊔ b = b ↔ b ⊓ a = a from
       ⟨fun h => by rw [← h, inf_comm, inf_sup_self], fun h => by rw [← h, sup_comm, sup_inf_self]⟩
 #align semilattice_sup_mk'_partial_order_eq_semilattice_inf_mk'_partial_order semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder
chore: space after (#8178)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -671,7 +671,7 @@ theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
 theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff, and_comm]
 #align sup_le_inf sup_le_inf
 
-@[simp] lemma inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [←inf_le_sup.ge_iff_eq, sup_le_inf]
+@[simp] lemma inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [← inf_le_sup.ge_iff_eq, sup_le_inf]
 #align inf_eq_sup inf_eq_sup
 @[simp] lemma sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b := eq_comm.trans inf_eq_sup
 #align sup_eq_inf sup_eq_inf
chore: Remove le_antisymm' (#8760)

This was a duplicate of le_antisymm for use in e-match, but e-matching never was ported.

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -57,20 +57,7 @@ universe u v w
 
 variable {α : Type u} {β : Type v}
 
--- TODO: move this eventually, if we decide to use them
--- Porting note: no ematch attribute
---attribute [ematch] le_trans lt_of_le_of_lt lt_of_lt_of_le lt_trans
-
-section
-
--- TODO: this seems crazy, but it also seems to work reasonably well
--- Porting note: no ematch attribute
---@[ematch]
-theorem le_antisymm' [PartialOrder α] : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
-  @le_antisymm _ _
-#align le_antisymm' le_antisymm'
-
-end
+#align le_antisymm' le_antisymm
 
 /-!
 ### Join-semilattices
chore(Order/BooleanAlgebra): reduce risk of instance diamonds (#8099)

We need sup and max to be defeq, and max is defined in Std. To achieve this, we define one in terms of the other.

Until #8105 was merged (which fixed up leanprover/std4#183), they were not defeq:

example :
  (GeneralizedCoheytingAlgebra.toLattice : Lattice Bool).sup =
    DistribLattice.toLattice.sup :=
  rfl -- failed

This instance in this PR should have been written such that it couldn't silently cause a diamond in the first place, by reusing existing data rather than creating new data.

Diff
@@ -1550,5 +1550,5 @@ instance [LinearOrder α] : LinearOrder (ULift.{v} α) :=
 end ULift
 
 --To avoid noncomputability poisoning from `Bool.completeBooleanAlgebra`
-instance : DistribLattice Bool :=
+instance Bool.instDistribLattice : DistribLattice Bool :=
   inferInstance
feat: Extending convex functions (#6339)

Forward-ports https://github.com/leanprover-community/mathlib/pull/18797

The changes to Mathlib.Data.Set.Intervals.Basic were independently added to mathlib4 in Mathlib.Data.Set.Intervals.Image, so the #aligns have been added there instead of the original file.

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -9,7 +9,7 @@ import Mathlib.Order.Monotone.Basic
 import Mathlib.Order.ULift
 import Mathlib.Tactic.GCongr.Core
 
-#align_import order.lattice from "leanprover-community/mathlib"@"e4bc74cbaf429d706cb9140902f7ca6c431e75a4"
+#align_import order.lattice from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"
 
 /-!
 # (Semi-)lattices
@@ -1161,6 +1161,16 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
   hf.inf hg
 #align monotone_on.min MonotoneOn.min
 
+theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊓ f y) : MonotoneOn f s := fun x hx y hy hxy =>
+  inf_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
+#align monotone_on.of_map_inf MonotoneOn.of_map_inf
+
+theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊔ f y) : MonotoneOn f s :=
+  (@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
+#align monotone_on.of_map_sup MonotoneOn.of_map_sup
+
 variable [LinearOrder α]
 
 theorem map_sup [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
@@ -1169,10 +1179,12 @@ theorem map_sup [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y
     first
     | assumption
     | simp only [*, sup_of_le_left, sup_of_le_right]
+#align monotone_on.map_sup MonotoneOn.map_sup
 
 theorem map_inf [SemilatticeInf β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
     f (x ⊓ y) = f x ⊓ f y :=
   hf.dual.map_sup hx hy
+#align monotone_on.map_inf MonotoneOn.map_inf
 
 end MonotoneOn
 
@@ -1255,6 +1267,16 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
   hf.inf hg
 #align antitone_on.min AntitoneOn.min
 
+theorem of_map_inf [SemilatticeInf α] [SemilatticeSup β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊔ f y) : AntitoneOn f s := fun x hx y hy hxy =>
+  sup_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
+#align antitone_on.of_map_inf AntitoneOn.of_map_inf
+
+theorem of_map_sup [SemilatticeSup α] [SemilatticeInf β]
+    (h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊓ f y) : AntitoneOn f s :=
+  (@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
+#align antitone_on.of_map_sup AntitoneOn.of_map_sup
+
 variable [LinearOrder α]
 
 theorem map_sup [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
chore: exactly 4 spaces in theorems (#7328)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -798,7 +798,7 @@ theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y 
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
 
 theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a)
-  (h₂ : b ⊔ a = c ⊔ a) :
+    (h₂ : b ⊔ a = c ⊔ a) :
     b = c :=
   le_antisymm (le_of_inf_le_sup_le (le_of_eq h₁) (le_of_eq h₂))
     (le_of_inf_le_sup_le (le_of_eq h₁.symm) (le_of_eq h₂.symm))
feat(Data/Set/Intervals/Image): Complete API (#7146)

Dualise all existing lemmas and prove their strictly monotone versions.

The lemmas are grouped as

  • mapsTo, image_subset
    • On, not On
      • Monotone, Antitone, StrictMono, StrictAnti
        • Ixi, Iix, Ixx

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -1135,6 +1135,7 @@ theorem map_inf [SemilatticeInf β] {f : α → β} (hf : Monotone f) (x y : α)
 end Monotone
 
 namespace MonotoneOn
+variable {f : α → β} {s : Set α} {x y : α}
 
 /-- Pointwise supremum of two monotone functions is a monotone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
@@ -1160,6 +1161,19 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
   hf.inf hg
 #align monotone_on.min MonotoneOn.min
 
+variable [LinearOrder α]
+
+theorem map_sup [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊔ y) = f x ⊔ f y := by
+  cases le_total x y <;> have := hf ?_ ?_ ‹_› <;>
+    first
+    | assumption
+    | simp only [*, sup_of_le_left, sup_of_le_right]
+
+theorem map_inf [SemilatticeInf β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊓ y) = f x ⊓ f y :=
+  hf.dual.map_sup hx hy
+
 end MonotoneOn
 
 namespace Antitone
@@ -1215,6 +1229,7 @@ theorem map_inf [SemilatticeSup β] {f : α → β} (hf : Antitone f) (x y : α)
 end Antitone
 
 namespace AntitoneOn
+variable {f : α → β} {s : Set α} {x y : α}
 
 /-- Pointwise supremum of two antitone functions is an antitone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
@@ -1240,6 +1255,21 @@ protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set
   hf.inf hg
 #align antitone_on.min AntitoneOn.min
 
+variable [LinearOrder α]
+
+theorem map_sup [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊔ y) = f x ⊓ f y := by
+  cases le_total x y <;> have := hf ?_ ?_ ‹_› <;>
+    first
+    | assumption
+    | simp only [*, sup_of_le_left, sup_of_le_right, inf_of_le_left, inf_of_le_right]
+#align antitone_on.map_sup AntitoneOn.map_sup
+
+theorem map_inf [SemilatticeSup β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
+    f (x ⊓ y) = f x ⊔ f y :=
+  hf.dual.map_sup hx hy
+#align antitone_on.map_inf AntitoneOn.map_inf
+
 end AntitoneOn
 
 /-!
chore: only four spaces for subsequent lines (#7286)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -376,7 +376,7 @@ instance OrderDual.semilatticeInf (α) [SemilatticeSup α] : SemilatticeInf α
   le_inf := fun _ _ _ hca hcb => @sup_le α _ _ _ _ hca hcb
 
 theorem SemilatticeSup.dual_dual (α : Type*) [H : SemilatticeSup α] :
-  OrderDual.semilatticeSup αᵒᵈ = H :=
+    OrderDual.semilatticeSup αᵒᵈ = H :=
   SemilatticeSup.ext $ fun _ _ => Iff.rfl
 #align semilattice_sup.dual_dual SemilatticeSup.dual_dual
 
@@ -583,7 +583,7 @@ theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
 #align semilattice_inf.ext SemilatticeInf.ext
 
 theorem SemilatticeInf.dual_dual (α : Type*) [H : SemilatticeInf α] :
-  OrderDual.semilatticeInf αᵒᵈ = H :=
+    OrderDual.semilatticeInf αᵒᵈ = H :=
   SemilatticeInf.ext $ fun _ _ => Iff.rfl
 #align semilattice_inf.dual_dual SemilatticeInf.dual_dual
 
chore: cleanup in Mathlib.Init (#6977)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
 import Mathlib.Data.Bool.Basic
-import Mathlib.Init.Algebra.Order
+import Mathlib.Init.Order.Defs
 import Mathlib.Order.Monotone.Basic
 import Mathlib.Order.ULift
 import Mathlib.Tactic.GCongr.Core
feat: patch for new alias command (#6172)
Diff
@@ -194,10 +194,10 @@ theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b :=
   eq_comm.trans sup_eq_right
 #align right_eq_sup right_eq_sup
 
-alias sup_eq_left ↔ _ sup_of_le_left
+alias ⟨_, sup_of_le_left⟩ := sup_eq_left
 #align sup_of_le_left sup_of_le_left
 
-alias sup_eq_right ↔ le_of_sup_eq sup_of_le_right
+alias ⟨le_of_sup_eq, sup_of_le_right⟩ := sup_eq_right
 #align sup_of_le_right sup_of_le_right
 #align le_of_sup_eq le_of_sup_eq
 
@@ -451,11 +451,11 @@ theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a :=
   eq_comm.trans inf_eq_right
 #align right_eq_inf right_eq_inf
 
-alias inf_eq_left ↔ le_of_inf_eq inf_of_le_left
+alias ⟨le_of_inf_eq, inf_of_le_left⟩ := inf_eq_left
 #align inf_of_le_left inf_of_le_left
 #align le_of_inf_eq le_of_inf_eq
 
-alias inf_eq_right ↔ _ inf_of_le_right
+alias ⟨_, inf_of_le_right⟩ := inf_eq_right
 #align inf_of_le_right inf_of_le_right
 
 attribute [simp] inf_of_le_left inf_of_le_right
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -96,7 +96,7 @@ join-semilattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`.
 -/
-def SemilatticeSup.mk' {α : Type _} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
+def SemilatticeSup.mk' {α : Type*} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
     (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (sup_idem : ∀ a : α, a ⊔ a = a) :
     SemilatticeSup α where
   sup := (· ⊔ ·)
@@ -116,10 +116,10 @@ def SemilatticeSup.mk' {α : Type _} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b
     rwa [sup_assoc, hbc]
 #align semilattice_sup.mk' SemilatticeSup.mk'
 
-instance instSupOrderDual (α : Type _) [Inf α] : Sup αᵒᵈ :=
+instance instSupOrderDual (α : Type*) [Inf α] : Sup αᵒᵈ :=
   ⟨((· ⊓ ·) : α → α → α)⟩
 
-instance instInfOrderDual (α : Type _) [Sup α] : Inf αᵒᵈ :=
+instance instInfOrderDual (α : Type*) [Sup α] : Inf αᵒᵈ :=
   ⟨((· ⊔ ·) : α → α → α)⟩
 
 section SemilatticeSup
@@ -313,7 +313,7 @@ theorem Ne.lt_sup_or_lt_sup (hab : a ≠ b) : a < a ⊔ b ∨ b < a ⊔ b :=
 #align ne.lt_sup_or_lt_sup Ne.lt_sup_or_lt_sup
 
 /-- If `f` is monotone, `g` is antitone, and `f ≤ g`, then for all `a`, `b` we have `f a ≤ g b`. -/
-theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α → β} (hf : Monotone f)
+theorem Monotone.forall_le_of_antitone {β : Type*} [Preorder β] {f g : α → β} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) (m n : α) : f m ≤ g n :=
   calc
     f m ≤ f (m ⊔ n) := hf le_sup_left
@@ -375,7 +375,7 @@ instance OrderDual.semilatticeInf (α) [SemilatticeSup α] : SemilatticeInf α
   inf_le_right := @le_sup_right α _
   le_inf := fun _ _ _ hca hcb => @sup_le α _ _ _ _ hca hcb
 
-theorem SemilatticeSup.dual_dual (α : Type _) [H : SemilatticeSup α] :
+theorem SemilatticeSup.dual_dual (α : Type*) [H : SemilatticeSup α] :
   OrderDual.semilatticeSup αᵒᵈ = H :=
   SemilatticeSup.ext $ fun _ _ => Iff.rfl
 #align semilattice_sup.dual_dual SemilatticeSup.dual_dual
@@ -582,7 +582,7 @@ theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
   congr
 #align semilattice_inf.ext SemilatticeInf.ext
 
-theorem SemilatticeInf.dual_dual (α : Type _) [H : SemilatticeInf α] :
+theorem SemilatticeInf.dual_dual (α : Type*) [H : SemilatticeInf α] :
   OrderDual.semilatticeInf αᵒᵈ = H :=
   SemilatticeInf.ext $ fun _ _ => Iff.rfl
 #align semilattice_inf.dual_dual SemilatticeInf.dual_dual
@@ -599,7 +599,7 @@ meet-semilattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `b ⊓ a = a`; cf. `inf_eq_right`.
 -/
-def SemilatticeInf.mk' {α : Type _} [Inf α] (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
+def SemilatticeInf.mk' {α : Type*} [Inf α] (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ a : α, a ⊓ a = a) :
     SemilatticeInf α := by
   haveI : SemilatticeSup αᵒᵈ := SemilatticeSup.mk' inf_comm inf_assoc inf_idem
@@ -623,7 +623,7 @@ instance OrderDual.lattice (α) [Lattice α] : Lattice αᵒᵈ :=
 if `sup` and `inf` satisfy the lattice absorption laws `sup_inf_self` (`a ⊔ a ⊓ b = a`)
 and `inf_sup_self` (`a ⊓ (a ⊔ b) = a`). -/
 theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder
-    {α : Type _} [Sup α] [Inf α]
+    {α : Type*} [Sup α] [Inf α]
     (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a) (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
     (sup_idem : ∀ a : α, a ⊔ a = a) (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ a : α, a ⊓ a = a)
@@ -640,7 +640,7 @@ laws relating the two operations has the structure of a lattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`.
 -/
-def Lattice.mk' {α : Type _} [Sup α] [Inf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
+def Lattice.mk' {α : Type*} [Sup α] [Inf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
     (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (sup_inf_self : ∀ a b : α, a ⊔ a ⊓ b = a)
     (inf_sup_self : ∀ a b : α, a ⊓ (a ⊔ b) = a) : Lattice α :=
@@ -779,7 +779,7 @@ theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
     _ = x ⊓ y ⊔ x ⊓ z := by rw [sup_inf_left]
 #align inf_sup_left inf_sup_left
 
-instance OrderDual.distribLattice (α : Type _) [DistribLattice α] : DistribLattice αᵒᵈ where
+instance OrderDual.distribLattice (α : Type*) [DistribLattice α] : DistribLattice αᵒᵈ where
   __ := inferInstanceAs (Lattice αᵒᵈ)
   le_sup_inf := fun _ _ _ => le_of_eq (@inf_sup_left α).symm
 
@@ -1004,7 +1004,7 @@ end LinearOrder
 
 namespace Pi
 
-variable {ι : Type _} {α' : ι → Type _}
+variable {ι : Type*} {α' : ι → Type*}
 
 instance [∀ i, Sup (α' i)] : Sup (∀ i, α' i) :=
   ⟨fun f g i => f i ⊔ g i⟩
@@ -1051,7 +1051,7 @@ end Pi
 
 namespace Function
 
-variable {ι : Type _} {π : ι → Type _} [DecidableEq ι]
+variable {ι : Type*} {π : ι → Type*} [DecidableEq ι]
 
 -- porting note: Dot notation on `Function.update` broke
 theorem update_sup [∀ i, SemilatticeSup (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
chore: ensure all instances referred to directly have explicit names (#6423)

Per https://github.com/leanprover/lean4/issues/2343, we are going to need to change the automatic generation of instance names, as they become too long.

This PR ensures that everywhere in Mathlib that refers to an instance by name, that name is given explicitly, rather than being automatically generated.

There are four exceptions, which are now commented, with links to https://github.com/leanprover/lean4/issues/2343.

This was implemented by running Mathlib against a modified Lean that appended _ᾰ to all automatically generated names, and fixing everything.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -116,10 +116,10 @@ def SemilatticeSup.mk' {α : Type _} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b
     rwa [sup_assoc, hbc]
 #align semilattice_sup.mk' SemilatticeSup.mk'
 
-instance (α : Type _) [Inf α] : Sup αᵒᵈ :=
+instance instSupOrderDual (α : Type _) [Inf α] : Sup αᵒᵈ :=
   ⟨((· ⊓ ·) : α → α → α)⟩
 
-instance (α : Type _) [Sup α] : Inf αᵒᵈ :=
+instance instInfOrderDual (α : Type _) [Sup α] : Inf αᵒᵈ :=
   ⟨((· ⊔ ·) : α → α → α)⟩
 
 section SemilatticeSup
feat: Add basic order instances on ULift (#5998)

This adds:

  • Preorder
  • PartialOrder
  • SemilatticeSup
  • SemilatticeInf
  • Lattice
  • DistribLattice
  • CompleteLattice
  • LinearOrder
Diff
@@ -6,6 +6,7 @@ Authors: Johannes Hölzl
 import Mathlib.Data.Bool.Basic
 import Mathlib.Init.Algebra.Order
 import Mathlib.Order.Monotone.Basic
+import Mathlib.Order.ULift
 import Mathlib.Tactic.GCongr.Core
 
 #align_import order.lattice from "leanprover-community/mathlib"@"e4bc74cbaf429d706cb9140902f7ca6c431e75a4"
@@ -1476,6 +1477,26 @@ protected def Function.Injective.distribLattice [Sup α] [Inf α] [DistribLattic
 
 end lift
 
+namespace ULift
+
+instance [SemilatticeSup α] : SemilatticeSup (ULift.{v} α) :=
+  ULift.down_injective.semilatticeSup _ down_sup
+
+instance [SemilatticeInf α] : SemilatticeInf (ULift.{v} α) :=
+  ULift.down_injective.semilatticeInf _ down_inf
+
+instance [Lattice α] : Lattice (ULift.{v} α) :=
+  ULift.down_injective.lattice _ down_sup down_inf
+
+instance [DistribLattice α] : DistribLattice (ULift.{v} α) :=
+  ULift.down_injective.distribLattice _ down_sup down_inf
+
+instance [LinearOrder α] : LinearOrder (ULift.{v} α) :=
+  LinearOrder.liftWithOrd ULift.down ULift.down_injective down_sup down_inf
+    fun _x _y => (down_compare _ _).symm
+
+end ULift
+
 --To avoid noncomputability poisoning from `Bool.completeBooleanAlgebra`
 instance : DistribLattice Bool :=
   inferInstance
chore: gcongr attributes for sup/inf, min/max, union/intersection/complement, image/preimage (#6016)
Diff
@@ -6,6 +6,7 @@ Authors: Johannes Hölzl
 import Mathlib.Data.Bool.Basic
 import Mathlib.Init.Algebra.Order
 import Mathlib.Order.Monotone.Basic
+import Mathlib.Tactic.GCongr.Core
 
 #align_import order.lattice from "leanprover-community/mathlib"@"e4bc74cbaf429d706cb9140902f7ca6c431e75a4"
 
@@ -223,14 +224,17 @@ theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c := by
     exact le_sup_left
 #align le_iff_exists_sup le_iff_exists_sup
 
+@[gcongr]
 theorem sup_le_sup (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊔ c ≤ b ⊔ d :=
   sup_le (le_sup_of_le_left h₁) (le_sup_of_le_right h₂)
 #align sup_le_sup sup_le_sup
 
+@[gcongr]
 theorem sup_le_sup_left (h₁ : a ≤ b) (c) : c ⊔ a ≤ c ⊔ b :=
   sup_le_sup le_rfl h₁
 #align sup_le_sup_left sup_le_sup_left
 
+@[gcongr]
 theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c :=
   sup_le_sup h₁ le_rfl
 #align sup_le_sup_right sup_le_sup_right
@@ -469,14 +473,17 @@ theorem inf_lt_left_or_right (h : a ≠ b) : a ⊓ b < a ∨ a ⊓ b < b :=
   @left_or_right_lt_sup αᵒᵈ _ _ _ h
 #align inf_lt_left_or_right inf_lt_left_or_right
 
+@[gcongr]
 theorem inf_le_inf (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊓ c ≤ b ⊓ d :=
   @sup_le_sup αᵒᵈ _ _ _ _ _ h₁ h₂
 #align inf_le_inf inf_le_inf
 
+@[gcongr]
 theorem inf_le_inf_right (a : α) {b c : α} (h : b ≤ c) : b ⊓ a ≤ c ⊓ a :=
   inf_le_inf h le_rfl
 #align inf_le_inf_right inf_le_inf_right
 
+@[gcongr]
 theorem inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c :=
   inf_le_inf le_rfl h
 #align inf_le_inf_left inf_le_inf_left
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.lattice
-! leanprover-community/mathlib commit e4bc74cbaf429d706cb9140902f7ca6c431e75a4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Bool.Basic
 import Mathlib.Init.Algebra.Order
 import Mathlib.Order.Monotone.Basic
 
+#align_import order.lattice from "leanprover-community/mathlib"@"e4bc74cbaf429d706cb9140902f7ca6c431e75a4"
+
 /-!
 # (Semi-)lattices
 
chore: remove superfluous parentheses in calls to ext (#5258)

Co-authored-by: Xavier Roblot <46200072+xroblot@users.noreply.github.com> Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr> Co-authored-by: Riccardo Brasca <riccardo.brasca@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Pol'tta / Miyahara Kō <pol_tta@outlook.jp> Co-authored-by: Jason Yuen <jason_yuen2007@hotmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: Jireh Loreaux <loreaujy@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Jujian Zhang <jujian.zhang1998@outlook.com> Co-authored-by: Yaël Dillies <yael.dillies@gmail.com>

Diff
@@ -899,7 +899,7 @@ end LinearOrder
 theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] :
     (· ⊔ ·) = (maxDefault : α → α → α) := by
-  ext (x y)
+  ext x y
   unfold maxDefault
   split_ifs with h'
   exacts [sup_of_le_right h', sup_of_le_left $ (total_of (· ≤ ·) x y).resolve_left h']
@@ -908,7 +908,7 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [IsTotal α (· ≤ ·)] :
     (· ⊓ ·) = (minDefault : α → α → α) := by
-  ext (x y)
+  ext x y
   unfold minDefault
   split_ifs with h'
   exacts [inf_of_le_left h', inf_of_le_right $ (total_of (· ≤ ·) x y).resolve_left h']
chore: tidy various files (#5268)
Diff
@@ -680,11 +680,11 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff,
 #align sup_le_inf sup_le_inf
 
 @[simp] lemma inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [←inf_le_sup.ge_iff_eq, sup_le_inf]
+#align inf_eq_sup inf_eq_sup
 @[simp] lemma sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b := eq_comm.trans inf_eq_sup
+#align sup_eq_inf sup_eq_inf
 @[simp] lemma inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
 #align inf_lt_sup inf_lt_sup
-#align sup_eq_inf sup_eq_inf
-#align inf_eq_sup inf_eq_sup
 
 lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c := by
   refine' ⟨fun h ↦ _, _⟩
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -1211,25 +1211,25 @@ end Antitone
 
 namespace AntitoneOn
 
-/-- Pointwise supremum of two antitone functions is a antitone function. -/
+/-- Pointwise supremum of two antitone functions is an antitone function. -/
 protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊔ g) s :=
   fun _ hx _ hy h => sup_le_sup (hf hx hy h) (hg hx hy h)
 #align antitone_on.sup AntitoneOn.sup
 
-/-- Pointwise infimum of two antitone functions is a antitone function. -/
+/-- Pointwise infimum of two antitone functions is an antitone function. -/
 protected theorem inf [Preorder α] [SemilatticeInf β] {f g : α → β} {s : Set α}
     (hf : AntitoneOn f s) (hg : AntitoneOn g s) : AntitoneOn (f ⊓ g) s :=
   (hf.dual.sup hg.dual).dual
 #align antitone_on.inf AntitoneOn.inf
 
-/-- Pointwise maximum of two antitone functions is a antitone function. -/
+/-- Pointwise maximum of two antitone functions is an antitone function. -/
 protected theorem max [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : AntitoneOn f s)
     (hg : AntitoneOn g s) : AntitoneOn (fun x => max (f x) (g x)) s :=
   hf.sup hg
 #align antitone_on.max AntitoneOn.max
 
-/-- Pointwise minimum of two antitone functions is a antitone function. -/
+/-- Pointwise minimum of two antitone functions is an antitone function. -/
 protected theorem min [Preorder α] [LinearOrder β] {f g : α → β} {s : Set α} (hf : AntitoneOn f s)
     (hg : AntitoneOn g s) : AntitoneOn (fun x => min (f x) (g x)) s :=
   hf.inf hg
chore: fix many typos (#4983)

These are all doc fixes

Diff
@@ -32,7 +32,7 @@ of `sup` over `inf`, on the left or on the right.
   commutative, associative and idempotent.
 
 * `Lattice`: a type class for lattices
-* `Lattice.mk'`: an alternative constructor for `Lattice` via profs that `⊔` and `⊓` are
+* `Lattice.mk'`: an alternative constructor for `Lattice` via proofs that `⊔` and `⊓` are
   commutative, associative and satisfy a pair of "absorption laws".
 
 * `DistribLattice`: a type class for distributive lattices.
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -902,7 +902,7 @@ theorem sup_eq_maxDefault [SemilatticeSup α] [DecidableRel ((· ≤ ·) : α 
   ext (x y)
   unfold maxDefault
   split_ifs with h'
-  exacts[sup_of_le_right h', sup_of_le_left $ (total_of (· ≤ ·) x y).resolve_left h']
+  exacts [sup_of_le_right h', sup_of_le_left $ (total_of (· ≤ ·) x y).resolve_left h']
 #align sup_eq_max_default sup_eq_maxDefault
 
 theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
@@ -911,7 +911,7 @@ theorem inf_eq_minDefault [SemilatticeInf α] [DecidableRel ((· ≤ ·) : α 
   ext (x y)
   unfold minDefault
   split_ifs with h'
-  exacts[inf_of_le_left h', inf_of_le_right $ (total_of (· ≤ ·) x y).resolve_left h']
+  exacts [inf_of_le_left h', inf_of_le_right $ (total_of (· ≤ ·) x y).resolve_left h']
 #align inf_eq_min_default inf_eq_minDefault
 
 /-- A lattice with total order is a linear order.
feat: add Mathlib.Tactic.Common, and import (#4056)

This makes a mathlib4 version of mathlib3's tactic.basic, now called Mathlib.Tactic.Common, which imports all tactics which do not have significant theory requirements, and then is imported all across the base of the hierarchy.

This ensures that all common tactics are available nearly everywhere in the library, rather than having to be imported one-by-one as you need them.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -11,7 +11,6 @@ Authors: Johannes Hölzl
 import Mathlib.Data.Bool.Basic
 import Mathlib.Init.Algebra.Order
 import Mathlib.Order.Monotone.Basic
-import Mathlib.Tactic.Simps.Basic
 
 /-!
 # (Semi-)lattices
fix: correct names of LinearOrder decidable fields (#4006)

This renames

  • decidable_eq to decidableEq
  • decidable_lt to decidableLT
  • decidable_le to decidableLE
  • decidableLT_of_decidableLE to decidableLTOfDecidableLE
  • decidableEq_of_decidableLE to decidableEqOfDecidableLE

These fields are data not proofs, so they should be lowerCamelCased.

Diff
@@ -923,9 +923,9 @@ def Lattice.toLinearOrder (α : Type u) [Lattice α] [DecidableEq α]
     [DecidableRel ((· ≤ ·) : α → α → Prop)]
     [DecidableRel ((· < ·) : α → α → Prop)] [IsTotal α (· ≤ ·)] : LinearOrder α :=
   { ‹Lattice α› with
-    decidable_le := ‹_›,
-    decidable_eq := ‹_›,
-    decidable_lt := ‹_›,
+    decidableLE := ‹_›,
+    decidableEq := ‹_›,
+    decidableLT := ‹_›,
     le_total := total_of (· ≤ ·),
     max := (· ⊔ ·),
     max_def := by exact congr_fun₂ sup_eq_maxDefault,
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module order.lattice
-! leanprover-community/mathlib commit d6aad9528ddcac270ed35c6f7b5f1d8af25341d6
+! leanprover-community/mathlib commit e4bc74cbaf429d706cb9140902f7ca6c431e75a4
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1045,6 +1045,23 @@ instance distribLattice [∀ i, DistribLattice (α' i)] : DistribLattice (∀ i,
 
 end Pi
 
+namespace Function
+
+variable {ι : Type _} {π : ι → Type _} [DecidableEq ι]
+
+-- porting note: Dot notation on `Function.update` broke
+theorem update_sup [∀ i, SemilatticeSup (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
+    update f i (a ⊔ b) = update f i a ⊔ update f i b :=
+  funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
+#align function.update_sup Function.update_sup
+
+theorem update_inf [∀ i, SemilatticeInf (π i)] (f : ∀ i, π i) (i : ι) (a b : π i) :
+    update f i (a ⊓ b) = update f i a ⊓ update f i b :=
+  funext fun j => by obtain rfl | hji := eq_or_ne j i <;> simp [update_noteq, *]
+#align function.update_inf Function.update_inf
+
+end Function
+
 /-!
 ### Monotone functions and lattices
 -/
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -223,10 +223,8 @@ theorem le_iff_exists_sup : a ≤ b ↔ ∃ c, b = a ⊔ c := by
   constructor
   · intro h
     exact ⟨b, (sup_eq_right.mpr h).symm⟩
-
   · rintro ⟨c, rfl : _ = _ ⊔ _⟩
     exact le_sup_left
-
 #align le_iff_exists_sup le_iff_exists_sup
 
 theorem sup_le_sup (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊔ c ≤ b ⊔ d :=
@@ -320,7 +318,6 @@ theorem Monotone.forall_le_of_antitone {β : Type _} [Preorder β] {f g : α →
     f m ≤ f (m ⊔ n) := hf le_sup_left
     _ ≤ g (m ⊔ n) := h _
     _ ≤ g n := hg le_sup_right
-
 #align monotone.forall_le_of_antitone Monotone.forall_le_of_antitone
 
 theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
@@ -776,7 +773,6 @@ theorem inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z :=
     _ = (x ⊔ x ⊓ y) ⊓ (x ⊓ y ⊔ z) := by rw [sup_inf_self]
     _ = (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z) := by rw [sup_comm]
     _ = x ⊓ y ⊔ x ⊓ z := by rw [sup_inf_left]
-
 #align inf_sup_left inf_sup_left
 
 instance OrderDual.distribLattice (α : Type _) [DistribLattice α] : DistribLattice αᵒᵈ where
@@ -795,7 +791,6 @@ theorem le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y 
     _ = y ⊔ x ⊓ z := sup_inf_left.symm
     _ ≤ y ⊔ y ⊓ z := sup_le_sup_left h₁ _
     _ ≤ _ := sup_le (le_refl y) inf_le_left
-
 #align le_of_inf_le_sup_le le_of_inf_le_sup_le
 
 theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a)
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -83,7 +83,7 @@ end
 /-- A `SemilatticeSup` is a join-semilattice, that is, a partial order
   with a join (a.k.a. lub / least upper bound, sup / supremum) operation
   `⊔` which is the least element larger than both factors. -/
-class SemilatticeSup (α : Type u) extends HasSup α, PartialOrder α where
+class SemilatticeSup (α : Type u) extends Sup α, PartialOrder α where
   /-- The supremum is an upper bound on the first argument -/
   protected le_sup_left : ∀ a b : α, a ≤ a ⊔ b
   /-- The supremum is an upper bound on the second argument -/
@@ -98,7 +98,7 @@ join-semilattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`.
 -/
-def SemilatticeSup.mk' {α : Type _} [HasSup α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
+def SemilatticeSup.mk' {α : Type _} [Sup α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
     (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (sup_idem : ∀ a : α, a ⊔ a = a) :
     SemilatticeSup α where
   sup := (· ⊔ ·)
@@ -118,10 +118,10 @@ def SemilatticeSup.mk' {α : Type _} [HasSup α] (sup_comm : ∀ a b : α, a ⊔
     rwa [sup_assoc, hbc]
 #align semilattice_sup.mk' SemilatticeSup.mk'
 
-instance (α : Type _) [HasInf α] : HasSup αᵒᵈ :=
+instance (α : Type _) [Inf α] : Sup αᵒᵈ :=
   ⟨((· ⊓ ·) : α → α → α)⟩
 
-instance (α : Type _) [HasSup α] : HasInf αᵒᵈ :=
+instance (α : Type _) [Sup α] : Inf αᵒᵈ :=
   ⟨((· ⊔ ·) : α → α → α)⟩
 
 section SemilatticeSup
@@ -333,7 +333,7 @@ theorem SemilatticeSup.ext_sup {α} {A B : SemilatticeSup α}
 theorem SemilatticeSup.ext {α} {A B : SemilatticeSup α}
     (H : ∀ x y : α, (haveI := A; x ≤ y) ↔ x ≤ y) :
     A = B := by
-  have ss : A.toHasSup = B.toHasSup := by ext; apply SemilatticeSup.ext_sup H
+  have ss : A.toSup = B.toSup := by ext; apply SemilatticeSup.ext_sup H
   cases A
   cases B
   cases PartialOrder.ext H
@@ -354,7 +354,7 @@ end SemilatticeSup
 /-- A `SemilatticeInf` is a meet-semilattice, that is, a partial order
   with a meet (a.k.a. glb / greatest lower bound, inf / infimum) operation
   `⊓` which is the greatest element smaller than both factors. -/
-class SemilatticeInf (α : Type u) extends HasInf α, PartialOrder α where
+class SemilatticeInf (α : Type u) extends Inf α, PartialOrder α where
   /-- The infimum is a lower bound on the first argument -/
   protected inf_le_left : ∀ a b : α, a ⊓ b ≤ a
   /-- The infimum is a lower bound on the second argument -/
@@ -365,14 +365,14 @@ class SemilatticeInf (α : Type u) extends HasInf α, PartialOrder α where
 
 instance OrderDual.semilatticeSup (α) [SemilatticeInf α] : SemilatticeSup αᵒᵈ where
   __ := inferInstanceAs (PartialOrder αᵒᵈ)
-  __ := inferInstanceAs (HasSup αᵒᵈ)
+  __ := inferInstanceAs (Sup αᵒᵈ)
   le_sup_left := @SemilatticeInf.inf_le_left α _
   le_sup_right := @SemilatticeInf.inf_le_right α _
   sup_le := fun _ _ _ hca hcb => @SemilatticeInf.le_inf α _ _ _ _ hca hcb
 
 instance OrderDual.semilatticeInf (α) [SemilatticeSup α] : SemilatticeInf αᵒᵈ where
   __ := inferInstanceAs (PartialOrder αᵒᵈ)
-  __ := inferInstanceAs (HasInf αᵒᵈ)
+  __ := inferInstanceAs (Inf αᵒᵈ)
   inf_le_left := @le_sup_left α _
   inf_le_right := @le_sup_right α _
   le_inf := fun _ _ _ hca hcb => @sup_le α _ _ _ _ hca hcb
@@ -574,7 +574,7 @@ theorem SemilatticeInf.ext_inf {α} {A B : SemilatticeInf α}
 theorem SemilatticeInf.ext {α} {A B : SemilatticeInf α}
     (H : ∀ x y : α, (haveI := A; x ≤ y) ↔ x ≤ y) :
     A = B := by
-  have ss : A.toHasInf = B.toHasInf := by ext; apply SemilatticeInf.ext_inf H
+  have ss : A.toInf = B.toInf := by ext; apply SemilatticeInf.ext_inf H
   cases A
   cases B
   cases PartialOrder.ext H
@@ -598,7 +598,7 @@ meet-semilattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `b ⊓ a = a`; cf. `inf_eq_right`.
 -/
-def SemilatticeInf.mk' {α : Type _} [HasInf α] (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
+def SemilatticeInf.mk' {α : Type _} [Inf α] (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ a : α, a ⊓ a = a) :
     SemilatticeInf α := by
   haveI : SemilatticeSup αᵒᵈ := SemilatticeSup.mk' inf_comm inf_assoc inf_idem
@@ -622,7 +622,7 @@ instance OrderDual.lattice (α) [Lattice α] : Lattice αᵒᵈ :=
 if `sup` and `inf` satisfy the lattice absorption laws `sup_inf_self` (`a ⊔ a ⊓ b = a`)
 and `inf_sup_self` (`a ⊓ (a ⊔ b) = a`). -/
 theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder
-    {α : Type _} [HasSup α] [HasInf α]
+    {α : Type _} [Sup α] [Inf α]
     (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a) (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
     (sup_idem : ∀ a : α, a ⊔ a = a) (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ a : α, a ⊓ a = a)
@@ -639,7 +639,7 @@ laws relating the two operations has the structure of a lattice.
 
 The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`.
 -/
-def Lattice.mk' {α : Type _} [HasSup α] [HasInf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
+def Lattice.mk' {α : Type _} [Sup α] [Inf α] (sup_comm : ∀ a b : α, a ⊔ b = b ⊔ a)
     (sup_assoc : ∀ a b c : α, a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (inf_comm : ∀ a b : α, a ⊓ b = b ⊓ a)
     (inf_assoc : ∀ a b c : α, a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (sup_inf_self : ∀ a b : α, a ⊔ a ⊓ b = a)
     (inf_sup_self : ∀ a b : α, a ⊓ (a ⊔ b) = a) : Lattice α :=
@@ -955,22 +955,22 @@ instance : DistribLattice ℕ := inferInstance
 open OrderDual
 
 @[simp]
-theorem ofDual_inf [HasSup α] (a b : αᵒᵈ) : ofDual (a ⊓ b) = ofDual a ⊔ ofDual b :=
+theorem ofDual_inf [Sup α] (a b : αᵒᵈ) : ofDual (a ⊓ b) = ofDual a ⊔ ofDual b :=
   rfl
 #align of_dual_inf ofDual_inf
 
 @[simp]
-theorem ofDual_sup [HasInf α] (a b : αᵒᵈ) : ofDual (a ⊔ b) = ofDual a ⊓ ofDual b :=
+theorem ofDual_sup [Inf α] (a b : αᵒᵈ) : ofDual (a ⊔ b) = ofDual a ⊓ ofDual b :=
   rfl
 #align of_dual_sup ofDual_sup
 
 @[simp]
-theorem toDual_inf [HasInf α] (a b : α) : toDual (a ⊓ b) = toDual a ⊔ toDual b :=
+theorem toDual_inf [Inf α] (a b : α) : toDual (a ⊓ b) = toDual a ⊔ toDual b :=
   rfl
 #align to_dual_inf toDual_inf
 
 @[simp]
-theorem toDual_sup [HasSup α] (a b : α) : toDual (a ⊔ b) = toDual a ⊓ toDual b :=
+theorem toDual_sup [Sup α] (a b : α) : toDual (a ⊔ b) = toDual a ⊓ toDual b :=
   rfl
 #align to_dual_sup toDual_sup
 
@@ -1007,27 +1007,27 @@ namespace Pi
 
 variable {ι : Type _} {α' : ι → Type _}
 
-instance [∀ i, HasSup (α' i)] : HasSup (∀ i, α' i) :=
+instance [∀ i, Sup (α' i)] : Sup (∀ i, α' i) :=
   ⟨fun f g i => f i ⊔ g i⟩
 
 @[simp]
-theorem sup_apply [∀ i, HasSup (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊔ g) i = f i ⊔ g i :=
+theorem sup_apply [∀ i, Sup (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊔ g) i = f i ⊔ g i :=
   rfl
 #align pi.sup_apply Pi.sup_apply
 
-theorem sup_def [∀ i, HasSup (α' i)] (f g : ∀ i, α' i) : f ⊔ g = fun i => f i ⊔ g i :=
+theorem sup_def [∀ i, Sup (α' i)] (f g : ∀ i, α' i) : f ⊔ g = fun i => f i ⊔ g i :=
   rfl
 #align pi.sup_def Pi.sup_def
 
-instance [∀ i, HasInf (α' i)] : HasInf (∀ i, α' i) :=
+instance [∀ i, Inf (α' i)] : Inf (∀ i, α' i) :=
   ⟨fun f g i => f i ⊓ g i⟩
 
 @[simp]
-theorem inf_apply [∀ i, HasInf (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊓ g) i = f i ⊓ g i :=
+theorem inf_apply [∀ i, Inf (α' i)] (f g : ∀ i, α' i) (i : ι) : (f ⊓ g) i = f i ⊓ g i :=
   rfl
 #align pi.inf_apply Pi.inf_apply
 
-theorem inf_def [∀ i, HasInf (α' i)] (f g : ∀ i, α' i) : f ⊓ g = fun i => f i ⊓ g i :=
+theorem inf_def [∀ i, Inf (α' i)] (f g : ∀ i, α' i) : f ⊓ g = fun i => f i ⊓ g i :=
   rfl
 #align pi.inf_def Pi.inf_def
 
@@ -1235,72 +1235,72 @@ namespace Prod
 
 variable (α β)
 
-instance [HasSup α] [HasSup β] : HasSup (α × β) :=
+instance [Sup α] [Sup β] : Sup (α × β) :=
   ⟨fun p q => ⟨p.1 ⊔ q.1, p.2 ⊔ q.2⟩⟩
 
-instance [HasInf α] [HasInf β] : HasInf (α × β) :=
+instance [Inf α] [Inf β] : Inf (α × β) :=
   ⟨fun p q => ⟨p.1 ⊓ q.1, p.2 ⊓ q.2⟩⟩
 
 @[simp]
-theorem mk_sup_mk [HasSup α] [HasSup β] (a₁ a₂ : α) (b₁ b₂ : β) :
+theorem mk_sup_mk [Sup α] [Sup β] (a₁ a₂ : α) (b₁ b₂ : β) :
     (a₁, b₁) ⊔ (a₂, b₂) = (a₁ ⊔ a₂, b₁ ⊔ b₂) :=
   rfl
 #align prod.mk_sup_mk Prod.mk_sup_mk
 
 @[simp]
-theorem mk_inf_mk [HasInf α] [HasInf β] (a₁ a₂ : α) (b₁ b₂ : β) :
+theorem mk_inf_mk [Inf α] [Inf β] (a₁ a₂ : α) (b₁ b₂ : β) :
     (a₁, b₁) ⊓ (a₂, b₂) = (a₁ ⊓ a₂, b₁ ⊓ b₂) :=
   rfl
 #align prod.mk_inf_mk Prod.mk_inf_mk
 
 @[simp]
-theorem fst_sup [HasSup α] [HasSup β] (p q : α × β) : (p ⊔ q).fst = p.fst ⊔ q.fst :=
+theorem fst_sup [Sup α] [Sup β] (p q : α × β) : (p ⊔ q).fst = p.fst ⊔ q.fst :=
   rfl
 #align prod.fst_sup Prod.fst_sup
 
 @[simp]
-theorem fst_inf [HasInf α] [HasInf β] (p q : α × β) : (p ⊓ q).fst = p.fst ⊓ q.fst :=
+theorem fst_inf [Inf α] [Inf β] (p q : α × β) : (p ⊓ q).fst = p.fst ⊓ q.fst :=
   rfl
 #align prod.fst_inf Prod.fst_inf
 
 @[simp]
-theorem snd_sup [HasSup α] [HasSup β] (p q : α × β) : (p ⊔ q).snd = p.snd ⊔ q.snd :=
+theorem snd_sup [Sup α] [Sup β] (p q : α × β) : (p ⊔ q).snd = p.snd ⊔ q.snd :=
   rfl
 #align prod.snd_sup Prod.snd_sup
 
 @[simp]
-theorem snd_inf [HasInf α] [HasInf β] (p q : α × β) : (p ⊓ q).snd = p.snd ⊓ q.snd :=
+theorem snd_inf [Inf α] [Inf β] (p q : α × β) : (p ⊓ q).snd = p.snd ⊓ q.snd :=
   rfl
 #align prod.snd_inf Prod.snd_inf
 
 @[simp]
-theorem swap_sup [HasSup α] [HasSup β] (p q : α × β) : (p ⊔ q).swap = p.swap ⊔ q.swap :=
+theorem swap_sup [Sup α] [Sup β] (p q : α × β) : (p ⊔ q).swap = p.swap ⊔ q.swap :=
   rfl
 #align prod.swap_sup Prod.swap_sup
 
 @[simp]
-theorem swap_inf [HasInf α] [HasInf β] (p q : α × β) : (p ⊓ q).swap = p.swap ⊓ q.swap :=
+theorem swap_inf [Inf α] [Inf β] (p q : α × β) : (p ⊓ q).swap = p.swap ⊓ q.swap :=
   rfl
 #align prod.swap_inf Prod.swap_inf
 
-theorem sup_def [HasSup α] [HasSup β] (p q : α × β) : p ⊔ q = (p.fst ⊔ q.fst, p.snd ⊔ q.snd) :=
+theorem sup_def [Sup α] [Sup β] (p q : α × β) : p ⊔ q = (p.fst ⊔ q.fst, p.snd ⊔ q.snd) :=
   rfl
 #align prod.sup_def Prod.sup_def
 
-theorem inf_def [HasInf α] [HasInf β] (p q : α × β) : p ⊓ q = (p.fst ⊓ q.fst, p.snd ⊓ q.snd) :=
+theorem inf_def [Inf α] [Inf β] (p q : α × β) : p ⊓ q = (p.fst ⊓ q.fst, p.snd ⊓ q.snd) :=
   rfl
 #align prod.inf_def Prod.inf_def
 
 instance semilatticeSup [SemilatticeSup α] [SemilatticeSup β] : SemilatticeSup (α × β) where
   __ := inferInstanceAs (PartialOrder (α × β))
-  __ := inferInstanceAs (HasSup (α × β))
+  __ := inferInstanceAs (Sup (α × β))
   sup_le _ _ _ h₁ h₂ := ⟨sup_le h₁.1 h₂.1, sup_le h₁.2 h₂.2⟩
   le_sup_left _ _ := ⟨le_sup_left, le_sup_left⟩
   le_sup_right _ _ := ⟨le_sup_right, le_sup_right⟩
 
 instance semilatticeInf [SemilatticeInf α] [SemilatticeInf β] : SemilatticeInf (α × β) where
   __ := inferInstanceAs (PartialOrder (α × β))
-  __ := inferInstanceAs (HasInf (α × β))
+  __ := inferInstanceAs (Inf (α × β))
   le_inf _ _ _ h₁ h₂ := ⟨le_inf h₁.1 h₂.1, le_inf h₁.2 h₂.2⟩
   inf_le_left _ _ := ⟨inf_le_left, inf_le_left⟩
   inf_le_right _ _ := ⟨inf_le_right, inf_le_right⟩
@@ -1394,10 +1394,10 @@ section lift
 preserves `⊔` to a `SemilatticeSup`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.semilatticeSup [HasSup α] [SemilatticeSup β] (f : α → β)
+protected def Function.Injective.semilatticeSup [Sup α] [SemilatticeSup β] (f : α → β)
     (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) : SemilatticeSup α :=
   { PartialOrder.lift f hf_inj with
-    sup := HasSup.sup,
+    sup := Sup.sup,
     le_sup_left := fun a b => by
       change f a ≤ f (a ⊔ b)
       rw [map_sup]
@@ -1416,10 +1416,10 @@ protected def Function.Injective.semilatticeSup [HasSup α] [SemilatticeSup β]
 preserves `⊓` to a `SemilatticeInf`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.semilatticeInf [HasInf α] [SemilatticeInf β] (f : α → β)
+protected def Function.Injective.semilatticeInf [Inf α] [SemilatticeInf β] (f : α → β)
     (hf_inj : Function.Injective f) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : SemilatticeInf α :=
   { PartialOrder.lift f hf_inj with
-    inf := HasInf.inf,
+    inf := Inf.inf,
     inf_le_left := fun a b => by
       change f (a ⊓ b) ≤ f a
       rw [map_inf]
@@ -1438,7 +1438,7 @@ protected def Function.Injective.semilatticeInf [HasInf α] [SemilatticeInf β]
 preserves `⊔` and `⊓` to a `Lattice`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.lattice [HasSup α] [HasInf α] [Lattice β] (f : α → β)
+protected def Function.Injective.lattice [Sup α] [Inf α] [Lattice β] (f : α → β)
     (hf_inj : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) : Lattice α :=
   { hf_inj.semilatticeSup f map_sup, hf_inj.semilatticeInf f map_inf with }
@@ -1448,7 +1448,7 @@ protected def Function.Injective.lattice [HasSup α] [HasInf α] [Lattice β] (f
 preserves `⊔` and `⊓` to a `DistribLattice`.
 See note [reducible non-instances]. -/
 @[reducible]
-protected def Function.Injective.distribLattice [HasSup α] [HasInf α] [DistribLattice β] (f : α → β)
+protected def Function.Injective.distribLattice [Sup α] [Inf α] [DistribLattice β] (f : α → β)
     (hf_inj : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) :
     DistribLattice α :=
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -197,8 +197,11 @@ theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b :=
 #align right_eq_sup right_eq_sup
 
 alias sup_eq_left ↔ _ sup_of_le_left
+#align sup_of_le_left sup_of_le_left
 
 alias sup_eq_right ↔ le_of_sup_eq sup_of_le_right
+#align sup_of_le_right sup_of_le_right
+#align le_of_sup_eq le_of_sup_eq
 
 attribute [simp] sup_of_le_left sup_of_le_right
 
@@ -451,8 +454,11 @@ theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a :=
 #align right_eq_inf right_eq_inf
 
 alias inf_eq_left ↔ le_of_inf_eq inf_of_le_left
+#align inf_of_le_left inf_of_le_left
+#align le_of_inf_eq le_of_inf_eq
 
 alias inf_eq_right ↔ _ inf_of_le_right
+#align inf_of_le_right inf_of_le_right
 
 attribute [simp] inf_of_le_left inf_of_le_right
 
@@ -681,6 +687,8 @@ theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff,
 @[simp] lemma sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b := eq_comm.trans inf_eq_sup
 @[simp] lemma inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
 #align inf_lt_sup inf_lt_sup
+#align sup_eq_inf sup_eq_inf
+#align inf_eq_sup inf_eq_sup
 
 lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c := by
   refine' ⟨fun h ↦ _, _⟩
@@ -688,6 +696,7 @@ lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c :=
     simpa using h }
   { rintro ⟨rfl, rfl⟩
     exact ⟨inf_idem, sup_idem⟩ }
+#align inf_eq_and_sup_eq_iff inf_eq_and_sup_eq_iff
 
 /-!
 #### Distributivity laws
chore: the style linter shouldn't complain about long #align lines (#1643)
Diff
@@ -626,9 +626,7 @@ theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder
   PartialOrder.ext $ fun a b =>
     show a ⊔ b = b ↔ b ⊓ a = a from
       ⟨fun h => by rw [← h, inf_comm, inf_sup_self], fun h => by rw [← h, sup_comm, sup_inf_self]⟩
-#align
-  semilattice_sup_mk'_partial_order_eq_semilattice_inf_mk'_partial_order
-  semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder
+#align semilattice_sup_mk'_partial_order_eq_semilattice_inf_mk'_partial_order semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder
 
 /-- A type with a pair of commutative and associative binary operations which satisfy two absorption
 laws relating the two operations has the structure of a lattice.
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module order.lattice
-! leanprover-community/mathlib commit 2258b40dacd2942571c8ce136215350c702dc78f
+! leanprover-community/mathlib commit d6aad9528ddcac270ed35c6f7b5f1d8af25341d6
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -675,22 +675,22 @@ theorem inf_le_sup : a ⊓ b ≤ a ⊔ b :=
   inf_le_left.trans le_sup_left
 #align inf_le_sup inf_le_sup
 
-@[simp]
-theorem inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by
-  constructor
-  · rintro H rfl
-    simp at H
-
-  · refine' fun Hne => lt_iff_le_and_ne.2 ⟨inf_le_sup, fun Heq => Hne _⟩
-    exact le_antisymm
-      (le_sup_left.trans (Heq.symm.trans_le inf_le_right))
-      (le_sup_right.trans (Heq.symm.trans_le inf_le_left))
-#align inf_lt_sup inf_lt_sup
-
 -- Porting note: was @[simp]
 theorem sup_le_inf : a ⊔ b ≤ a ⊓ b ↔ a = b := by simp [le_antisymm_iff, and_comm]
 #align sup_le_inf sup_le_inf
 
+@[simp] lemma inf_eq_sup : a ⊓ b = a ⊔ b ↔ a = b := by rw [←inf_le_sup.ge_iff_eq, sup_le_inf]
+@[simp] lemma sup_eq_inf : a ⊔ b = a ⊓ b ↔ a = b := eq_comm.trans inf_eq_sup
+@[simp] lemma inf_lt_sup : a ⊓ b < a ⊔ b ↔ a ≠ b := by rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
+#align inf_lt_sup inf_lt_sup
+
+lemma inf_eq_and_sup_eq_iff : a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c := by
+  refine' ⟨fun h ↦ _, _⟩
+  { obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm)
+    simpa using h }
+  { rintro ⟨rfl, rfl⟩
+    exact ⟨inf_idem, sup_idem⟩ }
+
 /-!
 #### Distributivity laws
 -/
@@ -799,7 +799,7 @@ theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁
 #align eq_of_inf_eq_sup_eq eq_of_inf_eq_sup_eq
 
 end DistribLattice
-#print OrderDual.distribLattice
+
 -- See note [reducible non-instances]
 /-- Prove distributivity of an existing lattice from the dual distributive law. -/
 @[reducible]
chore: update SHA in porting header (#1306)

These files correspond to files flagged "The following files have been modified since the commit at which they were verified." by port_status.py but are in sync with mathlib3, so we can update the hash.

I only updated the easy ones, the others need a closer inspection.

Co-authored-by: Reid Barton <rwbarton@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module order.lattice
-! leanprover-community/mathlib commit a148d797a1094ab554ad4183a4ad6f130358ef64
+! leanprover-community/mathlib commit 2258b40dacd2942571c8ce136215350c702dc78f
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
chore: add source headers to ported theory files (#1094)

The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md

Diff
@@ -2,6 +2,11 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
+
+! This file was ported from Lean 3 source module order.lattice
+! leanprover-community/mathlib commit a148d797a1094ab554ad4183a4ad6f130358ef64
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
 -/
 import Mathlib.Data.Bool.Basic
 import Mathlib.Init.Algebra.Order

Dependencies 20

21 files ported (100.0%)
10192 lines ported (100.0%)

All dependencies are ported!