order.locally_finiteMathlib.Order.LocallyFinite

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(data/*/interval): finset.uIcc on concrete structures (#18838)

Calculate the size of finset.uIcc in , , fin, prod, pi, multiset, finset...

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -458,17 +458,10 @@ namespace set
 section preorder
 variables [preorder α] [locally_finite_order α] (a b : α)
 
-instance fintype_Icc : fintype (Icc a b) :=
-fintype.of_finset (finset.Icc a b) (λ x, by rw [finset.mem_Icc, mem_Icc])
-
-instance fintype_Ico : fintype (Ico a b) :=
-fintype.of_finset (finset.Ico a b) (λ x, by rw [finset.mem_Ico, mem_Ico])
-
-instance fintype_Ioc : fintype (Ioc a b) :=
-fintype.of_finset (finset.Ioc a b) (λ x, by rw [finset.mem_Ioc, mem_Ioc])
-
-instance fintype_Ioo : fintype (Ioo a b) :=
-fintype.of_finset (finset.Ioo a b) (λ x, by rw [finset.mem_Ioo, mem_Ioo])
+instance fintype_Icc : fintype (Icc a b) := fintype.of_finset (finset.Icc a b) $ λ x, finset.mem_Icc
+instance fintype_Ico : fintype (Ico a b) := fintype.of_finset (finset.Ico a b) $ λ x, finset.mem_Ico
+instance fintype_Ioc : fintype (Ioc a b) := fintype.of_finset (finset.Ioc a b) $ λ x, finset.mem_Ioc
+instance fintype_Ioo : fintype (Ioo a b) := fintype.of_finset (finset.Ioo a b) $ λ x, finset.mem_Ioo
 
 lemma finite_Icc : (Icc a b).finite := (Icc a b).to_finite
 lemma finite_Ico : (Ico a b).finite := (Ico a b).to_finite
@@ -480,11 +473,8 @@ end preorder
 section order_top
 variables [preorder α] [locally_finite_order_top α] (a : α)
 
-instance fintype_Ici : fintype (Ici a) :=
-fintype.of_finset (finset.Ici a) (λ x, by rw [finset.mem_Ici, mem_Ici])
-
-instance fintype_Ioi : fintype (Ioi a) :=
-fintype.of_finset (finset.Ioi a) (λ x, by rw [finset.mem_Ioi, mem_Ioi])
+instance fintype_Ici : fintype (Ici a) := fintype.of_finset (finset.Ici a) $ λ x, finset.mem_Ici
+instance fintype_Ioi : fintype (Ioi a) := fintype.of_finset (finset.Ioi a) $ λ x, finset.mem_Ioi
 
 lemma finite_Ici : (Ici a).finite := (Ici a).to_finite
 lemma finite_Ioi : (Ioi a).finite := (Ioi a).to_finite
@@ -494,17 +484,23 @@ end order_top
 section order_bot
 variables [preorder α] [locally_finite_order_bot α] (b : α)
 
-instance fintype_Iic : fintype (Iic b) :=
-fintype.of_finset (finset.Iic b) (λ x, by rw [finset.mem_Iic, mem_Iic])
-
-instance fintype_Iio : fintype (Iio b) :=
-fintype.of_finset (finset.Iio b) (λ x, by rw [finset.mem_Iio, mem_Iio])
+instance fintype_Iic : fintype (Iic b) := fintype.of_finset (finset.Iic b) $ λ x, finset.mem_Iic
+instance fintype_Iio : fintype (Iio b) := fintype.of_finset (finset.Iio b) $ λ x, finset.mem_Iio
 
 lemma finite_Iic : (Iic b).finite := (Iic b).to_finite
 lemma finite_Iio : (Iio b).finite := (Iio b).to_finite
 
 end order_bot
 
+section lattice
+variables [lattice α] [locally_finite_order α] (a b : α)
+
+instance fintype_uIcc : fintype (uIcc a b) :=
+fintype.of_finset (finset.uIcc a b) $ λ x, finset.mem_uIcc
+
+@[simp] lemma finite_interval : (uIcc a b).finite := (uIcc _ _).to_finite
+
+end lattice
 end set
 
 /-! ### Instances -/

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
 import Data.Finset.Preimage
-import Data.Set.Intervals.UnorderedInterval
+import Order.Interval.Set.UnorderedInterval
 
 #align_import order.locally_finite from "leanprover-community/mathlib"@"1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29"
 
Diff
@@ -160,7 +160,7 @@ def LocallyFiniteOrder.ofIcc' (α : Type _) [Preorder α] [DecidableRel ((· ≤
     finsetIoc := fun a b => (finset_Icc a b).filterₓ fun x => ¬x ≤ a
     finsetIoo := fun a b => (finset_Icc a b).filterₓ fun x => ¬x ≤ a ∧ ¬b ≤ x
     finset_mem_Icc := mem_Icc
-    finset_mem_Ico := fun a b x => by rw [Finset.mem_filter, mem_Icc, and_assoc', lt_iff_le_not_le]
+    finset_mem_Ico := fun a b x => by rw [Finset.mem_filter, mem_Icc, and_assoc, lt_iff_le_not_le]
     finset_mem_Ioc := fun a b x => by
       rw [Finset.mem_filter, mem_Icc, and_right_comm, lt_iff_le_not_le]
     finset_mem_Ioo := fun a b x => by
@@ -180,7 +180,7 @@ def LocallyFiniteOrder.ofIcc (α : Type _) [PartialOrder α] [DecidableEq α]
     finsetIoc := fun a b => (finset_Icc a b).filterₓ fun x => a ≠ x
     finsetIoo := fun a b => (finset_Icc a b).filterₓ fun x => a ≠ x ∧ x ≠ b
     finset_mem_Icc := mem_Icc
-    finset_mem_Ico := fun a b x => by rw [Finset.mem_filter, mem_Icc, and_assoc', lt_iff_le_and_ne]
+    finset_mem_Ico := fun a b x => by rw [Finset.mem_filter, mem_Icc, and_assoc, lt_iff_le_and_ne]
     finset_mem_Ioc := fun a b x => by
       rw [Finset.mem_filter, mem_Icc, and_right_comm, lt_iff_le_and_ne]
     finset_mem_Ioo := fun a b x => by
@@ -974,56 +974,56 @@ instance : LocallyFiniteOrder αᵒᵈ
   finsetIco a b := @Ioc α _ _ (ofDual b) (ofDual a)
   finsetIoc a b := @Ico α _ _ (ofDual b) (ofDual a)
   finsetIoo a b := @Ioo α _ _ (ofDual b) (ofDual a)
-  finset_mem_Icc a b x := mem_Icc.trans (and_comm' _ _)
-  finset_mem_Ico a b x := mem_Ioc.trans (and_comm' _ _)
-  finset_mem_Ioc a b x := mem_Ico.trans (and_comm' _ _)
-  finset_mem_Ioo a b x := mem_Ioo.trans (and_comm' _ _)
+  finset_mem_Icc a b x := mem_Icc.trans (and_comm _ _)
+  finset_mem_Ico a b x := mem_Ioc.trans (and_comm _ _)
+  finset_mem_Ioc a b x := mem_Ico.trans (and_comm _ _)
+  finset_mem_Ioo a b x := mem_Ioo.trans (and_comm _ _)
 
 #print Icc_toDual /-
 theorem Icc_toDual : Icc (toDual a) (toDual b) = (Icc b a).map toDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Icc, mem_Icc]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Icc, mem_Icc]; exact and_comm _ _
 #align Icc_to_dual Icc_toDual
 -/
 
 #print Ico_toDual /-
 theorem Ico_toDual : Ico (toDual a) (toDual b) = (Ioc b a).map toDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ico, mem_Ioc]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ico, mem_Ioc]; exact and_comm _ _
 #align Ico_to_dual Ico_toDual
 -/
 
 #print Ioc_toDual /-
 theorem Ioc_toDual : Ioc (toDual a) (toDual b) = (Ico b a).map toDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioc, mem_Ico]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioc, mem_Ico]; exact and_comm _ _
 #align Ioc_to_dual Ioc_toDual
 -/
 
 #print Ioo_toDual /-
 theorem Ioo_toDual : Ioo (toDual a) (toDual b) = (Ioo b a).map toDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioo, mem_Ioo]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioo, mem_Ioo]; exact and_comm _ _
 #align Ioo_to_dual Ioo_toDual
 -/
 
 #print Icc_ofDual /-
 theorem Icc_ofDual (a b : αᵒᵈ) : Icc (ofDual a) (ofDual b) = (Icc b a).map ofDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Icc, mem_Icc]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Icc, mem_Icc]; exact and_comm _ _
 #align Icc_of_dual Icc_ofDual
 -/
 
 #print Ico_ofDual /-
 theorem Ico_ofDual (a b : αᵒᵈ) : Ico (ofDual a) (ofDual b) = (Ioc b a).map ofDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ico, mem_Ioc]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ico, mem_Ioc]; exact and_comm _ _
 #align Ico_of_dual Ico_ofDual
 -/
 
 #print Ioc_ofDual /-
 theorem Ioc_ofDual (a b : αᵒᵈ) : Ioc (ofDual a) (ofDual b) = (Ico b a).map ofDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioc, mem_Ico]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioc, mem_Ico]; exact and_comm _ _
 #align Ioc_of_dual Ioc_ofDual
 -/
 
 #print Ioo_ofDual /-
 theorem Ioo_ofDual (a b : αᵒᵈ) : Ioo (ofDual a) (ofDual b) = (Ioo b a).map ofDual.toEmbedding := by
-  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioo, mem_Ioo]; exact and_comm' _ _
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioo, mem_Ioo]; exact and_comm _ _
 #align Ioo_of_dual Ioo_ofDual
 -/
 
@@ -1240,7 +1240,7 @@ instance : LocallyFiniteOrder (WithTop α)
     | (a : α), (b : α) => (Ioo a b).map Embedding.some
   finset_mem_Icc a b x :=
     match a, b, x with
-    | ⊤, ⊤, x => mem_singleton.trans (le_antisymm_iff.trans <| and_comm' _ _)
+    | ⊤, ⊤, x => mem_singleton.trans (le_antisymm_iff.trans <| and_comm _ _)
     | ⊤, (b : α), x =>
       iff_of_false (not_mem_empty _) fun h => (h.1.trans h.2).not_lt <| coe_lt_top _
     | (a : α), ⊤, ⊤ => by simp [WithTop.LocallyFiniteOrder._match1]
Diff
@@ -230,18 +230,18 @@ def LocallyFiniteOrderBot.ofIic' (α : Type _) [Preorder α] [DecidableRel ((·
 #align locally_finite_order_bot.of_Iic' LocallyFiniteOrderBot.ofIic'
 -/
 
-#print LocallyFiniteOrderTop.ofIic /-
+#print LocallyFiniteOrderBot.ofIic /-
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici'`, this one requires `partial_order` but
 only `decidable_eq`. -/
-def LocallyFiniteOrderTop.ofIic (α : Type _) [PartialOrder α] [DecidableEq α]
+def LocallyFiniteOrderBot.ofIic (α : Type _) [PartialOrder α] [DecidableEq α]
     (finset_Iic : α → Finset α) (mem_Iic : ∀ a x, x ∈ finset_Iic a ↔ x ≤ a) :
     LocallyFiniteOrderBot α :=
   { finsetIic
     finsetIio := fun a => (finset_Iic a).filterₓ fun x => x ≠ a
     finset_mem_Iic := mem_Iic
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_and_ne] }
-#align locally_finite_order_top.of_Iic LocallyFiniteOrderTop.ofIic
+#align locally_finite_order_top.of_Iic LocallyFiniteOrderBot.ofIic
 -/
 
 variable {α β : Type _}
Diff
@@ -1505,7 +1505,7 @@ theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a
   by
   rw [subtype_Icc_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Icc] at hx 
+  rw [mem_Icc] at hx
   exact hp hx.1 hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Icc Finset.map_subtype_embedding_Icc
 -/
@@ -1515,7 +1515,7 @@ theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a
   by
   rw [subtype_Ico_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Ico] at hx 
+  rw [mem_Ico] at hx
   exact hp hx.1 hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ico Finset.map_subtype_embedding_Ico
 -/
@@ -1525,7 +1525,7 @@ theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a
   by
   rw [subtype_Ioc_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Ioc] at hx 
+  rw [mem_Ioc] at hx
   exact hp hx.1.le hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Ioc Finset.map_subtype_embedding_Ioc
 -/
@@ -1535,7 +1535,7 @@ theorem map_subtype_embedding_Ioo : (Ioo a b).map (Embedding.subtype p) = Ioo a
   by
   rw [subtype_Ioo_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Ioo] at hx 
+  rw [mem_Ioo] at hx
   exact hp hx.1.le hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ioo Finset.map_subtype_embedding_Ioo
 -/
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
-import Mathbin.Data.Finset.Preimage
-import Mathbin.Data.Set.Intervals.UnorderedInterval
+import Data.Finset.Preimage
+import Data.Set.Intervals.UnorderedInterval
 
 #align_import order.locally_finite from "leanprover-community/mathlib"@"1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.locally_finite
-! leanprover-community/mathlib commit 1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Finset.Preimage
 import Mathbin.Data.Set.Intervals.UnorderedInterval
 
+#align_import order.locally_finite from "leanprover-community/mathlib"@"1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29"
+
 /-!
 # Locally finite orders
 
Diff
@@ -852,14 +852,18 @@ section Lattice
 
 variable [Lattice α] [LocallyFiniteOrder α] (a b : α)
 
+#print Set.fintypeUIcc /-
 instance fintypeUIcc : Fintype (uIcc a b) :=
   Fintype.ofFinset (Finset.uIcc a b) fun x => Finset.mem_uIcc
 #align set.fintype_uIcc Set.fintypeUIcc
+-/
 
+#print Set.finite_interval /-
 @[simp]
 theorem finite_interval : (uIcc a b).Finite :=
   (uIcc _ _).toFinite
 #align set.finite_interval Set.finite_interval
+-/
 
 end Lattice
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 
 ! This file was ported from Lean 3 source module order.locally_finite
-! leanprover-community/mathlib commit a11f9106a169dd302a285019e5165f8ab32ff433
+! leanprover-community/mathlib commit 1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -740,25 +740,25 @@ variable [Preorder α] [LocallyFiniteOrder α] (a b : α)
 
 #print Set.fintypeIcc /-
 instance fintypeIcc : Fintype (Icc a b) :=
-  Fintype.ofFinset (Finset.Icc a b) fun x => by rw [Finset.mem_Icc, mem_Icc]
+  Fintype.ofFinset (Finset.Icc a b) fun x => Finset.mem_Icc
 #align set.fintype_Icc Set.fintypeIcc
 -/
 
 #print Set.fintypeIco /-
 instance fintypeIco : Fintype (Ico a b) :=
-  Fintype.ofFinset (Finset.Ico a b) fun x => by rw [Finset.mem_Ico, mem_Ico]
+  Fintype.ofFinset (Finset.Ico a b) fun x => Finset.mem_Ico
 #align set.fintype_Ico Set.fintypeIco
 -/
 
 #print Set.fintypeIoc /-
 instance fintypeIoc : Fintype (Ioc a b) :=
-  Fintype.ofFinset (Finset.Ioc a b) fun x => by rw [Finset.mem_Ioc, mem_Ioc]
+  Fintype.ofFinset (Finset.Ioc a b) fun x => Finset.mem_Ioc
 #align set.fintype_Ioc Set.fintypeIoc
 -/
 
 #print Set.fintypeIoo /-
 instance fintypeIoo : Fintype (Ioo a b) :=
-  Fintype.ofFinset (Finset.Ioo a b) fun x => by rw [Finset.mem_Ioo, mem_Ioo]
+  Fintype.ofFinset (Finset.Ioo a b) fun x => Finset.mem_Ioo
 #align set.fintype_Ioo Set.fintypeIoo
 -/
 
@@ -794,13 +794,13 @@ variable [Preorder α] [LocallyFiniteOrderTop α] (a : α)
 
 #print Set.fintypeIci /-
 instance fintypeIci : Fintype (Ici a) :=
-  Fintype.ofFinset (Finset.Ici a) fun x => by rw [Finset.mem_Ici, mem_Ici]
+  Fintype.ofFinset (Finset.Ici a) fun x => Finset.mem_Ici
 #align set.fintype_Ici Set.fintypeIci
 -/
 
 #print Set.fintypeIoi /-
 instance fintypeIoi : Fintype (Ioi a) :=
-  Fintype.ofFinset (Finset.Ioi a) fun x => by rw [Finset.mem_Ioi, mem_Ioi]
+  Fintype.ofFinset (Finset.Ioi a) fun x => Finset.mem_Ioi
 #align set.fintype_Ioi Set.fintypeIoi
 -/
 
@@ -824,13 +824,13 @@ variable [Preorder α] [LocallyFiniteOrderBot α] (b : α)
 
 #print Set.fintypeIic /-
 instance fintypeIic : Fintype (Iic b) :=
-  Fintype.ofFinset (Finset.Iic b) fun x => by rw [Finset.mem_Iic, mem_Iic]
+  Fintype.ofFinset (Finset.Iic b) fun x => Finset.mem_Iic
 #align set.fintype_Iic Set.fintypeIic
 -/
 
 #print Set.fintypeIio /-
 instance fintypeIio : Fintype (Iio b) :=
-  Fintype.ofFinset (Finset.Iio b) fun x => by rw [Finset.mem_Iio, mem_Iio]
+  Fintype.ofFinset (Finset.Iio b) fun x => Finset.mem_Iio
 #align set.fintype_Iio Set.fintypeIio
 -/
 
@@ -848,6 +848,21 @@ theorem finite_Iio : (Iio b).Finite :=
 
 end OrderBot
 
+section Lattice
+
+variable [Lattice α] [LocallyFiniteOrder α] (a b : α)
+
+instance fintypeUIcc : Fintype (uIcc a b) :=
+  Fintype.ofFinset (Finset.uIcc a b) fun x => Finset.mem_uIcc
+#align set.fintype_uIcc Set.fintypeUIcc
+
+@[simp]
+theorem finite_interval : (uIcc a b).Finite :=
+  (uIcc _ _).toFinite
+#align set.finite_interval Set.finite_interval
+
+end Lattice
+
 end Set
 
 /-! ### Instances -/
Diff
@@ -892,13 +892,13 @@ instance : Subsingleton (LocallyFiniteOrder α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases h₀
     cases h₁
-    have hIcc : h₀_finset_Icc = h₁_finset_Icc := by ext (a b x);
+    have hIcc : h₀_finset_Icc = h₁_finset_Icc := by ext a b x;
       rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc]
-    have hIco : h₀_finset_Ico = h₁_finset_Ico := by ext (a b x);
+    have hIco : h₀_finset_Ico = h₁_finset_Ico := by ext a b x;
       rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico]
-    have hIoc : h₀_finset_Ioc = h₁_finset_Ioc := by ext (a b x);
+    have hIoc : h₀_finset_Ioc = h₁_finset_Ioc := by ext a b x;
       rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc]
-    have hIoo : h₀_finset_Ioo = h₁_finset_Ioo := by ext (a b x);
+    have hIoo : h₀_finset_Ioo = h₁_finset_Ioo := by ext a b x;
       rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo]
     simp_rw [hIcc, hIco, hIoc, hIoo]
 
@@ -906,9 +906,9 @@ instance : Subsingleton (LocallyFiniteOrderTop α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases h₀
     cases h₁
-    have hIci : h₀_finset_Ici = h₁_finset_Ici := by ext (a b x);
+    have hIci : h₀_finset_Ici = h₁_finset_Ici := by ext a b x;
       rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici]
-    have hIoi : h₀_finset_Ioi = h₁_finset_Ioi := by ext (a b x);
+    have hIoi : h₀_finset_Ioi = h₁_finset_Ioi := by ext a b x;
       rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi]
     simp_rw [hIci, hIoi]
 
@@ -916,9 +916,9 @@ instance : Subsingleton (LocallyFiniteOrderBot α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases h₀
     cases h₁
-    have hIic : h₀_finset_Iic = h₁_finset_Iic := by ext (a b x);
+    have hIic : h₀_finset_Iic = h₁_finset_Iic := by ext a b x;
       rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic]
-    have hIio : h₀_finset_Iio = h₁_finset_Iio := by ext (a b x);
+    have hIio : h₀_finset_Iio = h₁_finset_Iio := by ext a b x;
       rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
     simp_rw [hIic, hIio]
 
Diff
@@ -512,13 +512,17 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyF
 #align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTop
 -/
 
+#print Finset.Ici_eq_Icc /-
 theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
   rfl
 #align finset.Ici_eq_Icc Finset.Ici_eq_Icc
+-/
 
+#print Finset.Ioi_eq_Ioc /-
 theorem Ioi_eq_Ioc (a : α) : Ioi a = Ioc a ⊤ :=
   rfl
 #align finset.Ioi_eq_Ioc Finset.Ioi_eq_Ioc
+-/
 
 end OrderTop
 
@@ -537,13 +541,17 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyF
 #align finset.locally_finite_order.to_locally_finite_order_bot Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot
 -/
 
+#print Finset.Iic_eq_Icc /-
 theorem Iic_eq_Icc : Iic = Icc (⊥ : α) :=
   rfl
 #align finset.Iic_eq_Icc Finset.Iic_eq_Icc
+-/
 
+#print Finset.Iio_eq_Ico /-
 theorem Iio_eq_Ico : Iio = Ico (⊥ : α) :=
   rfl
 #align finset.Iio_eq_Ico Finset.Iio_eq_Ico
+-/
 
 end OrderBot
 
@@ -562,13 +570,14 @@ def uIcc (a b : α) : Finset α :=
 #align finset.uIcc Finset.uIcc
 -/
 
--- mathport name: finset.uIcc
 scoped[FinsetInterval] notation "[" a ", " b "]" => Finset.uIcc a b
 
+#print Finset.mem_uIcc /-
 @[simp]
 theorem mem_uIcc : x ∈ uIcc a b ↔ a ⊓ b ≤ x ∧ x ≤ a ⊔ b :=
   mem_Icc
 #align finset.mem_uIcc Finset.mem_uIcc
+-/
 
 #print Finset.coe_uIcc /-
 @[simp, norm_cast]
@@ -1111,25 +1120,31 @@ instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
     rw [mem_product, mem_Iic, mem_Iic]; rfl
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Prod.Icc_eq /-
 theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
     Finset.Icc p q = Finset.Icc p.1 q.1 ×ˢ Finset.Icc p.2 q.2 :=
   rfl
 #align prod.Icc_eq Prod.Icc_eq
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Prod.Icc_mk_mk /-
 @[simp]
 theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (a₁ a₂ : α) (b₁ b₂ : β) :
     Finset.Icc (a₁, b₁) (a₂, b₂) = Finset.Icc a₁ a₂ ×ˢ Finset.Icc b₁ b₂ :=
   rfl
 #align prod.Icc_mk_mk Prod.Icc_mk_mk
+-/
 
+#print Prod.card_Icc /-
 theorem card_Icc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
     (Finset.Icc p q).card = (Finset.Icc p.1 q.1).card * (Finset.Icc p.2 q.2).card :=
   Finset.card_product _ _
 #align prod.card_Icc Prod.card_Icc
+-/
 
 end Prod
 
@@ -1140,25 +1155,31 @@ namespace Prod
 variable [Lattice α] [Lattice β]
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Prod.uIcc_eq /-
 theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
     Finset.uIcc p q = Finset.uIcc p.1 q.1 ×ˢ Finset.uIcc p.2 q.2 :=
   rfl
 #align prod.uIcc_eq Prod.uIcc_eq
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Prod.uIcc_mk_mk /-
 @[simp]
 theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (a₁ a₂ : α) (b₁ b₂ : β) :
     Finset.uIcc (a₁, b₁) (a₂, b₂) = Finset.uIcc a₁ a₂ ×ˢ Finset.uIcc b₁ b₂ :=
   rfl
 #align prod.uIcc_mk_mk Prod.uIcc_mk_mk
+-/
 
+#print Prod.card_uIcc /-
 theorem card_uIcc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
     (Finset.uIcc p q).card = (Finset.uIcc p.1 q.1).card * (Finset.uIcc p.2 q.2).card :=
   Prod.card_Icc _ _
 #align prod.card_uIcc Prod.card_uIcc
+-/
 
 end Prod
 
@@ -1238,9 +1259,11 @@ instance : LocallyFiniteOrder (WithTop α)
 
 variable (a b : α)
 
+#print WithTop.Icc_coe_top /-
 theorem Icc_coe_top : Icc (a : WithTop α) ⊤ = insertNone (Ici a) :=
   rfl
 #align with_top.Icc_coe_top WithTop.Icc_coe_top
+-/
 
 #print WithTop.Icc_coe_coe /-
 theorem Icc_coe_coe : Icc (a : WithTop α) b = (Icc a b).map Embedding.some :=
@@ -1260,9 +1283,11 @@ theorem Ico_coe_coe : Ico (a : WithTop α) b = (Ico a b).map Embedding.some :=
 #align with_top.Ico_coe_coe WithTop.Ico_coe_coe
 -/
 
+#print WithTop.Ioc_coe_top /-
 theorem Ioc_coe_top : Ioc (a : WithTop α) ⊤ = insertNone (Ioi a) :=
   rfl
 #align with_top.Ioc_coe_top WithTop.Ioc_coe_top
+-/
 
 #print WithTop.Ioc_coe_coe /-
 theorem Ioc_coe_coe : Ioc (a : WithTop α) b = (Ioc a b).map Embedding.some :=
@@ -1293,9 +1318,11 @@ instance : LocallyFiniteOrder (WithBot α) :=
 
 variable (a b : α)
 
+#print WithBot.Icc_bot_coe /-
 theorem Icc_bot_coe : Icc (⊥ : WithBot α) b = insertNone (Iic b) :=
   rfl
 #align with_bot.Icc_bot_coe WithBot.Icc_bot_coe
+-/
 
 #print WithBot.Icc_coe_coe /-
 theorem Icc_coe_coe : Icc (a : WithBot α) b = (Icc a b).map Embedding.some :=
@@ -1303,9 +1330,11 @@ theorem Icc_coe_coe : Icc (a : WithBot α) b = (Icc a b).map Embedding.some :=
 #align with_bot.Icc_coe_coe WithBot.Icc_coe_coe
 -/
 
+#print WithBot.Ico_bot_coe /-
 theorem Ico_bot_coe : Ico (⊥ : WithBot α) b = insertNone (Iio b) :=
   rfl
 #align with_bot.Ico_bot_coe WithBot.Ico_bot_coe
+-/
 
 #print WithBot.Ico_coe_coe /-
 theorem Ico_coe_coe : Ico (a : WithBot α) b = (Ico a b).map Embedding.some :=
@@ -1455,8 +1484,6 @@ theorem subtype_Ioo_eq : Ioo a b = (Ioo (a : α) b).Subtype p :=
 
 variable (hp : ∀ ⦃a b x⦄, a ≤ x → x ≤ b → p a → p b → p x)
 
-include hp
-
 #print Finset.map_subtype_embedding_Icc /-
 theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a b :=
   by
@@ -1517,8 +1544,6 @@ theorem subtype_Ioi_eq : Ioi a = (Ioi (a : α)).Subtype p :=
 
 variable (hp : ∀ ⦃a x⦄, a ≤ x → p a → p x)
 
-include hp
-
 #print Finset.map_subtype_embedding_Ici /-
 theorem map_subtype_embedding_Ici : (Ici a).map (Embedding.subtype p) = Ici a := by
   rw [subtype_Ici_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop
@@ -1551,8 +1576,6 @@ theorem subtype_Iio_eq : Iio a = (Iio (a : α)).Subtype p :=
 
 variable (hp : ∀ ⦃a x⦄, x ≤ a → p a → p x)
 
-include hp
-
 #print Finset.map_subtype_embedding_Iic /-
 theorem map_subtype_embedding_Iic : (Iic a).map (Embedding.subtype p) = Iic a := by
   rw [subtype_Iic_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop
Diff
@@ -1462,7 +1462,7 @@ theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a
   by
   rw [subtype_Icc_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Icc] at hx
+  rw [mem_Icc] at hx 
   exact hp hx.1 hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Icc Finset.map_subtype_embedding_Icc
 -/
@@ -1472,7 +1472,7 @@ theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a
   by
   rw [subtype_Ico_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Ico] at hx
+  rw [mem_Ico] at hx 
   exact hp hx.1 hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ico Finset.map_subtype_embedding_Ico
 -/
@@ -1482,7 +1482,7 @@ theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a
   by
   rw [subtype_Ioc_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Ioc] at hx
+  rw [mem_Ioc] at hx 
   exact hp hx.1.le hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Ioc Finset.map_subtype_embedding_Ioc
 -/
@@ -1492,7 +1492,7 @@ theorem map_subtype_embedding_Ioo : (Ioo a b).map (Embedding.subtype p) = Ioo a
   by
   rw [subtype_Ioo_eq]
   refine' Finset.subtype_map_of_mem fun x hx => _
-  rw [mem_Ioo] at hx
+  rw [mem_Ioo] at hx 
   exact hp hx.1.le hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ioo Finset.map_subtype_embedding_Ioo
 -/
Diff
@@ -151,6 +151,7 @@ class LocallyFiniteOrderBot (α : Type _) [Preorder α] where
 #align locally_finite_order_bot LocallyFiniteOrderBot
 -/
 
+#print LocallyFiniteOrder.ofIcc' /-
 /-- A constructor from a definition of `finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -168,7 +169,9 @@ def LocallyFiniteOrder.ofIcc' (α : Type _) [Preorder α] [DecidableRel ((· ≤
     finset_mem_Ioo := fun a b x => by
       rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_not_le, lt_iff_le_not_le] }
 #align locally_finite_order.of_Icc' LocallyFiniteOrder.ofIcc'
+-/
 
+#print LocallyFiniteOrder.ofIcc /-
 /-- A constructor from a definition of `finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `partial_order` but only
 `decidable_eq`. -/
@@ -186,7 +189,9 @@ def LocallyFiniteOrder.ofIcc (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Ioo := fun a b x => by
       rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_and_ne, lt_iff_le_and_ne] }
 #align locally_finite_order.of_Icc LocallyFiniteOrder.ofIcc
+-/
 
+#print LocallyFiniteOrderTop.ofIci' /-
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -198,7 +203,9 @@ def LocallyFiniteOrderTop.ofIci' (α : Type _) [Preorder α] [DecidableRel ((·
     finset_mem_Ici := mem_Ici
     finset_mem_Ioi := fun a x => by rw [mem_filter, mem_Ici, lt_iff_le_not_le] }
 #align locally_finite_order_top.of_Ici' LocallyFiniteOrderTop.ofIci'
+-/
 
+#print LocallyFiniteOrderTop.ofIci /-
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici'`, this one requires `partial_order` but
 only `decidable_eq`. -/
@@ -210,7 +217,9 @@ def LocallyFiniteOrderTop.ofIci (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Ici := mem_Ici
     finset_mem_Ioi := fun a x => by rw [mem_filter, mem_Ici, lt_iff_le_and_ne] }
 #align locally_finite_order_top.of_Ici LocallyFiniteOrderTop.ofIci
+-/
 
+#print LocallyFiniteOrderBot.ofIic' /-
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -222,7 +231,9 @@ def LocallyFiniteOrderBot.ofIic' (α : Type _) [Preorder α] [DecidableRel ((·
     finset_mem_Iic := mem_Iic
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_not_le] }
 #align locally_finite_order_bot.of_Iic' LocallyFiniteOrderBot.ofIic'
+-/
 
+#print LocallyFiniteOrderTop.ofIic /-
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici'`, this one requires `partial_order` but
 only `decidable_eq`. -/
@@ -234,6 +245,7 @@ def LocallyFiniteOrderTop.ofIic (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Iic := mem_Iic
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_and_ne] }
 #align locally_finite_order_top.of_Iic LocallyFiniteOrderTop.ofIic
+-/
 
 variable {α β : Type _}
 
@@ -331,25 +343,33 @@ def Ioo (a b : α) : Finset α :=
 #align finset.Ioo Finset.Ioo
 -/
 
+#print Finset.mem_Icc /-
 @[simp]
 theorem mem_Icc : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b :=
   LocallyFiniteOrder.finset_mem_Icc a b x
 #align finset.mem_Icc Finset.mem_Icc
+-/
 
+#print Finset.mem_Ico /-
 @[simp]
 theorem mem_Ico : x ∈ Ico a b ↔ a ≤ x ∧ x < b :=
   LocallyFiniteOrder.finset_mem_Ico a b x
 #align finset.mem_Ico Finset.mem_Ico
+-/
 
+#print Finset.mem_Ioc /-
 @[simp]
 theorem mem_Ioc : x ∈ Ioc a b ↔ a < x ∧ x ≤ b :=
   LocallyFiniteOrder.finset_mem_Ioc a b x
 #align finset.mem_Ioc Finset.mem_Ioc
+-/
 
+#print Finset.mem_Ioo /-
 @[simp]
 theorem mem_Ioo : x ∈ Ioo a b ↔ a < x ∧ x < b :=
   LocallyFiniteOrder.finset_mem_Ioo a b x
 #align finset.mem_Ioo Finset.mem_Ioo
+-/
 
 #print Finset.coe_Icc /-
 @[simp, norm_cast]
@@ -399,15 +419,19 @@ def Ioi (a : α) : Finset α :=
 #align finset.Ioi Finset.Ioi
 -/
 
+#print Finset.mem_Ici /-
 @[simp]
 theorem mem_Ici : x ∈ Ici a ↔ a ≤ x :=
   LocallyFiniteOrderTop.finset_mem_Ici _ _
 #align finset.mem_Ici Finset.mem_Ici
+-/
 
+#print Finset.mem_Ioi /-
 @[simp]
 theorem mem_Ioi : x ∈ Ioi a ↔ a < x :=
   LocallyFiniteOrderTop.finset_mem_Ioi _ _
 #align finset.mem_Ioi Finset.mem_Ioi
+-/
 
 #print Finset.coe_Ici /-
 @[simp, norm_cast]
@@ -443,15 +467,19 @@ def Iio (a : α) : Finset α :=
 #align finset.Iio Finset.Iio
 -/
 
+#print Finset.mem_Iic /-
 @[simp]
 theorem mem_Iic : x ∈ Iic a ↔ x ≤ a :=
   LocallyFiniteOrderBot.finset_mem_Iic _ _
 #align finset.mem_Iic Finset.mem_Iic
+-/
 
+#print Finset.mem_Iio /-
 @[simp]
 theorem mem_Iio : x ∈ Iio a ↔ x < a :=
   LocallyFiniteOrderBot.finset_mem_Iio _ _
 #align finset.mem_Iio Finset.mem_Iio
+-/
 
 #print Finset.coe_Iic /-
 @[simp, norm_cast]
@@ -473,6 +501,7 @@ section OrderTop
 
 variable [LocallyFiniteOrder α] [OrderTop α] {a x : α}
 
+#print LocallyFiniteOrder.toLocallyFiniteOrderTop /-
 -- See note [lower priority instance]
 instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyFiniteOrderTop α
     where
@@ -481,6 +510,7 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyF
   finset_mem_Ici a x := by rw [mem_Icc, and_iff_left le_top]
   finset_mem_Ioi a x := by rw [mem_Ioc, and_iff_left le_top]
 #align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTop
+-/
 
 theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
   rfl
@@ -496,6 +526,7 @@ section OrderBot
 
 variable [OrderBot α] [LocallyFiniteOrder α] {b x : α}
 
+#print Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot /-
 -- See note [lower priority instance]
 instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyFiniteOrderBot α
     where
@@ -504,6 +535,7 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyF
   finset_mem_Iic a x := by rw [mem_Icc, and_iff_right bot_le]
   finset_mem_Iio a x := by rw [mem_Ico, and_iff_right bot_le]
 #align finset.locally_finite_order.to_locally_finite_order_bot Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot
+-/
 
 theorem Iic_eq_Icc : Iic = Icc (⊥ : α) :=
   rfl
@@ -592,25 +624,33 @@ def Ioo (a b : α) : Multiset α :=
 #align multiset.Ioo Multiset.Ioo
 -/
 
+#print Multiset.mem_Icc /-
 @[simp]
 theorem mem_Icc {a b x : α} : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b := by
   rw [Icc, ← Finset.mem_def, Finset.mem_Icc]
 #align multiset.mem_Icc Multiset.mem_Icc
+-/
 
+#print Multiset.mem_Ico /-
 @[simp]
 theorem mem_Ico {a b x : α} : x ∈ Ico a b ↔ a ≤ x ∧ x < b := by
   rw [Ico, ← Finset.mem_def, Finset.mem_Ico]
 #align multiset.mem_Ico Multiset.mem_Ico
+-/
 
+#print Multiset.mem_Ioc /-
 @[simp]
 theorem mem_Ioc {a b x : α} : x ∈ Ioc a b ↔ a < x ∧ x ≤ b := by
   rw [Ioc, ← Finset.mem_def, Finset.mem_Ioc]
 #align multiset.mem_Ioc Multiset.mem_Ioc
+-/
 
+#print Multiset.mem_Ioo /-
 @[simp]
 theorem mem_Ioo {a b x : α} : x ∈ Ioo a b ↔ a < x ∧ x < b := by
   rw [Ioo, ← Finset.mem_def, Finset.mem_Ioo]
 #align multiset.mem_Ioo Multiset.mem_Ioo
+-/
 
 end LocallyFiniteOrder
 
@@ -632,13 +672,17 @@ def Ioi (a : α) : Multiset α :=
 #align multiset.Ioi Multiset.Ioi
 -/
 
+#print Multiset.mem_Ici /-
 @[simp]
 theorem mem_Ici {a x : α} : x ∈ Ici a ↔ a ≤ x := by rw [Ici, ← Finset.mem_def, Finset.mem_Ici]
 #align multiset.mem_Ici Multiset.mem_Ici
+-/
 
+#print Multiset.mem_Ioi /-
 @[simp]
 theorem mem_Ioi {a x : α} : x ∈ Ioi a ↔ a < x := by rw [Ioi, ← Finset.mem_def, Finset.mem_Ioi]
 #align multiset.mem_Ioi Multiset.mem_Ioi
+-/
 
 end LocallyFiniteOrderTop
 
@@ -660,13 +704,17 @@ def Iio (b : α) : Multiset α :=
 #align multiset.Iio Multiset.Iio
 -/
 
+#print Multiset.mem_Iic /-
 @[simp]
 theorem mem_Iic {b x : α} : x ∈ Iic b ↔ x ≤ b := by rw [Iic, ← Finset.mem_def, Finset.mem_Iic]
 #align multiset.mem_Iic Multiset.mem_Iic
+-/
 
+#print Multiset.mem_Iio /-
 @[simp]
 theorem mem_Iio {b x : α} : x ∈ Iio b ↔ x < b := by rw [Iio, ← Finset.mem_def, Finset.mem_Iio]
 #align multiset.mem_Iio Multiset.mem_Iio
+-/
 
 end LocallyFiniteOrderBot
 
@@ -811,6 +859,7 @@ noncomputable def LocallyFiniteOrder.ofFiniteIcc (h : ∀ a b : α, (Set.Icc a b
 #align locally_finite_order.of_finite_Icc LocallyFiniteOrder.ofFiniteIcc
 -/
 
+#print Fintype.toLocallyFiniteOrder /-
 /-- A fintype is a locally finite order.
 
 This is not an instance as it would not be defeq to better instances such as
@@ -828,6 +877,7 @@ def Fintype.toLocallyFiniteOrder [Fintype α] [@DecidableRel α (· < ·)] [@Dec
   finset_mem_Ioc a b x := by simp only [Set.mem_toFinset, Set.mem_Ioc]
   finset_mem_Ioo a b x := by simp only [Set.mem_toFinset, Set.mem_Ioo]
 #align fintype.to_locally_finite_order Fintype.toLocallyFiniteOrder
+-/
 
 instance : Subsingleton (LocallyFiniteOrder α) :=
   Subsingleton.intro fun h₀ h₁ => by
@@ -863,6 +913,7 @@ instance : Subsingleton (LocallyFiniteOrderBot α) :=
       rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
     simp_rw [hIic, hIio]
 
+#print OrderEmbedding.locallyFiniteOrder /-
 -- Should this be called `locally_finite_order.lift`?
 /-- Given an order embedding `α ↪o β`, pulls back the `locally_finite_order` on `β` to `α`. -/
 protected noncomputable def OrderEmbedding.locallyFiniteOrder [LocallyFiniteOrder β] (f : α ↪o β) :
@@ -877,6 +928,7 @@ protected noncomputable def OrderEmbedding.locallyFiniteOrder [LocallyFiniteOrde
   finset_mem_Ioc a b x := by rw [mem_preimage, mem_Ioc, f.lt_iff_lt, f.le_iff_le]
   finset_mem_Ioo a b x := by rw [mem_preimage, mem_Ioo, f.lt_iff_lt, f.lt_iff_lt]
 #align order_embedding.locally_finite_order OrderEmbedding.locallyFiniteOrder
+-/
 
 open OrderDual
 
@@ -1190,33 +1242,45 @@ theorem Icc_coe_top : Icc (a : WithTop α) ⊤ = insertNone (Ici a) :=
   rfl
 #align with_top.Icc_coe_top WithTop.Icc_coe_top
 
+#print WithTop.Icc_coe_coe /-
 theorem Icc_coe_coe : Icc (a : WithTop α) b = (Icc a b).map Embedding.some :=
   rfl
 #align with_top.Icc_coe_coe WithTop.Icc_coe_coe
+-/
 
+#print WithTop.Ico_coe_top /-
 theorem Ico_coe_top : Ico (a : WithTop α) ⊤ = (Ici a).map Embedding.some :=
   rfl
 #align with_top.Ico_coe_top WithTop.Ico_coe_top
+-/
 
+#print WithTop.Ico_coe_coe /-
 theorem Ico_coe_coe : Ico (a : WithTop α) b = (Ico a b).map Embedding.some :=
   rfl
 #align with_top.Ico_coe_coe WithTop.Ico_coe_coe
+-/
 
 theorem Ioc_coe_top : Ioc (a : WithTop α) ⊤ = insertNone (Ioi a) :=
   rfl
 #align with_top.Ioc_coe_top WithTop.Ioc_coe_top
 
+#print WithTop.Ioc_coe_coe /-
 theorem Ioc_coe_coe : Ioc (a : WithTop α) b = (Ioc a b).map Embedding.some :=
   rfl
 #align with_top.Ioc_coe_coe WithTop.Ioc_coe_coe
+-/
 
+#print WithTop.Ioo_coe_top /-
 theorem Ioo_coe_top : Ioo (a : WithTop α) ⊤ = (Ioi a).map Embedding.some :=
   rfl
 #align with_top.Ioo_coe_top WithTop.Ioo_coe_top
+-/
 
+#print WithTop.Ioo_coe_coe /-
 theorem Ioo_coe_coe : Ioo (a : WithTop α) b = (Ioo a b).map Embedding.some :=
   rfl
 #align with_top.Ioo_coe_coe WithTop.Ioo_coe_coe
+-/
 
 end WithTop
 
@@ -1233,33 +1297,45 @@ theorem Icc_bot_coe : Icc (⊥ : WithBot α) b = insertNone (Iic b) :=
   rfl
 #align with_bot.Icc_bot_coe WithBot.Icc_bot_coe
 
+#print WithBot.Icc_coe_coe /-
 theorem Icc_coe_coe : Icc (a : WithBot α) b = (Icc a b).map Embedding.some :=
   rfl
 #align with_bot.Icc_coe_coe WithBot.Icc_coe_coe
+-/
 
 theorem Ico_bot_coe : Ico (⊥ : WithBot α) b = insertNone (Iio b) :=
   rfl
 #align with_bot.Ico_bot_coe WithBot.Ico_bot_coe
 
+#print WithBot.Ico_coe_coe /-
 theorem Ico_coe_coe : Ico (a : WithBot α) b = (Ico a b).map Embedding.some :=
   rfl
 #align with_bot.Ico_coe_coe WithBot.Ico_coe_coe
+-/
 
+#print WithBot.Ioc_bot_coe /-
 theorem Ioc_bot_coe : Ioc (⊥ : WithBot α) b = (Iic b).map Embedding.some :=
   rfl
 #align with_bot.Ioc_bot_coe WithBot.Ioc_bot_coe
+-/
 
+#print WithBot.Ioc_coe_coe /-
 theorem Ioc_coe_coe : Ioc (a : WithBot α) b = (Ioc a b).map Embedding.some :=
   rfl
 #align with_bot.Ioc_coe_coe WithBot.Ioc_coe_coe
+-/
 
+#print WithBot.Ioo_bot_coe /-
 theorem Ioo_bot_coe : Ioo (⊥ : WithBot α) b = (Iio b).map Embedding.some :=
   rfl
 #align with_bot.Ioo_bot_coe WithBot.Ioo_bot_coe
+-/
 
+#print WithBot.Ioo_coe_coe /-
 theorem Ioo_coe_coe : Ioo (a : WithBot α) b = (Ioo a b).map Embedding.some :=
   rfl
 #align with_bot.Ioo_coe_coe WithBot.Ioo_coe_coe
+-/
 
 end WithBot
 
@@ -1270,6 +1346,7 @@ variable [Preorder α] [Preorder β]
 /-! #### Transfer locally finite orders across order isomorphisms -/
 
 
+#print OrderIso.locallyFiniteOrder /-
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order` across an `order_iso`. -/
 @[reducible]
@@ -1284,7 +1361,9 @@ def locallyFiniteOrder [LocallyFiniteOrder β] (f : α ≃o β) : LocallyFiniteO
   finset_mem_Ioc := by simp
   finset_mem_Ioo := by simp
 #align order_iso.locally_finite_order OrderIso.locallyFiniteOrder
+-/
 
+#print OrderIso.locallyFiniteOrderTop /-
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order_top` across an `order_iso`. -/
 @[reducible]
@@ -1295,7 +1374,9 @@ def locallyFiniteOrderTop [LocallyFiniteOrderTop β] (f : α ≃o β) : LocallyF
   finset_mem_Ici := by simp
   finset_mem_Ioi := by simp
 #align order_iso.locally_finite_order_top OrderIso.locallyFiniteOrderTop
+-/
 
+#print OrderIso.locallyFiniteOrderBot /-
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order_bot` across an `order_iso`. -/
 @[reducible]
@@ -1306,6 +1387,7 @@ def locallyFiniteOrderBot [LocallyFiniteOrderBot β] (f : α ≃o β) : LocallyF
   finset_mem_Iic := by simp
   finset_mem_Iio := by simp
 #align order_iso.locally_finite_order_bot OrderIso.locallyFiniteOrderBot
+-/
 
 end OrderIso
 
@@ -1347,26 +1429,35 @@ section LocallyFiniteOrder
 
 variable [LocallyFiniteOrder α] (a b : Subtype p)
 
+#print Finset.subtype_Icc_eq /-
 theorem subtype_Icc_eq : Icc a b = (Icc (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Icc_eq Finset.subtype_Icc_eq
+-/
 
+#print Finset.subtype_Ico_eq /-
 theorem subtype_Ico_eq : Ico a b = (Ico (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ico_eq Finset.subtype_Ico_eq
+-/
 
+#print Finset.subtype_Ioc_eq /-
 theorem subtype_Ioc_eq : Ioc a b = (Ioc (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ioc_eq Finset.subtype_Ioc_eq
+-/
 
+#print Finset.subtype_Ioo_eq /-
 theorem subtype_Ioo_eq : Ioo a b = (Ioo (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ioo_eq Finset.subtype_Ioo_eq
+-/
 
 variable (hp : ∀ ⦃a b x⦄, a ≤ x → x ≤ b → p a → p b → p x)
 
 include hp
 
+#print Finset.map_subtype_embedding_Icc /-
 theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a b :=
   by
   rw [subtype_Icc_eq]
@@ -1374,7 +1465,9 @@ theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a
   rw [mem_Icc] at hx
   exact hp hx.1 hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Icc Finset.map_subtype_embedding_Icc
+-/
 
+#print Finset.map_subtype_embedding_Ico /-
 theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a b :=
   by
   rw [subtype_Ico_eq]
@@ -1382,7 +1475,9 @@ theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a
   rw [mem_Ico] at hx
   exact hp hx.1 hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ico Finset.map_subtype_embedding_Ico
+-/
 
+#print Finset.map_subtype_embedding_Ioc /-
 theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a b :=
   by
   rw [subtype_Ioc_eq]
@@ -1390,7 +1485,9 @@ theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a
   rw [mem_Ioc] at hx
   exact hp hx.1.le hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Ioc Finset.map_subtype_embedding_Ioc
+-/
 
+#print Finset.map_subtype_embedding_Ioo /-
 theorem map_subtype_embedding_Ioo : (Ioo a b).map (Embedding.subtype p) = Ioo a b :=
   by
   rw [subtype_Ioo_eq]
@@ -1398,6 +1495,7 @@ theorem map_subtype_embedding_Ioo : (Ioo a b).map (Embedding.subtype p) = Ioo a
   rw [mem_Ioo] at hx
   exact hp hx.1.le hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ioo Finset.map_subtype_embedding_Ioo
+-/
 
 end LocallyFiniteOrder
 
@@ -1405,25 +1503,33 @@ section LocallyFiniteOrderTop
 
 variable [LocallyFiniteOrderTop α] (a : Subtype p)
 
+#print Finset.subtype_Ici_eq /-
 theorem subtype_Ici_eq : Ici a = (Ici (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Ici_eq Finset.subtype_Ici_eq
+-/
 
+#print Finset.subtype_Ioi_eq /-
 theorem subtype_Ioi_eq : Ioi a = (Ioi (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Ioi_eq Finset.subtype_Ioi_eq
+-/
 
 variable (hp : ∀ ⦃a x⦄, a ≤ x → p a → p x)
 
 include hp
 
+#print Finset.map_subtype_embedding_Ici /-
 theorem map_subtype_embedding_Ici : (Ici a).map (Embedding.subtype p) = Ici a := by
   rw [subtype_Ici_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop
 #align finset.map_subtype_embedding_Ici Finset.map_subtype_embedding_Ici
+-/
 
+#print Finset.map_subtype_embedding_Ioi /-
 theorem map_subtype_embedding_Ioi : (Ioi a).map (Embedding.subtype p) = Ioi a := by
   rw [subtype_Ioi_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ioi.1 hx).le a.prop
 #align finset.map_subtype_embedding_Ioi Finset.map_subtype_embedding_Ioi
+-/
 
 end LocallyFiniteOrderTop
 
@@ -1431,25 +1537,33 @@ section LocallyFiniteOrderBot
 
 variable [LocallyFiniteOrderBot α] (a : Subtype p)
 
+#print Finset.subtype_Iic_eq /-
 theorem subtype_Iic_eq : Iic a = (Iic (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Iic_eq Finset.subtype_Iic_eq
+-/
 
+#print Finset.subtype_Iio_eq /-
 theorem subtype_Iio_eq : Iio a = (Iio (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Iio_eq Finset.subtype_Iio_eq
+-/
 
 variable (hp : ∀ ⦃a x⦄, x ≤ a → p a → p x)
 
 include hp
 
+#print Finset.map_subtype_embedding_Iic /-
 theorem map_subtype_embedding_Iic : (Iic a).map (Embedding.subtype p) = Iic a := by
   rw [subtype_Iic_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop
 #align finset.map_subtype_embedding_Iic Finset.map_subtype_embedding_Iic
+-/
 
+#print Finset.map_subtype_embedding_Iio /-
 theorem map_subtype_embedding_Iio : (Iio a).map (Embedding.subtype p) = Iio a := by
   rw [subtype_Iio_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iio.1 hx).le a.prop
 #align finset.map_subtype_embedding_Iio Finset.map_subtype_embedding_Iio
+-/
 
 end LocallyFiniteOrderBot
 
Diff
@@ -151,12 +151,6 @@ class LocallyFiniteOrderBot (α : Type _) [Preorder α] where
 #align locally_finite_order_bot LocallyFiniteOrderBot
 -/
 
-/- warning: locally_finite_order.of_Icc' -> LocallyFiniteOrder.ofIcc' is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))) -> (LocallyFiniteOrder.{u1} α _inst_1)
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.285 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.285 x._@.Mathlib.Order.LocallyFinite._hyg.287)] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))) -> (LocallyFiniteOrder.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align locally_finite_order.of_Icc' LocallyFiniteOrder.ofIcc'ₓ'. -/
 /-- A constructor from a definition of `finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -175,12 +169,6 @@ def LocallyFiniteOrder.ofIcc' (α : Type _) [Preorder α] [DecidableRel ((· ≤
       rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_not_le, lt_iff_le_not_le] }
 #align locally_finite_order.of_Icc' LocallyFiniteOrder.ofIcc'
 
-/- warning: locally_finite_order.of_Icc -> LocallyFiniteOrder.ofIcc is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x b))) -> (LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x b))) -> (LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align locally_finite_order.of_Icc LocallyFiniteOrder.ofIccₓ'. -/
 /-- A constructor from a definition of `finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `partial_order` but only
 `decidable_eq`. -/
@@ -199,12 +187,6 @@ def LocallyFiniteOrder.ofIcc (α : Type _) [PartialOrder α] [DecidableEq α]
       rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_and_ne, lt_iff_le_and_ne] }
 #align locally_finite_order.of_Icc LocallyFiniteOrder.ofIcc
 
-/- warning: locally_finite_order_top.of_Ici' -> LocallyFiniteOrderTop.ofIci' is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.784 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.786 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.784 x._@.Mathlib.Order.LocallyFinite._hyg.786)] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align locally_finite_order_top.of_Ici' LocallyFiniteOrderTop.ofIci'ₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -217,12 +199,6 @@ def LocallyFiniteOrderTop.ofIci' (α : Type _) [Preorder α] [DecidableRel ((·
     finset_mem_Ioi := fun a x => by rw [mem_filter, mem_Ici, lt_iff_le_not_le] }
 #align locally_finite_order_top.of_Ici' LocallyFiniteOrderTop.ofIci'
 
-/- warning: locally_finite_order_top.of_Ici -> LocallyFiniteOrderTop.ofIci is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x)) -> (LocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x)) -> (LocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align locally_finite_order_top.of_Ici LocallyFiniteOrderTop.ofIciₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici'`, this one requires `partial_order` but
 only `decidable_eq`. -/
@@ -235,12 +211,6 @@ def LocallyFiniteOrderTop.ofIci (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Ioi := fun a x => by rw [mem_filter, mem_Ici, lt_iff_le_and_ne] }
 #align locally_finite_order_top.of_Ici LocallyFiniteOrderTop.ofIci
 
-/- warning: locally_finite_order_bot.of_Iic' -> LocallyFiniteOrderBot.ofIic' is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.1000 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.1002 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.1000 x._@.Mathlib.Order.LocallyFinite._hyg.1002)] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align locally_finite_order_bot.of_Iic' LocallyFiniteOrderBot.ofIic'ₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -253,12 +223,6 @@ def LocallyFiniteOrderBot.ofIic' (α : Type _) [Preorder α] [DecidableRel ((·
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_not_le] }
 #align locally_finite_order_bot.of_Iic' LocallyFiniteOrderBot.ofIic'
 
-/- warning: locally_finite_order_top.of_Iic -> LocallyFiniteOrderTop.ofIic is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x a)) -> (LocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x a)) -> (LocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align locally_finite_order_top.of_Iic LocallyFiniteOrderTop.ofIicₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici'`, this one requires `partial_order` but
 only `decidable_eq`. -/
@@ -367,45 +331,21 @@ def Ioo (a b : α) : Finset α :=
 #align finset.Ioo Finset.Ioo
 -/
 
-/- warning: finset.mem_Icc -> Finset.mem_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align finset.mem_Icc Finset.mem_Iccₓ'. -/
 @[simp]
 theorem mem_Icc : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b :=
   LocallyFiniteOrder.finset_mem_Icc a b x
 #align finset.mem_Icc Finset.mem_Icc
 
-/- warning: finset.mem_Ico -> Finset.mem_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align finset.mem_Ico Finset.mem_Icoₓ'. -/
 @[simp]
 theorem mem_Ico : x ∈ Ico a b ↔ a ≤ x ∧ x < b :=
   LocallyFiniteOrder.finset_mem_Ico a b x
 #align finset.mem_Ico Finset.mem_Ico
 
-/- warning: finset.mem_Ioc -> Finset.mem_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align finset.mem_Ioc Finset.mem_Iocₓ'. -/
 @[simp]
 theorem mem_Ioc : x ∈ Ioc a b ↔ a < x ∧ x ≤ b :=
   LocallyFiniteOrder.finset_mem_Ioc a b x
 #align finset.mem_Ioc Finset.mem_Ioc
 
-/- warning: finset.mem_Ioo -> Finset.mem_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align finset.mem_Ioo Finset.mem_Iooₓ'. -/
 @[simp]
 theorem mem_Ioo : x ∈ Ioo a b ↔ a < x ∧ x < b :=
   LocallyFiniteOrder.finset_mem_Ioo a b x
@@ -459,23 +399,11 @@ def Ioi (a : α) : Finset α :=
 #align finset.Ioi Finset.Ioi
 -/
 
-/- warning: finset.mem_Ici -> Finset.mem_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x)
-Case conversion may be inaccurate. Consider using '#align finset.mem_Ici Finset.mem_Iciₓ'. -/
 @[simp]
 theorem mem_Ici : x ∈ Ici a ↔ a ≤ x :=
   LocallyFiniteOrderTop.finset_mem_Ici _ _
 #align finset.mem_Ici Finset.mem_Ici
 
-/- warning: finset.mem_Ioi -> Finset.mem_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x)
-Case conversion may be inaccurate. Consider using '#align finset.mem_Ioi Finset.mem_Ioiₓ'. -/
 @[simp]
 theorem mem_Ioi : x ∈ Ioi a ↔ a < x :=
   LocallyFiniteOrderTop.finset_mem_Ioi _ _
@@ -515,23 +443,11 @@ def Iio (a : α) : Finset α :=
 #align finset.Iio Finset.Iio
 -/
 
-/- warning: finset.mem_Iic -> Finset.mem_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Iic.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Iic.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a)
-Case conversion may be inaccurate. Consider using '#align finset.mem_Iic Finset.mem_Iicₓ'. -/
 @[simp]
 theorem mem_Iic : x ∈ Iic a ↔ x ≤ a :=
   LocallyFiniteOrderBot.finset_mem_Iic _ _
 #align finset.mem_Iic Finset.mem_Iic
 
-/- warning: finset.mem_Iio -> Finset.mem_Iio is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Iio.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Iio.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x a)
-Case conversion may be inaccurate. Consider using '#align finset.mem_Iio Finset.mem_Iioₓ'. -/
 @[simp]
 theorem mem_Iio : x ∈ Iio a ↔ x < a :=
   LocallyFiniteOrderBot.finset_mem_Iio _ _
@@ -557,12 +473,6 @@ section OrderTop
 
 variable [LocallyFiniteOrder α] [OrderTop α] {a x : α}
 
-/- warning: locally_finite_order.to_locally_finite_order_top -> LocallyFiniteOrder.toLocallyFiniteOrderTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], LocallyFiniteOrderTop.{u1} α _inst_1
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)], LocallyFiniteOrderTop.{u1} α _inst_1
-Case conversion may be inaccurate. Consider using '#align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTopₓ'. -/
 -- See note [lower priority instance]
 instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyFiniteOrderTop α
     where
@@ -572,22 +482,10 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyF
   finset_mem_Ioi a x := by rw [mem_Ioc, and_iff_left le_top]
 #align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTop
 
-/- warning: finset.Ici_eq_Icc -> Finset.Ici_eq_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
-Case conversion may be inaccurate. Consider using '#align finset.Ici_eq_Icc Finset.Ici_eq_Iccₓ'. -/
 theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
   rfl
 #align finset.Ici_eq_Icc Finset.Ici_eq_Icc
 
-/- warning: finset.Ioi_eq_Ioc -> Finset.Ioi_eq_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
-Case conversion may be inaccurate. Consider using '#align finset.Ioi_eq_Ioc Finset.Ioi_eq_Iocₓ'. -/
 theorem Ioi_eq_Ioc (a : α) : Ioi a = Ioc a ⊤ :=
   rfl
 #align finset.Ioi_eq_Ioc Finset.Ioi_eq_Ioc
@@ -598,12 +496,6 @@ section OrderBot
 
 variable [OrderBot α] [LocallyFiniteOrder α] {b x : α}
 
-/- warning: finset.locally_finite_order.to_locally_finite_order_bot -> Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], LocallyFiniteOrderBot.{u1} α _inst_1
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], LocallyFiniteOrderBot.{u1} α _inst_1
-Case conversion may be inaccurate. Consider using '#align finset.locally_finite_order.to_locally_finite_order_bot Finset.LocallyFiniteOrder.toLocallyFiniteOrderBotₓ'. -/
 -- See note [lower priority instance]
 instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyFiniteOrderBot α
     where
@@ -613,22 +505,10 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyF
   finset_mem_Iio a x := by rw [mem_Ico, and_iff_right bot_le]
 #align finset.locally_finite_order.to_locally_finite_order_bot Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot
 
-/- warning: finset.Iic_eq_Icc -> Finset.Iic_eq_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iic.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Icc.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iic.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Icc.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align finset.Iic_eq_Icc Finset.Iic_eq_Iccₓ'. -/
 theorem Iic_eq_Icc : Iic = Icc (⊥ : α) :=
   rfl
 #align finset.Iic_eq_Icc Finset.Iic_eq_Icc
 
-/- warning: finset.Iio_eq_Ico -> Finset.Iio_eq_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iio.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Ico.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iio.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Ico.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align finset.Iio_eq_Ico Finset.Iio_eq_Icoₓ'. -/
 theorem Iio_eq_Ico : Iio = Ico (⊥ : α) :=
   rfl
 #align finset.Iio_eq_Ico Finset.Iio_eq_Ico
@@ -653,12 +533,6 @@ def uIcc (a b : α) : Finset α :=
 -- mathport name: finset.uIcc
 scoped[FinsetInterval] notation "[" a ", " b "]" => Finset.uIcc a b
 
-/- warning: finset.mem_uIcc -> Finset.mem_uIcc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.uIcc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.uIcc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)))
-Case conversion may be inaccurate. Consider using '#align finset.mem_uIcc Finset.mem_uIccₓ'. -/
 @[simp]
 theorem mem_uIcc : x ∈ uIcc a b ↔ a ⊓ b ≤ x ∧ x ≤ a ⊔ b :=
   mem_Icc
@@ -718,45 +592,21 @@ def Ioo (a b : α) : Multiset α :=
 #align multiset.Ioo Multiset.Ioo
 -/
 
-/- warning: multiset.mem_Icc -> Multiset.mem_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Icc Multiset.mem_Iccₓ'. -/
 @[simp]
 theorem mem_Icc {a b x : α} : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b := by
   rw [Icc, ← Finset.mem_def, Finset.mem_Icc]
 #align multiset.mem_Icc Multiset.mem_Icc
 
-/- warning: multiset.mem_Ico -> Multiset.mem_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Ico Multiset.mem_Icoₓ'. -/
 @[simp]
 theorem mem_Ico {a b x : α} : x ∈ Ico a b ↔ a ≤ x ∧ x < b := by
   rw [Ico, ← Finset.mem_def, Finset.mem_Ico]
 #align multiset.mem_Ico Multiset.mem_Ico
 
-/- warning: multiset.mem_Ioc -> Multiset.mem_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Ioc Multiset.mem_Iocₓ'. -/
 @[simp]
 theorem mem_Ioc {a b x : α} : x ∈ Ioc a b ↔ a < x ∧ x ≤ b := by
   rw [Ioc, ← Finset.mem_def, Finset.mem_Ioc]
 #align multiset.mem_Ioc Multiset.mem_Ioc
 
-/- warning: multiset.mem_Ioo -> Multiset.mem_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Ioo Multiset.mem_Iooₓ'. -/
 @[simp]
 theorem mem_Ioo {a b x : α} : x ∈ Ioo a b ↔ a < x ∧ x < b := by
   rw [Ioo, ← Finset.mem_def, Finset.mem_Ioo]
@@ -782,22 +632,10 @@ def Ioi (a : α) : Multiset α :=
 #align multiset.Ioi Multiset.Ioi
 -/
 
-/- warning: multiset.mem_Ici -> Multiset.mem_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x)
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Ici Multiset.mem_Iciₓ'. -/
 @[simp]
 theorem mem_Ici {a x : α} : x ∈ Ici a ↔ a ≤ x := by rw [Ici, ← Finset.mem_def, Finset.mem_Ici]
 #align multiset.mem_Ici Multiset.mem_Ici
 
-/- warning: multiset.mem_Ioi -> Multiset.mem_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x)
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Ioi Multiset.mem_Ioiₓ'. -/
 @[simp]
 theorem mem_Ioi {a x : α} : x ∈ Ioi a ↔ a < x := by rw [Ioi, ← Finset.mem_def, Finset.mem_Ioi]
 #align multiset.mem_Ioi Multiset.mem_Ioi
@@ -822,22 +660,10 @@ def Iio (b : α) : Multiset α :=
 #align multiset.Iio Multiset.Iio
 -/
 
-/- warning: multiset.mem_Iic -> Multiset.mem_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Iic.{u1} α _inst_1 _inst_2 b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Iic.{u1} α _inst_1 _inst_2 b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b)
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Iic Multiset.mem_Iicₓ'. -/
 @[simp]
 theorem mem_Iic {b x : α} : x ∈ Iic b ↔ x ≤ b := by rw [Iic, ← Finset.mem_def, Finset.mem_Iic]
 #align multiset.mem_Iic Multiset.mem_Iic
 
-/- warning: multiset.mem_Iio -> Multiset.mem_Iio is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Iio.{u1} α _inst_1 _inst_2 b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Iio.{u1} α _inst_1 _inst_2 b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b)
-Case conversion may be inaccurate. Consider using '#align multiset.mem_Iio Multiset.mem_Iioₓ'. -/
 @[simp]
 theorem mem_Iio {b x : α} : x ∈ Iio b ↔ x < b := by rw [Iio, ← Finset.mem_def, Finset.mem_Iio]
 #align multiset.mem_Iio Multiset.mem_Iio
@@ -985,12 +811,6 @@ noncomputable def LocallyFiniteOrder.ofFiniteIcc (h : ∀ a b : α, (Set.Icc a b
 #align locally_finite_order.of_finite_Icc LocallyFiniteOrder.ofFiniteIcc
 -/
 
-/- warning: fintype.to_locally_finite_order -> Fintype.toLocallyFiniteOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_3 : Fintype.{u1} α] [_inst_4 : DecidableRel.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1))] [_inst_5 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))], LocallyFiniteOrder.{u1} α _inst_1
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_3 : Fintype.{u1} α] [_inst_4 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.4649 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.4651 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.4649 x._@.Mathlib.Order.LocallyFinite._hyg.4651)] [_inst_5 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.4667 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.4669 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.4667 x._@.Mathlib.Order.LocallyFinite._hyg.4669)], LocallyFiniteOrder.{u1} α _inst_1
-Case conversion may be inaccurate. Consider using '#align fintype.to_locally_finite_order Fintype.toLocallyFiniteOrderₓ'. -/
 /-- A fintype is a locally finite order.
 
 This is not an instance as it would not be defeq to better instances such as
@@ -1043,12 +863,6 @@ instance : Subsingleton (LocallyFiniteOrderBot α) :=
       rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
     simp_rw [hIic, hIio]
 
-/- warning: order_embedding.locally_finite_order -> OrderEmbedding.locallyFiniteOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_embedding.locally_finite_order OrderEmbedding.locallyFiniteOrderₓ'. -/
 -- Should this be called `locally_finite_order.lift`?
 /-- Given an order embedding `α ↪o β`, pulls back the `locally_finite_order` on `β` to `α`. -/
 protected noncomputable def OrderEmbedding.locallyFiniteOrder [LocallyFiniteOrder β] (f : α ↪o β) :
@@ -1244,12 +1058,6 @@ instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
   LocallyFiniteOrderBot.ofIic' (α × β) (fun a => Iic a.fst ×ˢ Iic a.snd) fun a x => by
     rw [mem_product, mem_Iic, mem_Iic]; rfl
 
-/- warning: prod.Icc_eq -> Prod.Icc_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7271 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7273 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7271 x._@.Mathlib.Order.LocallyFinite._hyg.7273)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
-Case conversion may be inaccurate. Consider using '#align prod.Icc_eq Prod.Icc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
@@ -1257,12 +1065,6 @@ theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
   rfl
 #align prod.Icc_eq Prod.Icc_eq
 
-/- warning: prod.Icc_mk_mk -> Prod.Icc_mk_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u2} β _inst_2 _inst_4 b₁ b₂))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7344 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7346 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7344 x._@.Mathlib.Order.LocallyFinite._hyg.7346)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
-Case conversion may be inaccurate. Consider using '#align prod.Icc_mk_mk Prod.Icc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
 theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1271,12 +1073,6 @@ theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
   rfl
 #align prod.Icc_mk_mk Prod.Icc_mk_mk
 
-/- warning: prod.card_Icc -> Prod.card_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7419 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7421 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7419 x._@.Mathlib.Order.LocallyFinite._hyg.7421)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
-Case conversion may be inaccurate. Consider using '#align prod.card_Icc Prod.card_Iccₓ'. -/
 theorem card_Icc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
     (Finset.Icc p q).card = (Finset.Icc p.1 q.1).card * (Finset.Icc p.2 q.2).card :=
@@ -1291,12 +1087,6 @@ namespace Prod
 
 variable [Lattice α] [Lattice β]
 
-/- warning: prod.uIcc_eq -> Prod.uIcc_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7516 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7518 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7516 x._@.Mathlib.Order.LocallyFinite._hyg.7518)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
-Case conversion may be inaccurate. Consider using '#align prod.uIcc_eq Prod.uIcc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
@@ -1304,12 +1094,6 @@ theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
   rfl
 #align prod.uIcc_eq Prod.uIcc_eq
 
-/- warning: prod.uIcc_mk_mk -> Prod.uIcc_mk_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u2} β _inst_2 _inst_4 b₁ b₂))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7589 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7591 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7589 x._@.Mathlib.Order.LocallyFinite._hyg.7591)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
-Case conversion may be inaccurate. Consider using '#align prod.uIcc_mk_mk Prod.uIcc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
 theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1318,12 +1102,6 @@ theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
   rfl
 #align prod.uIcc_mk_mk Prod.uIcc_mk_mk
 
-/- warning: prod.card_uIcc -> Prod.card_uIcc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7664 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7666 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7664 x._@.Mathlib.Order.LocallyFinite._hyg.7666)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
-Case conversion may be inaccurate. Consider using '#align prod.card_uIcc Prod.card_uIccₓ'. -/
 theorem card_uIcc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
     (Finset.uIcc p q).card = (Finset.uIcc p.1 q.1).card * (Finset.uIcc p.2 q.2).card :=
@@ -1408,82 +1186,34 @@ instance : LocallyFiniteOrder (WithTop α)
 
 variable (a b : α)
 
-/- warning: with_top.Icc_coe_top -> WithTop.Icc_coe_top is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-Case conversion may be inaccurate. Consider using '#align with_top.Icc_coe_top WithTop.Icc_coe_topₓ'. -/
 theorem Icc_coe_top : Icc (a : WithTop α) ⊤ = insertNone (Ici a) :=
   rfl
 #align with_top.Icc_coe_top WithTop.Icc_coe_top
 
-/- warning: with_top.Icc_coe_coe -> WithTop.Icc_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_top.Icc_coe_coe WithTop.Icc_coe_coeₓ'. -/
 theorem Icc_coe_coe : Icc (a : WithTop α) b = (Icc a b).map Embedding.some :=
   rfl
 #align with_top.Icc_coe_coe WithTop.Icc_coe_coe
 
-/- warning: with_top.Ico_coe_top -> WithTop.Ico_coe_top is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-Case conversion may be inaccurate. Consider using '#align with_top.Ico_coe_top WithTop.Ico_coe_topₓ'. -/
 theorem Ico_coe_top : Ico (a : WithTop α) ⊤ = (Ici a).map Embedding.some :=
   rfl
 #align with_top.Ico_coe_top WithTop.Ico_coe_top
 
-/- warning: with_top.Ico_coe_coe -> WithTop.Ico_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_top.Ico_coe_coe WithTop.Ico_coe_coeₓ'. -/
 theorem Ico_coe_coe : Ico (a : WithTop α) b = (Ico a b).map Embedding.some :=
   rfl
 #align with_top.Ico_coe_coe WithTop.Ico_coe_coe
 
-/- warning: with_top.Ioc_coe_top -> WithTop.Ioc_coe_top is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-Case conversion may be inaccurate. Consider using '#align with_top.Ioc_coe_top WithTop.Ioc_coe_topₓ'. -/
 theorem Ioc_coe_top : Ioc (a : WithTop α) ⊤ = insertNone (Ioi a) :=
   rfl
 #align with_top.Ioc_coe_top WithTop.Ioc_coe_top
 
-/- warning: with_top.Ioc_coe_coe -> WithTop.Ioc_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_top.Ioc_coe_coe WithTop.Ioc_coe_coeₓ'. -/
 theorem Ioc_coe_coe : Ioc (a : WithTop α) b = (Ioc a b).map Embedding.some :=
   rfl
 #align with_top.Ioc_coe_coe WithTop.Ioc_coe_coe
 
-/- warning: with_top.Ioo_coe_top -> WithTop.Ioo_coe_top is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
-Case conversion may be inaccurate. Consider using '#align with_top.Ioo_coe_top WithTop.Ioo_coe_topₓ'. -/
 theorem Ioo_coe_top : Ioo (a : WithTop α) ⊤ = (Ioi a).map Embedding.some :=
   rfl
 #align with_top.Ioo_coe_top WithTop.Ioo_coe_top
 
-/- warning: with_top.Ioo_coe_coe -> WithTop.Ioo_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_top.Ioo_coe_coe WithTop.Ioo_coe_coeₓ'. -/
 theorem Ioo_coe_coe : Ioo (a : WithTop α) b = (Ioo a b).map Embedding.some :=
   rfl
 #align with_top.Ioo_coe_coe WithTop.Ioo_coe_coe
@@ -1499,82 +1229,34 @@ instance : LocallyFiniteOrder (WithBot α) :=
 
 variable (a b : α)
 
-/- warning: with_bot.Icc_bot_coe -> WithBot.Icc_bot_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Icc_bot_coe WithBot.Icc_bot_coeₓ'. -/
 theorem Icc_bot_coe : Icc (⊥ : WithBot α) b = insertNone (Iic b) :=
   rfl
 #align with_bot.Icc_bot_coe WithBot.Icc_bot_coe
 
-/- warning: with_bot.Icc_coe_coe -> WithBot.Icc_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Icc_coe_coe WithBot.Icc_coe_coeₓ'. -/
 theorem Icc_coe_coe : Icc (a : WithBot α) b = (Icc a b).map Embedding.some :=
   rfl
 #align with_bot.Icc_coe_coe WithBot.Icc_coe_coe
 
-/- warning: with_bot.Ico_bot_coe -> WithBot.Ico_bot_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Ico_bot_coe WithBot.Ico_bot_coeₓ'. -/
 theorem Ico_bot_coe : Ico (⊥ : WithBot α) b = insertNone (Iio b) :=
   rfl
 #align with_bot.Ico_bot_coe WithBot.Ico_bot_coe
 
-/- warning: with_bot.Ico_coe_coe -> WithBot.Ico_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Ico_coe_coe WithBot.Ico_coe_coeₓ'. -/
 theorem Ico_coe_coe : Ico (a : WithBot α) b = (Ico a b).map Embedding.some :=
   rfl
 #align with_bot.Ico_coe_coe WithBot.Ico_coe_coe
 
-/- warning: with_bot.Ioc_bot_coe -> WithBot.Ioc_bot_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Ioc_bot_coe WithBot.Ioc_bot_coeₓ'. -/
 theorem Ioc_bot_coe : Ioc (⊥ : WithBot α) b = (Iic b).map Embedding.some :=
   rfl
 #align with_bot.Ioc_bot_coe WithBot.Ioc_bot_coe
 
-/- warning: with_bot.Ioc_coe_coe -> WithBot.Ioc_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Ioc_coe_coe WithBot.Ioc_coe_coeₓ'. -/
 theorem Ioc_coe_coe : Ioc (a : WithBot α) b = (Ioc a b).map Embedding.some :=
   rfl
 #align with_bot.Ioc_coe_coe WithBot.Ioc_coe_coe
 
-/- warning: with_bot.Ioo_bot_coe -> WithBot.Ioo_bot_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Ioo_bot_coe WithBot.Ioo_bot_coeₓ'. -/
 theorem Ioo_bot_coe : Ioo (⊥ : WithBot α) b = (Iio b).map Embedding.some :=
   rfl
 #align with_bot.Ioo_bot_coe WithBot.Ioo_bot_coe
 
-/- warning: with_bot.Ioo_coe_coe -> WithBot.Ioo_coe_coe is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align with_bot.Ioo_coe_coe WithBot.Ioo_coe_coeₓ'. -/
 theorem Ioo_coe_coe : Ioo (a : WithBot α) b = (Ioo a b).map Embedding.some :=
   rfl
 #align with_bot.Ioo_coe_coe WithBot.Ioo_coe_coe
@@ -1588,12 +1270,6 @@ variable [Preorder α] [Preorder β]
 /-! #### Transfer locally finite orders across order isomorphisms -/
 
 
-/- warning: order_iso.locally_finite_order -> OrderIso.locallyFiniteOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_iso.locally_finite_order OrderIso.locallyFiniteOrderₓ'. -/
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order` across an `order_iso`. -/
 @[reducible]
@@ -1609,12 +1285,6 @@ def locallyFiniteOrder [LocallyFiniteOrder β] (f : α ≃o β) : LocallyFiniteO
   finset_mem_Ioo := by simp
 #align order_iso.locally_finite_order OrderIso.locallyFiniteOrder
 
-/- warning: order_iso.locally_finite_order_top -> OrderIso.locallyFiniteOrderTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderTop.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderTop.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_iso.locally_finite_order_top OrderIso.locallyFiniteOrderTopₓ'. -/
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order_top` across an `order_iso`. -/
 @[reducible]
@@ -1626,12 +1296,6 @@ def locallyFiniteOrderTop [LocallyFiniteOrderTop β] (f : α ≃o β) : LocallyF
   finset_mem_Ioi := by simp
 #align order_iso.locally_finite_order_top OrderIso.locallyFiniteOrderTop
 
-/- warning: order_iso.locally_finite_order_bot -> OrderIso.locallyFiniteOrderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderBot.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderBot.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_iso.locally_finite_order_bot OrderIso.locallyFiniteOrderBotₓ'. -/
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order_bot` across an `order_iso`. -/
 @[reducible]
@@ -1683,42 +1347,18 @@ section LocallyFiniteOrder
 
 variable [LocallyFiniteOrder α] (a b : Subtype p)
 
-/- warning: finset.subtype_Icc_eq -> Finset.subtype_Icc_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Icc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Icc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Icc_eq Finset.subtype_Icc_eqₓ'. -/
 theorem subtype_Icc_eq : Icc a b = (Icc (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Icc_eq Finset.subtype_Icc_eq
 
-/- warning: finset.subtype_Ico_eq -> Finset.subtype_Ico_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ico.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ico.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Ico_eq Finset.subtype_Ico_eqₓ'. -/
 theorem subtype_Ico_eq : Ico a b = (Ico (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ico_eq Finset.subtype_Ico_eq
 
-/- warning: finset.subtype_Ioc_eq -> Finset.subtype_Ioc_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Ioc_eq Finset.subtype_Ioc_eqₓ'. -/
 theorem subtype_Ioc_eq : Ioc a b = (Ioc (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ioc_eq Finset.subtype_Ioc_eq
 
-/- warning: finset.subtype_Ioo_eq -> Finset.subtype_Ioo_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioo.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioo.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Ioo_eq Finset.subtype_Ioo_eqₓ'. -/
 theorem subtype_Ioo_eq : Ioo a b = (Ioo (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ioo_eq Finset.subtype_Ioo_eq
@@ -1727,12 +1367,6 @@ variable (hp : ∀ ⦃a b x⦄, a ≤ x → x ≤ b → p a → p b → p x)
 
 include hp
 
-/- warning: finset.map_subtype_embedding_Icc -> Finset.map_subtype_embedding_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Icc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Icc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Icc Finset.map_subtype_embedding_Iccₓ'. -/
 theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a b :=
   by
   rw [subtype_Icc_eq]
@@ -1741,12 +1375,6 @@ theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a
   exact hp hx.1 hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Icc Finset.map_subtype_embedding_Icc
 
-/- warning: finset.map_subtype_embedding_Ico -> Finset.map_subtype_embedding_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ico.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ico.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ico Finset.map_subtype_embedding_Icoₓ'. -/
 theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a b :=
   by
   rw [subtype_Ico_eq]
@@ -1755,12 +1383,6 @@ theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a
   exact hp hx.1 hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ico Finset.map_subtype_embedding_Ico
 
-/- warning: finset.map_subtype_embedding_Ioc -> Finset.map_subtype_embedding_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ioc Finset.map_subtype_embedding_Iocₓ'. -/
 theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a b :=
   by
   rw [subtype_Ioc_eq]
@@ -1769,12 +1391,6 @@ theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a
   exact hp hx.1.le hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Ioc Finset.map_subtype_embedding_Ioc
 
-/- warning: finset.map_subtype_embedding_Ioo -> Finset.map_subtype_embedding_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioo.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioo.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ioo Finset.map_subtype_embedding_Iooₓ'. -/
 theorem map_subtype_embedding_Ioo : (Ioo a b).map (Embedding.subtype p) = Ioo a b :=
   by
   rw [subtype_Ioo_eq]
@@ -1789,22 +1405,10 @@ section LocallyFiniteOrderTop
 
 variable [LocallyFiniteOrderTop α] (a : Subtype p)
 
-/- warning: finset.subtype_Ici_eq -> Finset.subtype_Ici_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ici.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ici.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Ici_eq Finset.subtype_Ici_eqₓ'. -/
 theorem subtype_Ici_eq : Ici a = (Ici (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Ici_eq Finset.subtype_Ici_eq
 
-/- warning: finset.subtype_Ioi_eq -> Finset.subtype_Ioi_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioi.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioi.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Ioi_eq Finset.subtype_Ioi_eqₓ'. -/
 theorem subtype_Ioi_eq : Ioi a = (Ioi (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Ioi_eq Finset.subtype_Ioi_eq
@@ -1813,22 +1417,10 @@ variable (hp : ∀ ⦃a x⦄, a ≤ x → p a → p x)
 
 include hp
 
-/- warning: finset.map_subtype_embedding_Ici -> Finset.map_subtype_embedding_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ici.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ici.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ici Finset.map_subtype_embedding_Iciₓ'. -/
 theorem map_subtype_embedding_Ici : (Ici a).map (Embedding.subtype p) = Ici a := by
   rw [subtype_Ici_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop
 #align finset.map_subtype_embedding_Ici Finset.map_subtype_embedding_Ici
 
-/- warning: finset.map_subtype_embedding_Ioi -> Finset.map_subtype_embedding_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ioi.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ioi.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ioi Finset.map_subtype_embedding_Ioiₓ'. -/
 theorem map_subtype_embedding_Ioi : (Ioi a).map (Embedding.subtype p) = Ioi a := by
   rw [subtype_Ioi_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ioi.1 hx).le a.prop
 #align finset.map_subtype_embedding_Ioi Finset.map_subtype_embedding_Ioi
@@ -1839,22 +1431,10 @@ section LocallyFiniteOrderBot
 
 variable [LocallyFiniteOrderBot α] (a : Subtype p)
 
-/- warning: finset.subtype_Iic_eq -> Finset.subtype_Iic_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iic.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iic.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Iic_eq Finset.subtype_Iic_eqₓ'. -/
 theorem subtype_Iic_eq : Iic a = (Iic (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Iic_eq Finset.subtype_Iic_eq
 
-/- warning: finset.subtype_Iio_eq -> Finset.subtype_Iio_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iio.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iio.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.subtype_Iio_eq Finset.subtype_Iio_eqₓ'. -/
 theorem subtype_Iio_eq : Iio a = (Iio (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Iio_eq Finset.subtype_Iio_eq
@@ -1863,22 +1443,10 @@ variable (hp : ∀ ⦃a x⦄, x ≤ a → p a → p x)
 
 include hp
 
-/- warning: finset.map_subtype_embedding_Iic -> Finset.map_subtype_embedding_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iic.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iic.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Iic Finset.map_subtype_embedding_Iicₓ'. -/
 theorem map_subtype_embedding_Iic : (Iic a).map (Embedding.subtype p) = Iic a := by
   rw [subtype_Iic_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop
 #align finset.map_subtype_embedding_Iic Finset.map_subtype_embedding_Iic
 
-/- warning: finset.map_subtype_embedding_Iio -> Finset.map_subtype_embedding_Iio is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iio.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iio.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
-Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Iio Finset.map_subtype_embedding_Iioₓ'. -/
 theorem map_subtype_embedding_Iio : (Iio a).map (Embedding.subtype p) = Iio a := by
   rw [subtype_Iio_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iio.1 hx).le a.prop
 #align finset.map_subtype_embedding_Iio Finset.map_subtype_embedding_Iio
Diff
@@ -1013,21 +1013,13 @@ instance : Subsingleton (LocallyFiniteOrder α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases h₀
     cases h₁
-    have hIcc : h₀_finset_Icc = h₁_finset_Icc :=
-      by
-      ext (a b x)
+    have hIcc : h₀_finset_Icc = h₁_finset_Icc := by ext (a b x);
       rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc]
-    have hIco : h₀_finset_Ico = h₁_finset_Ico :=
-      by
-      ext (a b x)
+    have hIco : h₀_finset_Ico = h₁_finset_Ico := by ext (a b x);
       rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico]
-    have hIoc : h₀_finset_Ioc = h₁_finset_Ioc :=
-      by
-      ext (a b x)
+    have hIoc : h₀_finset_Ioc = h₁_finset_Ioc := by ext (a b x);
       rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc]
-    have hIoo : h₀_finset_Ioo = h₁_finset_Ioo :=
-      by
-      ext (a b x)
+    have hIoo : h₀_finset_Ioo = h₁_finset_Ioo := by ext (a b x);
       rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo]
     simp_rw [hIcc, hIco, hIoc, hIoo]
 
@@ -1035,13 +1027,9 @@ instance : Subsingleton (LocallyFiniteOrderTop α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases h₀
     cases h₁
-    have hIci : h₀_finset_Ici = h₁_finset_Ici :=
-      by
-      ext (a b x)
+    have hIci : h₀_finset_Ici = h₁_finset_Ici := by ext (a b x);
       rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici]
-    have hIoi : h₀_finset_Ioi = h₁_finset_Ioi :=
-      by
-      ext (a b x)
+    have hIoi : h₀_finset_Ioi = h₁_finset_Ioi := by ext (a b x);
       rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi]
     simp_rw [hIci, hIoi]
 
@@ -1049,13 +1037,9 @@ instance : Subsingleton (LocallyFiniteOrderBot α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases h₀
     cases h₁
-    have hIic : h₀_finset_Iic = h₁_finset_Iic :=
-      by
-      ext (a b x)
+    have hIic : h₀_finset_Iic = h₁_finset_Iic := by ext (a b x);
       rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic]
-    have hIio : h₀_finset_Iio = h₁_finset_Iio :=
-      by
-      ext (a b x)
+    have hIio : h₀_finset_Iio = h₁_finset_Iio := by ext (a b x);
       rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
     simp_rw [hIic, hIio]
 
@@ -1105,82 +1089,50 @@ instance : LocallyFiniteOrder αᵒᵈ
   finset_mem_Ioo a b x := mem_Ioo.trans (and_comm' _ _)
 
 #print Icc_toDual /-
-theorem Icc_toDual : Icc (toDual a) (toDual b) = (Icc b a).map toDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Icc, mem_Icc]
-  exact and_comm' _ _
+theorem Icc_toDual : Icc (toDual a) (toDual b) = (Icc b a).map toDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Icc, mem_Icc]; exact and_comm' _ _
 #align Icc_to_dual Icc_toDual
 -/
 
 #print Ico_toDual /-
-theorem Ico_toDual : Ico (toDual a) (toDual b) = (Ioc b a).map toDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Ico, mem_Ioc]
-  exact and_comm' _ _
+theorem Ico_toDual : Ico (toDual a) (toDual b) = (Ioc b a).map toDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ico, mem_Ioc]; exact and_comm' _ _
 #align Ico_to_dual Ico_toDual
 -/
 
 #print Ioc_toDual /-
-theorem Ioc_toDual : Ioc (toDual a) (toDual b) = (Ico b a).map toDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Ioc, mem_Ico]
-  exact and_comm' _ _
+theorem Ioc_toDual : Ioc (toDual a) (toDual b) = (Ico b a).map toDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioc, mem_Ico]; exact and_comm' _ _
 #align Ioc_to_dual Ioc_toDual
 -/
 
 #print Ioo_toDual /-
-theorem Ioo_toDual : Ioo (toDual a) (toDual b) = (Ioo b a).map toDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Ioo, mem_Ioo]
-  exact and_comm' _ _
+theorem Ioo_toDual : Ioo (toDual a) (toDual b) = (Ioo b a).map toDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioo, mem_Ioo]; exact and_comm' _ _
 #align Ioo_to_dual Ioo_toDual
 -/
 
 #print Icc_ofDual /-
-theorem Icc_ofDual (a b : αᵒᵈ) : Icc (ofDual a) (ofDual b) = (Icc b a).map ofDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Icc, mem_Icc]
-  exact and_comm' _ _
+theorem Icc_ofDual (a b : αᵒᵈ) : Icc (ofDual a) (ofDual b) = (Icc b a).map ofDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Icc, mem_Icc]; exact and_comm' _ _
 #align Icc_of_dual Icc_ofDual
 -/
 
 #print Ico_ofDual /-
-theorem Ico_ofDual (a b : αᵒᵈ) : Ico (ofDual a) (ofDual b) = (Ioc b a).map ofDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Ico, mem_Ioc]
-  exact and_comm' _ _
+theorem Ico_ofDual (a b : αᵒᵈ) : Ico (ofDual a) (ofDual b) = (Ioc b a).map ofDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ico, mem_Ioc]; exact and_comm' _ _
 #align Ico_of_dual Ico_ofDual
 -/
 
 #print Ioc_ofDual /-
-theorem Ioc_ofDual (a b : αᵒᵈ) : Ioc (ofDual a) (ofDual b) = (Ico b a).map ofDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Ioc, mem_Ico]
-  exact and_comm' _ _
+theorem Ioc_ofDual (a b : αᵒᵈ) : Ioc (ofDual a) (ofDual b) = (Ico b a).map ofDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioc, mem_Ico]; exact and_comm' _ _
 #align Ioc_of_dual Ioc_ofDual
 -/
 
 #print Ioo_ofDual /-
-theorem Ioo_ofDual (a b : αᵒᵈ) : Ioo (ofDual a) (ofDual b) = (Ioo b a).map ofDual.toEmbedding :=
-  by
-  refine' Eq.trans _ map_refl.symm
-  ext c
-  rw [mem_Ioo, mem_Ioo]
-  exact and_comm' _ _
+theorem Ioo_ofDual (a b : αᵒᵈ) : Ioo (ofDual a) (ofDual b) = (Ioo b a).map ofDual.toEmbedding := by
+  refine' Eq.trans _ map_refl.symm; ext c; rw [mem_Ioo, mem_Ioo]; exact and_comm' _ _
 #align Ioo_of_dual Ioo_ofDual
 -/
 
@@ -1277,26 +1229,20 @@ namespace Prod
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 instance [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrder (α × β) :=
-  LocallyFiniteOrder.ofIcc' (α × β) (fun a b => Icc a.fst b.fst ×ˢ Icc a.snd b.snd) fun a b x =>
-    by
-    rw [mem_product, mem_Icc, mem_Icc, and_and_and_comm]
-    rfl
+  LocallyFiniteOrder.ofIcc' (α × β) (fun a b => Icc a.fst b.fst ×ˢ Icc a.snd b.snd) fun a b x => by
+    rw [mem_product, mem_Icc, mem_Icc, and_and_and_comm]; rfl
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 instance [LocallyFiniteOrderTop α] [LocallyFiniteOrderTop β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrderTop (α × β) :=
-  LocallyFiniteOrderTop.ofIci' (α × β) (fun a => Ici a.fst ×ˢ Ici a.snd) fun a x =>
-    by
-    rw [mem_product, mem_Ici, mem_Ici]
-    rfl
+  LocallyFiniteOrderTop.ofIci' (α × β) (fun a => Ici a.fst ×ˢ Ici a.snd) fun a x => by
+    rw [mem_product, mem_Ici, mem_Ici]; rfl
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrderBot (α × β) :=
-  LocallyFiniteOrderBot.ofIic' (α × β) (fun a => Iic a.fst ×ˢ Iic a.snd) fun a x =>
-    by
-    rw [mem_product, mem_Iic, mem_Iic]
-    rfl
+  LocallyFiniteOrderBot.ofIic' (α × β) (fun a => Iic a.fst ×ˢ Iic a.snd) fun a x => by
+    rw [mem_product, mem_Iic, mem_Iic]; rfl
 
 /- warning: prod.Icc_eq -> Prod.Icc_eq is a dubious translation:
 lean 3 declaration is
@@ -1873,10 +1819,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ici.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
 Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ici Finset.map_subtype_embedding_Iciₓ'. -/
-theorem map_subtype_embedding_Ici : (Ici a).map (Embedding.subtype p) = Ici a :=
-  by
-  rw [subtype_Ici_eq]
-  exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop
+theorem map_subtype_embedding_Ici : (Ici a).map (Embedding.subtype p) = Ici a := by
+  rw [subtype_Ici_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop
 #align finset.map_subtype_embedding_Ici Finset.map_subtype_embedding_Ici
 
 /- warning: finset.map_subtype_embedding_Ioi -> Finset.map_subtype_embedding_Ioi is a dubious translation:
@@ -1885,10 +1829,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ioi.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
 Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ioi Finset.map_subtype_embedding_Ioiₓ'. -/
-theorem map_subtype_embedding_Ioi : (Ioi a).map (Embedding.subtype p) = Ioi a :=
-  by
-  rw [subtype_Ioi_eq]
-  exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ioi.1 hx).le a.prop
+theorem map_subtype_embedding_Ioi : (Ioi a).map (Embedding.subtype p) = Ioi a := by
+  rw [subtype_Ioi_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ioi.1 hx).le a.prop
 #align finset.map_subtype_embedding_Ioi Finset.map_subtype_embedding_Ioi
 
 end LocallyFiniteOrderTop
@@ -1927,10 +1869,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iic.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
 Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Iic Finset.map_subtype_embedding_Iicₓ'. -/
-theorem map_subtype_embedding_Iic : (Iic a).map (Embedding.subtype p) = Iic a :=
-  by
-  rw [subtype_Iic_eq]
-  exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop
+theorem map_subtype_embedding_Iic : (Iic a).map (Embedding.subtype p) = Iic a := by
+  rw [subtype_Iic_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop
 #align finset.map_subtype_embedding_Iic Finset.map_subtype_embedding_Iic
 
 /- warning: finset.map_subtype_embedding_Iio -> Finset.map_subtype_embedding_Iio is a dubious translation:
@@ -1939,10 +1879,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iio.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
 Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Iio Finset.map_subtype_embedding_Iioₓ'. -/
-theorem map_subtype_embedding_Iio : (Iio a).map (Embedding.subtype p) = Iio a :=
-  by
-  rw [subtype_Iio_eq]
-  exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iio.1 hx).le a.prop
+theorem map_subtype_embedding_Iio : (Iio a).map (Embedding.subtype p) = Iio a := by
+  rw [subtype_Iio_eq]; exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iio.1 hx).le a.prop
 #align finset.map_subtype_embedding_Iio Finset.map_subtype_embedding_Iio
 
 end LocallyFiniteOrderBot
Diff
@@ -1466,7 +1466,7 @@ variable (a b : α)
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Icc_coe_top WithTop.Icc_coe_topₓ'. -/
 theorem Icc_coe_top : Icc (a : WithTop α) ⊤ = insertNone (Ici a) :=
   rfl
@@ -1506,7 +1506,7 @@ theorem Ico_coe_coe : Ico (a : WithTop α) b = (Ico a b).map Embedding.some :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Ioc_coe_top WithTop.Ioc_coe_topₓ'. -/
 theorem Ioc_coe_top : Ioc (a : WithTop α) ⊤ = insertNone (Ioi a) :=
   rfl
@@ -1557,7 +1557,7 @@ variable (a b : α)
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 Case conversion may be inaccurate. Consider using '#align with_bot.Icc_bot_coe WithBot.Icc_bot_coeₓ'. -/
 theorem Icc_bot_coe : Icc (⊥ : WithBot α) b = insertNone (Iic b) :=
   rfl
@@ -1577,7 +1577,7 @@ theorem Icc_coe_coe : Icc (a : WithBot α) b = (Icc a b).map Embedding.some :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 Case conversion may be inaccurate. Consider using '#align with_bot.Ico_bot_coe WithBot.Ico_bot_coeₓ'. -/
 theorem Ico_bot_coe : Ico (⊥ : WithBot α) b = insertNone (Iio b) :=
   rfl
Diff
@@ -151,7 +151,12 @@ class LocallyFiniteOrderBot (α : Type _) [Preorder α] where
 #align locally_finite_order_bot LocallyFiniteOrderBot
 -/
 
-#print LocallyFiniteOrder.ofIcc' /-
+/- warning: locally_finite_order.of_Icc' -> LocallyFiniteOrder.ofIcc' is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))) -> (LocallyFiniteOrder.{u1} α _inst_1)
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.285 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.285 x._@.Mathlib.Order.LocallyFinite._hyg.287)] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))) -> (LocallyFiniteOrder.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align locally_finite_order.of_Icc' LocallyFiniteOrder.ofIcc'ₓ'. -/
 /-- A constructor from a definition of `finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -169,9 +174,13 @@ def LocallyFiniteOrder.ofIcc' (α : Type _) [Preorder α] [DecidableRel ((· ≤
     finset_mem_Ioo := fun a b x => by
       rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_not_le, lt_iff_le_not_le] }
 #align locally_finite_order.of_Icc' LocallyFiniteOrder.ofIcc'
--/
 
-#print LocallyFiniteOrder.ofIcc /-
+/- warning: locally_finite_order.of_Icc -> LocallyFiniteOrder.ofIcc is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x b))) -> (LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Icc : α -> α -> (Finset.{u1} α)), (forall (a : α) (b : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Icc a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x b))) -> (LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align locally_finite_order.of_Icc LocallyFiniteOrder.ofIccₓ'. -/
 /-- A constructor from a definition of `finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `partial_order` but only
 `decidable_eq`. -/
@@ -189,9 +198,13 @@ def LocallyFiniteOrder.ofIcc (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Ioo := fun a b x => by
       rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_and_ne, lt_iff_le_and_ne] }
 #align locally_finite_order.of_Icc LocallyFiniteOrder.ofIcc
--/
 
-#print LocallyFiniteOrderTop.ofIci' /-
+/- warning: locally_finite_order_top.of_Ici' -> LocallyFiniteOrderTop.ofIci' is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.784 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.786 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.784 x._@.Mathlib.Order.LocallyFinite._hyg.786)] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align locally_finite_order_top.of_Ici' LocallyFiniteOrderTop.ofIci'ₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -203,9 +216,13 @@ def LocallyFiniteOrderTop.ofIci' (α : Type _) [Preorder α] [DecidableRel ((·
     finset_mem_Ici := mem_Ici
     finset_mem_Ioi := fun a x => by rw [mem_filter, mem_Ici, lt_iff_le_not_le] }
 #align locally_finite_order_top.of_Ici' LocallyFiniteOrderTop.ofIci'
--/
 
-#print LocallyFiniteOrderTop.ofIci /-
+/- warning: locally_finite_order_top.of_Ici -> LocallyFiniteOrderTop.ofIci is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x)) -> (LocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Ici : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Ici a)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a x)) -> (LocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align locally_finite_order_top.of_Ici LocallyFiniteOrderTop.ofIciₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici'`, this one requires `partial_order` but
 only `decidable_eq`. -/
@@ -217,9 +234,13 @@ def LocallyFiniteOrderTop.ofIci (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Ici := mem_Ici
     finset_mem_Ioi := fun a x => by rw [mem_filter, mem_Ici, lt_iff_le_and_ne] }
 #align locally_finite_order_top.of_Ici LocallyFiniteOrderTop.ofIci
--/
 
-#print LocallyFiniteOrderBot.ofIic' /-
+/- warning: locally_finite_order_bot.of_Iic' -> LocallyFiniteOrderBot.ofIic' is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : Preorder.{u1} α] [_inst_2 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.1000 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.1002 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.1000 x._@.Mathlib.Order.LocallyFinite._hyg.1002)] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align locally_finite_order_bot.of_Iic' LocallyFiniteOrderBot.ofIic'ₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order.of_Icc`, this one requires `decidable_rel (≤)` but
 only `preorder`. -/
@@ -231,9 +252,13 @@ def LocallyFiniteOrderBot.ofIic' (α : Type _) [Preorder α] [DecidableRel ((·
     finset_mem_Iic := mem_Iic
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_not_le] }
 #align locally_finite_order_bot.of_Iic' LocallyFiniteOrderBot.ofIic'
--/
 
-#print LocallyFiniteOrderTop.ofIic /-
+/- warning: locally_finite_order_top.of_Iic -> LocallyFiniteOrderTop.ofIic is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x a)) -> (LocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : DecidableEq.{succ u1} α] (finset_Iic : α -> (Finset.{u1} α)), (forall (a : α) (x : α), Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (finset_Iic a)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x a)) -> (LocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align locally_finite_order_top.of_Iic LocallyFiniteOrderTop.ofIicₓ'. -/
 /-- A constructor from a definition of `finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `locally_finite_order_top.of_Ici'`, this one requires `partial_order` but
 only `decidable_eq`. -/
@@ -245,7 +270,6 @@ def LocallyFiniteOrderTop.ofIic (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Iic := mem_Iic
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_and_ne] }
 #align locally_finite_order_top.of_Iic LocallyFiniteOrderTop.ofIic
--/
 
 variable {α β : Type _}
 
@@ -343,33 +367,49 @@ def Ioo (a b : α) : Finset α :=
 #align finset.Ioo Finset.Ioo
 -/
 
-#print Finset.mem_Icc /-
+/- warning: finset.mem_Icc -> Finset.mem_Icc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align finset.mem_Icc Finset.mem_Iccₓ'. -/
 @[simp]
 theorem mem_Icc : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b :=
   LocallyFiniteOrder.finset_mem_Icc a b x
 #align finset.mem_Icc Finset.mem_Icc
--/
 
-#print Finset.mem_Ico /-
+/- warning: finset.mem_Ico -> Finset.mem_Ico is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align finset.mem_Ico Finset.mem_Icoₓ'. -/
 @[simp]
 theorem mem_Ico : x ∈ Ico a b ↔ a ≤ x ∧ x < b :=
   LocallyFiniteOrder.finset_mem_Ico a b x
 #align finset.mem_Ico Finset.mem_Ico
--/
 
-#print Finset.mem_Ioc /-
+/- warning: finset.mem_Ioc -> Finset.mem_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align finset.mem_Ioc Finset.mem_Iocₓ'. -/
 @[simp]
 theorem mem_Ioc : x ∈ Ioc a b ↔ a < x ∧ x ≤ b :=
   LocallyFiniteOrder.finset_mem_Ioc a b x
 #align finset.mem_Ioc Finset.mem_Ioc
--/
 
-#print Finset.mem_Ioo /-
+/- warning: finset.mem_Ioo -> Finset.mem_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align finset.mem_Ioo Finset.mem_Iooₓ'. -/
 @[simp]
 theorem mem_Ioo : x ∈ Ioo a b ↔ a < x ∧ x < b :=
   LocallyFiniteOrder.finset_mem_Ioo a b x
 #align finset.mem_Ioo Finset.mem_Ioo
--/
 
 #print Finset.coe_Icc /-
 @[simp, norm_cast]
@@ -419,19 +459,27 @@ def Ioi (a : α) : Finset α :=
 #align finset.Ioi Finset.Ioi
 -/
 
-#print Finset.mem_Ici /-
+/- warning: finset.mem_Ici -> Finset.mem_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x)
+Case conversion may be inaccurate. Consider using '#align finset.mem_Ici Finset.mem_Iciₓ'. -/
 @[simp]
 theorem mem_Ici : x ∈ Ici a ↔ a ≤ x :=
   LocallyFiniteOrderTop.finset_mem_Ici _ _
 #align finset.mem_Ici Finset.mem_Ici
--/
 
-#print Finset.mem_Ioi /-
+/- warning: finset.mem_Ioi -> Finset.mem_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x)
+Case conversion may be inaccurate. Consider using '#align finset.mem_Ioi Finset.mem_Ioiₓ'. -/
 @[simp]
 theorem mem_Ioi : x ∈ Ioi a ↔ a < x :=
   LocallyFiniteOrderTop.finset_mem_Ioi _ _
 #align finset.mem_Ioi Finset.mem_Ioi
--/
 
 #print Finset.coe_Ici /-
 @[simp, norm_cast]
@@ -467,19 +515,27 @@ def Iio (a : α) : Finset α :=
 #align finset.Iio Finset.Iio
 -/
 
-#print Finset.mem_Iic /-
+/- warning: finset.mem_Iic -> Finset.mem_Iic is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Iic.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Iic.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a)
+Case conversion may be inaccurate. Consider using '#align finset.mem_Iic Finset.mem_Iicₓ'. -/
 @[simp]
 theorem mem_Iic : x ∈ Iic a ↔ x ≤ a :=
   LocallyFiniteOrderBot.finset_mem_Iic _ _
 #align finset.mem_Iic Finset.mem_Iic
--/
 
-#print Finset.mem_Iio /-
+/- warning: finset.mem_Iio -> Finset.mem_Iio is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.Iio.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.Iio.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x a)
+Case conversion may be inaccurate. Consider using '#align finset.mem_Iio Finset.mem_Iioₓ'. -/
 @[simp]
 theorem mem_Iio : x ∈ Iio a ↔ x < a :=
   LocallyFiniteOrderBot.finset_mem_Iio _ _
 #align finset.mem_Iio Finset.mem_Iio
--/
 
 #print Finset.coe_Iic /-
 @[simp, norm_cast]
@@ -501,7 +557,12 @@ section OrderTop
 
 variable [LocallyFiniteOrder α] [OrderTop α] {a x : α}
 
-#print LocallyFiniteOrder.toLocallyFiniteOrderTop /-
+/- warning: locally_finite_order.to_locally_finite_order_top -> LocallyFiniteOrder.toLocallyFiniteOrderTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], LocallyFiniteOrderTop.{u1} α _inst_1
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)], LocallyFiniteOrderTop.{u1} α _inst_1
+Case conversion may be inaccurate. Consider using '#align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTopₓ'. -/
 -- See note [lower priority instance]
 instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyFiniteOrderTop α
     where
@@ -510,11 +571,10 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyF
   finset_mem_Ici a x := by rw [mem_Icc, and_iff_left le_top]
   finset_mem_Ioi a x := by rw [mem_Ioc, and_iff_left le_top]
 #align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTop
--/
 
 /- warning: finset.Ici_eq_Icc -> Finset.Ici_eq_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_3)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
 Case conversion may be inaccurate. Consider using '#align finset.Ici_eq_Icc Finset.Ici_eq_Iccₓ'. -/
@@ -524,7 +584,7 @@ theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
 
 /- warning: finset.Ioi_eq_Ioc -> Finset.Ioi_eq_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_3)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
 Case conversion may be inaccurate. Consider using '#align finset.Ioi_eq_Ioc Finset.Ioi_eq_Iocₓ'. -/
@@ -538,7 +598,12 @@ section OrderBot
 
 variable [OrderBot α] [LocallyFiniteOrder α] {b x : α}
 
-#print Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot /-
+/- warning: finset.locally_finite_order.to_locally_finite_order_bot -> Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], LocallyFiniteOrderBot.{u1} α _inst_1
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], LocallyFiniteOrderBot.{u1} α _inst_1
+Case conversion may be inaccurate. Consider using '#align finset.locally_finite_order.to_locally_finite_order_bot Finset.LocallyFiniteOrder.toLocallyFiniteOrderBotₓ'. -/
 -- See note [lower priority instance]
 instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyFiniteOrderBot α
     where
@@ -547,11 +612,10 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyF
   finset_mem_Iic a x := by rw [mem_Icc, and_iff_right bot_le]
   finset_mem_Iio a x := by rw [mem_Ico, and_iff_right bot_le]
 #align finset.locally_finite_order.to_locally_finite_order_bot Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot
--/
 
 /- warning: finset.Iic_eq_Icc -> Finset.Iic_eq_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iic.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Icc.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iic.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Icc.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iic.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Icc.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align finset.Iic_eq_Icc Finset.Iic_eq_Iccₓ'. -/
@@ -561,7 +625,7 @@ theorem Iic_eq_Icc : Iic = Icc (⊥ : α) :=
 
 /- warning: finset.Iio_eq_Ico -> Finset.Iio_eq_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iio.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Ico.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iio.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Ico.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1], Eq.{succ u1} (α -> (Finset.{u1} α)) (Finset.Iio.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α _inst_1 _inst_2 _inst_3)) (Finset.Ico.{u1} α _inst_1 _inst_3 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align finset.Iio_eq_Ico Finset.Iio_eq_Icoₓ'. -/
@@ -591,7 +655,7 @@ scoped[FinsetInterval] notation "[" a ", " b "]" => Finset.uIcc a b
 
 /- warning: finset.mem_uIcc -> Finset.mem_uIcc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.uIcc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.uIcc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.uIcc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)))
 Case conversion may be inaccurate. Consider using '#align finset.mem_uIcc Finset.mem_uIccₓ'. -/
@@ -654,33 +718,49 @@ def Ioo (a b : α) : Multiset α :=
 #align multiset.Ioo Multiset.Ioo
 -/
 
-#print Multiset.mem_Icc /-
+/- warning: multiset.mem_Icc -> Multiset.mem_Icc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Icc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Icc Multiset.mem_Iccₓ'. -/
 @[simp]
 theorem mem_Icc {a b x : α} : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b := by
   rw [Icc, ← Finset.mem_def, Finset.mem_Icc]
 #align multiset.mem_Icc Multiset.mem_Icc
--/
 
-#print Multiset.mem_Ico /-
+/- warning: multiset.mem_Ico -> Multiset.mem_Ico is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ico.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Ico Multiset.mem_Icoₓ'. -/
 @[simp]
 theorem mem_Ico {a b x : α} : x ∈ Ico a b ↔ a ≤ x ∧ x < b := by
   rw [Ico, ← Finset.mem_def, Finset.mem_Ico]
 #align multiset.mem_Ico Multiset.mem_Ico
--/
 
-#print Multiset.mem_Ioc /-
+/- warning: multiset.mem_Ioc -> Multiset.mem_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ioc.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Ioc Multiset.mem_Iocₓ'. -/
 @[simp]
 theorem mem_Ioc {a b x : α} : x ∈ Ioc a b ↔ a < x ∧ x ≤ b := by
   rw [Ioc, ← Finset.mem_def, Finset.mem_Ioc]
 #align multiset.mem_Ioc Multiset.mem_Ioc
--/
 
-#print Multiset.mem_Ioo /-
+/- warning: multiset.mem_Ioo -> Multiset.mem_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ioo.{u1} α _inst_1 _inst_2 a b)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b))
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Ioo Multiset.mem_Iooₓ'. -/
 @[simp]
 theorem mem_Ioo {a b x : α} : x ∈ Ioo a b ↔ a < x ∧ x < b := by
   rw [Ioo, ← Finset.mem_def, Finset.mem_Ioo]
 #align multiset.mem_Ioo Multiset.mem_Ioo
--/
 
 end LocallyFiniteOrder
 
@@ -702,17 +782,25 @@ def Ioi (a : α) : Multiset α :=
 #align multiset.Ioi Multiset.Ioi
 -/
 
-#print Multiset.mem_Ici /-
+/- warning: multiset.mem_Ici -> Multiset.mem_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ici.{u1} α _inst_1 _inst_2 a)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x)
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Ici Multiset.mem_Iciₓ'. -/
 @[simp]
 theorem mem_Ici {a x : α} : x ∈ Ici a ↔ a ≤ x := by rw [Ici, ← Finset.mem_def, Finset.mem_Ici]
 #align multiset.mem_Ici Multiset.mem_Ici
--/
 
-#print Multiset.mem_Ioi /-
+/- warning: multiset.mem_Ioi -> Multiset.mem_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderTop.{u1} α _inst_1] {a : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Ioi.{u1} α _inst_1 _inst_2 a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a x)
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Ioi Multiset.mem_Ioiₓ'. -/
 @[simp]
 theorem mem_Ioi {a x : α} : x ∈ Ioi a ↔ a < x := by rw [Ioi, ← Finset.mem_def, Finset.mem_Ioi]
 #align multiset.mem_Ioi Multiset.mem_Ioi
--/
 
 end LocallyFiniteOrderTop
 
@@ -734,17 +822,25 @@ def Iio (b : α) : Multiset α :=
 #align multiset.Iio Multiset.Iio
 -/
 
-#print Multiset.mem_Iic /-
+/- warning: multiset.mem_Iic -> Multiset.mem_Iic is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Iic.{u1} α _inst_1 _inst_2 b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Iic.{u1} α _inst_1 _inst_2 b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b)
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Iic Multiset.mem_Iicₓ'. -/
 @[simp]
 theorem mem_Iic {b x : α} : x ∈ Iic b ↔ x ≤ b := by rw [Iic, ← Finset.mem_def, Finset.mem_Iic]
 #align multiset.mem_Iic Multiset.mem_Iic
--/
 
-#print Multiset.mem_Iio /-
+/- warning: multiset.mem_Iio -> Multiset.mem_Iio is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Multiset.{u1} α) (Multiset.hasMem.{u1} α) x (Multiset.Iio.{u1} α _inst_1 _inst_2 b)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrderBot.{u1} α _inst_1] {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Multiset.{u1} α) (Multiset.instMembershipMultiset.{u1} α) x (Multiset.Iio.{u1} α _inst_1 _inst_2 b)) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x b)
+Case conversion may be inaccurate. Consider using '#align multiset.mem_Iio Multiset.mem_Iioₓ'. -/
 @[simp]
 theorem mem_Iio {b x : α} : x ∈ Iio b ↔ x < b := by rw [Iio, ← Finset.mem_def, Finset.mem_Iio]
 #align multiset.mem_Iio Multiset.mem_Iio
--/
 
 end LocallyFiniteOrderBot
 
@@ -889,7 +985,12 @@ noncomputable def LocallyFiniteOrder.ofFiniteIcc (h : ∀ a b : α, (Set.Icc a b
 #align locally_finite_order.of_finite_Icc LocallyFiniteOrder.ofFiniteIcc
 -/
 
-#print Fintype.toLocallyFiniteOrder /-
+/- warning: fintype.to_locally_finite_order -> Fintype.toLocallyFiniteOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_3 : Fintype.{u1} α] [_inst_4 : DecidableRel.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1))] [_inst_5 : DecidableRel.{succ u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))], LocallyFiniteOrder.{u1} α _inst_1
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_3 : Fintype.{u1} α] [_inst_4 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.4649 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.4651 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.4649 x._@.Mathlib.Order.LocallyFinite._hyg.4651)] [_inst_5 : DecidableRel.{succ u1} α (fun (x._@.Mathlib.Order.LocallyFinite._hyg.4667 : α) (x._@.Mathlib.Order.LocallyFinite._hyg.4669 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.LocallyFinite._hyg.4667 x._@.Mathlib.Order.LocallyFinite._hyg.4669)], LocallyFiniteOrder.{u1} α _inst_1
+Case conversion may be inaccurate. Consider using '#align fintype.to_locally_finite_order Fintype.toLocallyFiniteOrderₓ'. -/
 /-- A fintype is a locally finite order.
 
 This is not an instance as it would not be defeq to better instances such as
@@ -907,7 +1008,6 @@ def Fintype.toLocallyFiniteOrder [Fintype α] [@DecidableRel α (· < ·)] [@Dec
   finset_mem_Ioc a b x := by simp only [Set.mem_toFinset, Set.mem_Ioc]
   finset_mem_Ioo a b x := by simp only [Set.mem_toFinset, Set.mem_Ioo]
 #align fintype.to_locally_finite_order Fintype.toLocallyFiniteOrder
--/
 
 instance : Subsingleton (LocallyFiniteOrder α) :=
   Subsingleton.intro fun h₀ h₁ => by
@@ -959,7 +1059,12 @@ instance : Subsingleton (LocallyFiniteOrderBot α) :=
       rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
     simp_rw [hIic, hIio]
 
-#print OrderEmbedding.locallyFiniteOrder /-
+/- warning: order_embedding.locally_finite_order -> OrderEmbedding.locallyFiniteOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align order_embedding.locally_finite_order OrderEmbedding.locallyFiniteOrderₓ'. -/
 -- Should this be called `locally_finite_order.lift`?
 /-- Given an order embedding `α ↪o β`, pulls back the `locally_finite_order` on `β` to `α`. -/
 protected noncomputable def OrderEmbedding.locallyFiniteOrder [LocallyFiniteOrder β] (f : α ↪o β) :
@@ -974,7 +1079,6 @@ protected noncomputable def OrderEmbedding.locallyFiniteOrder [LocallyFiniteOrde
   finset_mem_Ioc a b x := by rw [mem_preimage, mem_Ioc, f.lt_iff_lt, f.le_iff_le]
   finset_mem_Ioo a b x := by rw [mem_preimage, mem_Ioo, f.lt_iff_lt, f.lt_iff_lt]
 #align order_embedding.locally_finite_order OrderEmbedding.locallyFiniteOrder
--/
 
 open OrderDual
 
@@ -1196,7 +1300,7 @@ instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
 
 /- warning: prod.Icc_eq -> Prod.Icc_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7271 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7273 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7271 x._@.Mathlib.Order.LocallyFinite._hyg.7273)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_eq Prod.Icc_eqₓ'. -/
@@ -1209,7 +1313,7 @@ theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 
 /- warning: prod.Icc_mk_mk -> Prod.Icc_mk_mk is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u2} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7344 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7346 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7344 x._@.Mathlib.Order.LocallyFinite._hyg.7346)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_mk_mk Prod.Icc_mk_mkₓ'. -/
@@ -1223,7 +1327,7 @@ theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 
 /- warning: prod.card_Icc -> Prod.card_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7419 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7421 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7419 x._@.Mathlib.Order.LocallyFinite._hyg.7421)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_Icc Prod.card_Iccₓ'. -/
@@ -1243,7 +1347,7 @@ variable [Lattice α] [Lattice β]
 
 /- warning: prod.uIcc_eq -> Prod.uIcc_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7516 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7518 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7516 x._@.Mathlib.Order.LocallyFinite._hyg.7518)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_eq Prod.uIcc_eqₓ'. -/
@@ -1256,7 +1360,7 @@ theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 
 /- warning: prod.uIcc_mk_mk -> Prod.uIcc_mk_mk is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u2} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7589 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7591 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7589 x._@.Mathlib.Order.LocallyFinite._hyg.7591)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_mk_mk Prod.uIcc_mk_mkₓ'. -/
@@ -1270,7 +1374,7 @@ theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 
 /- warning: prod.card_uIcc -> Prod.card_uIcc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7664 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7666 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7664 x._@.Mathlib.Order.LocallyFinite._hyg.7666)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_uIcc Prod.card_uIccₓ'. -/
@@ -1360,7 +1464,7 @@ variable (a b : α)
 
 /- warning: with_top.Icc_coe_top -> WithTop.Icc_coe_top is a dubious translation:
 lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Icc_coe_top WithTop.Icc_coe_topₓ'. -/
@@ -1368,27 +1472,39 @@ theorem Icc_coe_top : Icc (a : WithTop α) ⊤ = insertNone (Ici a) :=
   rfl
 #align with_top.Icc_coe_top WithTop.Icc_coe_top
 
-#print WithTop.Icc_coe_coe /-
+/- warning: with_top.Icc_coe_coe -> WithTop.Icc_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_top.Icc_coe_coe WithTop.Icc_coe_coeₓ'. -/
 theorem Icc_coe_coe : Icc (a : WithTop α) b = (Icc a b).map Embedding.some :=
   rfl
 #align with_top.Icc_coe_coe WithTop.Icc_coe_coe
--/
 
-#print WithTop.Ico_coe_top /-
+/- warning: with_top.Ico_coe_top -> WithTop.Ico_coe_top is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+Case conversion may be inaccurate. Consider using '#align with_top.Ico_coe_top WithTop.Ico_coe_topₓ'. -/
 theorem Ico_coe_top : Ico (a : WithTop α) ⊤ = (Ici a).map Embedding.some :=
   rfl
 #align with_top.Ico_coe_top WithTop.Ico_coe_top
--/
 
-#print WithTop.Ico_coe_coe /-
+/- warning: with_top.Ico_coe_coe -> WithTop.Ico_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ico.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_top.Ico_coe_coe WithTop.Ico_coe_coeₓ'. -/
 theorem Ico_coe_coe : Ico (a : WithTop α) b = (Ico a b).map Embedding.some :=
   rfl
 #align with_top.Ico_coe_coe WithTop.Ico_coe_coe
--/
 
 /- warning: with_top.Ioc_coe_top -> WithTop.Ioc_coe_top is a dubious translation:
 lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Ioc_coe_top WithTop.Ioc_coe_topₓ'. -/
@@ -1396,23 +1512,35 @@ theorem Ioc_coe_top : Ioc (a : WithTop α) ⊤ = insertNone (Ioi a) :=
   rfl
 #align with_top.Ioc_coe_top WithTop.Ioc_coe_top
 
-#print WithTop.Ioc_coe_coe /-
+/- warning: with_top.Ioc_coe_coe -> WithTop.Ioc_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_top.Ioc_coe_coe WithTop.Ioc_coe_coeₓ'. -/
 theorem Ioc_coe_coe : Ioc (a : WithTop α) b = (Ioc a b).map Embedding.some :=
   rfl
 #align with_top.Ioc_coe_coe WithTop.Ioc_coe_coe
--/
 
-#print WithTop.Ioo_coe_top /-
+/- warning: with_top.Ioo_coe_top -> WithTop.Ioo_coe_top is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+Case conversion may be inaccurate. Consider using '#align with_top.Ioo_coe_top WithTop.Ioo_coe_topₓ'. -/
 theorem Ioo_coe_top : Ioo (a : WithTop α) ⊤ = (Ioi a).map Embedding.some :=
   rfl
 #align with_top.Ioo_coe_top WithTop.Ioo_coe_top
--/
 
-#print WithTop.Ioo_coe_coe /-
+/- warning: with_top.Ioo_coe_coe -> WithTop.Ioo_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithTop.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioo.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (WithTop.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_top.Ioo_coe_coe WithTop.Ioo_coe_coeₓ'. -/
 theorem Ioo_coe_coe : Ioo (a : WithTop α) b = (Ioo a b).map Embedding.some :=
   rfl
 #align with_top.Ioo_coe_coe WithTop.Ioo_coe_coe
--/
 
 end WithTop
 
@@ -1427,7 +1555,7 @@ variable (a b : α)
 
 /- warning: with_bot.Icc_bot_coe -> WithBot.Icc_bot_coe is a dubious translation:
 lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 but is expected to have type
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 Case conversion may be inaccurate. Consider using '#align with_bot.Icc_bot_coe WithBot.Icc_bot_coeₓ'. -/
@@ -1435,15 +1563,19 @@ theorem Icc_bot_coe : Icc (⊥ : WithBot α) b = insertNone (Iic b) :=
   rfl
 #align with_bot.Icc_bot_coe WithBot.Icc_bot_coe
 
-#print WithBot.Icc_coe_coe /-
+/- warning: with_bot.Icc_coe_coe -> WithBot.Icc_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_bot.Icc_coe_coe WithBot.Icc_coe_coeₓ'. -/
 theorem Icc_coe_coe : Icc (a : WithBot α) b = (Icc a b).map Embedding.some :=
   rfl
 #align with_bot.Icc_coe_coe WithBot.Icc_coe_coe
--/
 
 /- warning: with_bot.Ico_bot_coe -> WithBot.Ico_bot_coe is a dubious translation:
 lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toHasLe.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toHasLe.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 but is expected to have type
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 Case conversion may be inaccurate. Consider using '#align with_bot.Ico_bot_coe WithBot.Ico_bot_coeₓ'. -/
@@ -1451,35 +1583,55 @@ theorem Ico_bot_coe : Ico (⊥ : WithBot α) b = insertNone (Iio b) :=
   rfl
 #align with_bot.Ico_bot_coe WithBot.Ico_bot_coe
 
-#print WithBot.Ico_coe_coe /-
+/- warning: with_bot.Ico_coe_coe -> WithBot.Ico_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_bot.Ico_coe_coe WithBot.Ico_coe_coeₓ'. -/
 theorem Ico_coe_coe : Ico (a : WithBot α) b = (Ico a b).map Embedding.some :=
   rfl
 #align with_bot.Ico_coe_coe WithBot.Ico_coe_coe
--/
 
-#print WithBot.Ioc_bot_coe /-
+/- warning: with_bot.Ioc_bot_coe -> WithBot.Ioc_bot_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+Case conversion may be inaccurate. Consider using '#align with_bot.Ioc_bot_coe WithBot.Ioc_bot_coeₓ'. -/
 theorem Ioc_bot_coe : Ioc (⊥ : WithBot α) b = (Iic b).map Embedding.some :=
   rfl
 #align with_bot.Ioc_bot_coe WithBot.Ioc_bot_coe
--/
 
-#print WithBot.Ioc_coe_coe /-
+/- warning: with_bot.Ioc_coe_coe -> WithBot.Ioc_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_bot.Ioc_coe_coe WithBot.Ioc_coe_coeₓ'. -/
 theorem Ioc_coe_coe : Ioc (a : WithBot α) b = (Ioc a b).map Embedding.some :=
   rfl
 #align with_bot.Ioc_coe_coe WithBot.Ioc_coe_coe
--/
 
-#print WithBot.Ioo_bot_coe /-
+/- warning: with_bot.Ioo_bot_coe -> WithBot.Ioo_bot_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+Case conversion may be inaccurate. Consider using '#align with_bot.Ioo_bot_coe WithBot.Ioo_bot_coeₓ'. -/
 theorem Ioo_bot_coe : Ioo (⊥ : WithBot α) b = (Iio b).map Embedding.some :=
   rfl
 #align with_bot.Ioo_bot_coe WithBot.Ioo_bot_coe
--/
 
-#print WithBot.Ioo_coe_coe /-
+/- warning: with_bot.Ioo_coe_coe -> WithBot.Ioo_coe_coe is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (Finset.map.{u1, u1} α (WithBot.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α) (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ioo.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (WithBot.some.{u1} α a) (WithBot.some.{u1} α b)) (Finset.map.{u1, u1} α (Option.{u1} α) (Function.Embedding.some.{u1} α) (Finset.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 a b))
+Case conversion may be inaccurate. Consider using '#align with_bot.Ioo_coe_coe WithBot.Ioo_coe_coeₓ'. -/
 theorem Ioo_coe_coe : Ioo (a : WithBot α) b = (Ioo a b).map Embedding.some :=
   rfl
 #align with_bot.Ioo_coe_coe WithBot.Ioo_coe_coe
--/
 
 end WithBot
 
@@ -1490,7 +1642,12 @@ variable [Preorder α] [Preorder β]
 /-! #### Transfer locally finite orders across order isomorphisms -/
 
 
-#print OrderIso.locallyFiniteOrder /-
+/- warning: order_iso.locally_finite_order -> OrderIso.locallyFiniteOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrder.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align order_iso.locally_finite_order OrderIso.locallyFiniteOrderₓ'. -/
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order` across an `order_iso`. -/
 @[reducible]
@@ -1505,9 +1662,13 @@ def locallyFiniteOrder [LocallyFiniteOrder β] (f : α ≃o β) : LocallyFiniteO
   finset_mem_Ioc := by simp
   finset_mem_Ioo := by simp
 #align order_iso.locally_finite_order OrderIso.locallyFiniteOrder
--/
 
-#print OrderIso.locallyFiniteOrderTop /-
+/- warning: order_iso.locally_finite_order_top -> OrderIso.locallyFiniteOrderTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderTop.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderTop.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrderTop.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align order_iso.locally_finite_order_top OrderIso.locallyFiniteOrderTopₓ'. -/
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order_top` across an `order_iso`. -/
 @[reducible]
@@ -1518,9 +1679,13 @@ def locallyFiniteOrderTop [LocallyFiniteOrderTop β] (f : α ≃o β) : LocallyF
   finset_mem_Ici := by simp
   finset_mem_Ioi := by simp
 #align order_iso.locally_finite_order_top OrderIso.locallyFiniteOrderTop
--/
 
-#print OrderIso.locallyFiniteOrderBot /-
+/- warning: order_iso.locally_finite_order_bot -> OrderIso.locallyFiniteOrderBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderBot.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrderBot.{u2} β _inst_2], (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) -> (LocallyFiniteOrderBot.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align order_iso.locally_finite_order_bot OrderIso.locallyFiniteOrderBotₓ'. -/
 -- See note [reducible non-instances]
 /-- Transfer `locally_finite_order_bot` across an `order_iso`. -/
 @[reducible]
@@ -1531,7 +1696,6 @@ def locallyFiniteOrderBot [LocallyFiniteOrderBot β] (f : α ≃o β) : LocallyF
   finset_mem_Iic := by simp
   finset_mem_Iio := by simp
 #align order_iso.locally_finite_order_bot OrderIso.locallyFiniteOrderBot
--/
 
 end OrderIso
 
@@ -1573,35 +1737,56 @@ section LocallyFiniteOrder
 
 variable [LocallyFiniteOrder α] (a b : Subtype p)
 
-#print Finset.subtype_Icc_eq /-
+/- warning: finset.subtype_Icc_eq -> Finset.subtype_Icc_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Icc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Icc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Icc_eq Finset.subtype_Icc_eqₓ'. -/
 theorem subtype_Icc_eq : Icc a b = (Icc (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Icc_eq Finset.subtype_Icc_eq
--/
 
-#print Finset.subtype_Ico_eq /-
+/- warning: finset.subtype_Ico_eq -> Finset.subtype_Ico_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ico.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ico.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Ico_eq Finset.subtype_Ico_eqₓ'. -/
 theorem subtype_Ico_eq : Ico a b = (Ico (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ico_eq Finset.subtype_Ico_eq
--/
 
-#print Finset.subtype_Ioc_eq /-
+/- warning: finset.subtype_Ioc_eq -> Finset.subtype_Ioc_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Ioc_eq Finset.subtype_Ioc_eqₓ'. -/
 theorem subtype_Ioc_eq : Ioc a b = (Ioc (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ioc_eq Finset.subtype_Ioc_eq
--/
 
-#print Finset.subtype_Ioo_eq /-
+/- warning: finset.subtype_Ioo_eq -> Finset.subtype_Ioo_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioo.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioo.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Ioo_eq Finset.subtype_Ioo_eqₓ'. -/
 theorem subtype_Ioo_eq : Ioo a b = (Ioo (a : α) b).Subtype p :=
   rfl
 #align finset.subtype_Ioo_eq Finset.subtype_Ioo_eq
--/
 
 variable (hp : ∀ ⦃a b x⦄, a ≤ x → x ≤ b → p a → p b → p x)
 
 include hp
 
-#print Finset.map_subtype_embedding_Icc /-
+/- warning: finset.map_subtype_embedding_Icc -> Finset.map_subtype_embedding_Icc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Icc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Icc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Icc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Icc Finset.map_subtype_embedding_Iccₓ'. -/
 theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a b :=
   by
   rw [subtype_Icc_eq]
@@ -1609,9 +1794,13 @@ theorem map_subtype_embedding_Icc : (Icc a b).map (Embedding.subtype p) = Icc a
   rw [mem_Icc] at hx
   exact hp hx.1 hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Icc Finset.map_subtype_embedding_Icc
--/
 
-#print Finset.map_subtype_embedding_Ico /-
+/- warning: finset.map_subtype_embedding_Ico -> Finset.map_subtype_embedding_Ico is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ico.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ico.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ico.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ico Finset.map_subtype_embedding_Icoₓ'. -/
 theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a b :=
   by
   rw [subtype_Ico_eq]
@@ -1619,9 +1808,13 @@ theorem map_subtype_embedding_Ico : (Ico a b).map (Embedding.subtype p) = Ico a
   rw [mem_Ico] at hx
   exact hp hx.1 hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ico Finset.map_subtype_embedding_Ico
--/
 
-#print Finset.map_subtype_embedding_Ioc /-
+/- warning: finset.map_subtype_embedding_Ioc -> Finset.map_subtype_embedding_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioc.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioc.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioc.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ioc Finset.map_subtype_embedding_Iocₓ'. -/
 theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a b :=
   by
   rw [subtype_Ioc_eq]
@@ -1629,9 +1822,13 @@ theorem map_subtype_embedding_Ioc : (Ioc a b).map (Embedding.subtype p) = Ioc a
   rw [mem_Ioc] at hx
   exact hp hx.1.le hx.2 a.prop b.prop
 #align finset.map_subtype_embedding_Ioc Finset.map_subtype_embedding_Ioc
--/
 
-#print Finset.map_subtype_embedding_Ioo /-
+/- warning: finset.map_subtype_embedding_Ioo -> Finset.map_subtype_embedding_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioo.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] (a : Subtype.{succ u1} α p) (b : Subtype.{succ u1} α p), (forall {{a : α}} {{b : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x b) -> (p a) -> (p b) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioo.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a b)) (Finset.Ioo.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a) (Subtype.val.{succ u1} α p b)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ioo Finset.map_subtype_embedding_Iooₓ'. -/
 theorem map_subtype_embedding_Ioo : (Ioo a b).map (Embedding.subtype p) = Ioo a b :=
   by
   rw [subtype_Ioo_eq]
@@ -1639,7 +1836,6 @@ theorem map_subtype_embedding_Ioo : (Ioo a b).map (Embedding.subtype p) = Ioo a
   rw [mem_Ioo] at hx
   exact hp hx.1.le hx.2.le a.prop b.prop
 #align finset.map_subtype_embedding_Ioo Finset.map_subtype_embedding_Ioo
--/
 
 end LocallyFiniteOrder
 
@@ -1647,37 +1843,53 @@ section LocallyFiniteOrderTop
 
 variable [LocallyFiniteOrderTop α] (a : Subtype p)
 
-#print Finset.subtype_Ici_eq /-
+/- warning: finset.subtype_Ici_eq -> Finset.subtype_Ici_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ici.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ici.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Ici_eq Finset.subtype_Ici_eqₓ'. -/
 theorem subtype_Ici_eq : Ici a = (Ici (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Ici_eq Finset.subtype_Ici_eq
--/
 
-#print Finset.subtype_Ioi_eq /-
+/- warning: finset.subtype_Ioi_eq -> Finset.subtype_Ioi_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioi.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Ioi.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Ioi_eq Finset.subtype_Ioi_eqₓ'. -/
 theorem subtype_Ioi_eq : Ioi a = (Ioi (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Ioi_eq Finset.subtype_Ioi_eq
--/
 
 variable (hp : ∀ ⦃a x⦄, a ≤ x → p a → p x)
 
 include hp
 
-#print Finset.map_subtype_embedding_Ici /-
+/- warning: finset.map_subtype_embedding_Ici -> Finset.map_subtype_embedding_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ici.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ici.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ici.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ici Finset.map_subtype_embedding_Iciₓ'. -/
 theorem map_subtype_embedding_Ici : (Ici a).map (Embedding.subtype p) = Ici a :=
   by
   rw [subtype_Ici_eq]
   exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop
 #align finset.map_subtype_embedding_Ici Finset.map_subtype_embedding_Ici
--/
 
-#print Finset.map_subtype_embedding_Ioi /-
+/- warning: finset.map_subtype_embedding_Ioi -> Finset.map_subtype_embedding_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderTop.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ioi.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderTop.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a x) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Ioi.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderTopSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Ioi.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Ioi Finset.map_subtype_embedding_Ioiₓ'. -/
 theorem map_subtype_embedding_Ioi : (Ioi a).map (Embedding.subtype p) = Ioi a :=
   by
   rw [subtype_Ioi_eq]
   exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ioi.1 hx).le a.prop
 #align finset.map_subtype_embedding_Ioi Finset.map_subtype_embedding_Ioi
--/
 
 end LocallyFiniteOrderTop
 
@@ -1685,37 +1897,53 @@ section LocallyFiniteOrderBot
 
 variable [LocallyFiniteOrderBot α] (a : Subtype p)
 
-#print Finset.subtype_Iic_eq /-
+/- warning: finset.subtype_Iic_eq -> Finset.subtype_Iic_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iic.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iic.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Iic_eq Finset.subtype_Iic_eqₓ'. -/
 theorem subtype_Iic_eq : Iic a = (Iic (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Iic_eq Finset.subtype_Iic_eq
--/
 
-#print Finset.subtype_Iio_eq /-
+/- warning: finset.subtype_Iio_eq -> Finset.subtype_Iio_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iio.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), Eq.{succ u1} (Finset.{u1} (Subtype.{succ u1} α p)) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a) (Finset.subtype.{u1} α p (fun (a : α) => _inst_2 a) (Finset.Iio.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.subtype_Iio_eq Finset.subtype_Iio_eqₓ'. -/
 theorem subtype_Iio_eq : Iio a = (Iio (a : α)).Subtype p :=
   rfl
 #align finset.subtype_Iio_eq Finset.subtype_Iio_eq
--/
 
 variable (hp : ∀ ⦃a x⦄, x ≤ a → p a → p x)
 
 include hp
 
-#print Finset.map_subtype_embedding_Iic /-
+/- warning: finset.map_subtype_embedding_Iic -> Finset.map_subtype_embedding_Iic is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iic.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iic.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iic.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Iic Finset.map_subtype_embedding_Iicₓ'. -/
 theorem map_subtype_embedding_Iic : (Iic a).map (Embedding.subtype p) = Iic a :=
   by
   rw [subtype_Iic_eq]
   exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop
 #align finset.map_subtype_embedding_Iic Finset.map_subtype_embedding_Iic
--/
 
-#print Finset.map_subtype_embedding_Iio /-
+/- warning: finset.map_subtype_embedding_Iio -> Finset.map_subtype_embedding_Iio is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (Subtype.locallyFiniteOrderBot.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iio.{u1} α _inst_1 _inst_3 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (p : α -> Prop) [_inst_2 : DecidablePred.{succ u1} α p] [_inst_3 : LocallyFiniteOrderBot.{u1} α _inst_1] (a : Subtype.{succ u1} α p), (forall {{a : α}} {{x : α}}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x a) -> (p a) -> (p x)) -> (Eq.{succ u1} (Finset.{u1} α) (Finset.map.{u1, u1} (Subtype.{succ u1} α p) α (Function.Embedding.subtype.{succ u1} α p) (Finset.Iio.{u1} (Subtype.{succ u1} α p) (Subtype.preorder.{u1} α _inst_1 p) (instLocallyFiniteOrderBotSubtypePreorder.{u1} α _inst_1 p (fun (a : α) => _inst_2 a) _inst_3) a)) (Finset.Iio.{u1} α _inst_1 _inst_3 (Subtype.val.{succ u1} α p a)))
+Case conversion may be inaccurate. Consider using '#align finset.map_subtype_embedding_Iio Finset.map_subtype_embedding_Iioₓ'. -/
 theorem map_subtype_embedding_Iio : (Iio a).map (Embedding.subtype p) = Iio a :=
   by
   rw [subtype_Iio_eq]
   exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iio.1 hx).le a.prop
 #align finset.map_subtype_embedding_Iio Finset.map_subtype_embedding_Iio
--/
 
 end LocallyFiniteOrderBot
 
Diff
@@ -1198,7 +1198,7 @@ instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7277 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7279 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7277 x._@.Mathlib.Order.LocallyFinite._hyg.7279)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7271 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7273 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7271 x._@.Mathlib.Order.LocallyFinite._hyg.7273)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_eq Prod.Icc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1211,7 +1211,7 @@ theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7350 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7352 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7350 x._@.Mathlib.Order.LocallyFinite._hyg.7352)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7344 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7346 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7344 x._@.Mathlib.Order.LocallyFinite._hyg.7346)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_mk_mk Prod.Icc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
@@ -1225,7 +1225,7 @@ theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7425 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7427 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7425 x._@.Mathlib.Order.LocallyFinite._hyg.7427)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7419 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7421 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7419 x._@.Mathlib.Order.LocallyFinite._hyg.7421)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_Icc Prod.card_Iccₓ'. -/
 theorem card_Icc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
@@ -1245,7 +1245,7 @@ variable [Lattice α] [Lattice β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7522 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7524 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7522 x._@.Mathlib.Order.LocallyFinite._hyg.7524)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7516 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7518 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7516 x._@.Mathlib.Order.LocallyFinite._hyg.7518)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_eq Prod.uIcc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1258,7 +1258,7 @@ theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7595 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7597 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7595 x._@.Mathlib.Order.LocallyFinite._hyg.7597)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7589 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7591 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7589 x._@.Mathlib.Order.LocallyFinite._hyg.7591)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_mk_mk Prod.uIcc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
@@ -1272,7 +1272,7 @@ theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7670 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7672 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7670 x._@.Mathlib.Order.LocallyFinite._hyg.7672)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7664 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7666 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7664 x._@.Mathlib.Order.LocallyFinite._hyg.7666)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_uIcc Prod.card_uIccₓ'. -/
 theorem card_uIcc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
Diff
@@ -501,22 +501,22 @@ section OrderTop
 
 variable [LocallyFiniteOrder α] [OrderTop α] {a x : α}
 
-#print Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop /-
+#print LocallyFiniteOrder.toLocallyFiniteOrderTop /-
 -- See note [lower priority instance]
-instance (priority := 100) Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop :
-    LocallyFiniteOrderTop α where
+instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyFiniteOrderTop α
+    where
   finsetIci b := Icc b ⊤
   finsetIoi b := Ioc b ⊤
   finset_mem_Ici a x := by rw [mem_Icc, and_iff_left le_top]
   finset_mem_Ioi a x := by rw [mem_Ioc, and_iff_left le_top]
-#align locally_finite_order.to_locally_finite_order_top Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop
+#align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTop
 -/
 
 /- warning: finset.Ici_eq_Icc -> Finset.Ici_eq_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ici.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Icc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
 Case conversion may be inaccurate. Consider using '#align finset.Ici_eq_Icc Finset.Ici_eq_Iccₓ'. -/
 theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
   rfl
@@ -524,9 +524,9 @@ theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
 
 /- warning: finset.Ioi_eq_Ioc -> Finset.Ioi_eq_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} α) (Finset.Ioi.{u1} α _inst_1 (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α _inst_1 _inst_2 _inst_3) a) (Finset.Ioc.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_3)))
 Case conversion may be inaccurate. Consider using '#align finset.Ioi_eq_Ioc Finset.Ioi_eq_Iocₓ'. -/
 theorem Ioi_eq_Ioc (a : α) : Ioi a = Ioc a ⊤ :=
   rfl
@@ -1198,7 +1198,7 @@ instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7283 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7281 x._@.Mathlib.Order.LocallyFinite._hyg.7283)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7277 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7279 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7277 x._@.Mathlib.Order.LocallyFinite._hyg.7279)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_eq Prod.Icc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1211,7 +1211,7 @@ theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7354 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7356 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7354 x._@.Mathlib.Order.LocallyFinite._hyg.7356)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7350 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7352 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7350 x._@.Mathlib.Order.LocallyFinite._hyg.7352)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_mk_mk Prod.Icc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
@@ -1225,7 +1225,7 @@ theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7429 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7431 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7429 x._@.Mathlib.Order.LocallyFinite._hyg.7431)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7425 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7427 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7425 x._@.Mathlib.Order.LocallyFinite._hyg.7427)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_Icc Prod.card_Iccₓ'. -/
 theorem card_Icc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
@@ -1245,7 +1245,7 @@ variable [Lattice α] [Lattice β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7526 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7528 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7526 x._@.Mathlib.Order.LocallyFinite._hyg.7528)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7522 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7524 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7522 x._@.Mathlib.Order.LocallyFinite._hyg.7524)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_eq Prod.uIcc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1258,7 +1258,7 @@ theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7599 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7601 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7599 x._@.Mathlib.Order.LocallyFinite._hyg.7601)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7595 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7597 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7595 x._@.Mathlib.Order.LocallyFinite._hyg.7597)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_mk_mk Prod.uIcc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
@@ -1272,7 +1272,7 @@ theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7674 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7676 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7674 x._@.Mathlib.Order.LocallyFinite._hyg.7676)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7670 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7672 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7670 x._@.Mathlib.Order.LocallyFinite._hyg.7672)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_uIcc Prod.card_uIccₓ'. -/
 theorem card_uIcc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
@@ -1360,9 +1360,9 @@ variable (a b : α)
 
 /- warning: with_top.Icc_coe_top -> WithTop.Icc_coe_top is a dubious translation:
 lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Icc_coe_top WithTop.Icc_coe_topₓ'. -/
 theorem Icc_coe_top : Icc (a : WithTop α) ⊤ = insertNone (Ici a) :=
   rfl
@@ -1388,9 +1388,9 @@ theorem Ico_coe_coe : Ico (a : WithTop α) b = (Ico a b).map Embedding.some :=
 
 /- warning: with_top.Ioc_coe_top -> WithTop.Ioc_coe_top is a dubious translation:
 lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Ioc_coe_top WithTop.Ioc_coe_topₓ'. -/
 theorem Ioc_coe_top : Ioc (a : WithTop α) ⊤ = insertNone (Ioi a) :=
   rfl
Diff
@@ -1362,7 +1362,7 @@ variable (a b : α)
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Finset.insertNone.{u1} α)) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Icc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Icc_coe_top WithTop.Icc_coe_topₓ'. -/
 theorem Icc_coe_top : Icc (a : WithTop α) ⊤ = insertNone (Ici a) :=
   rfl
@@ -1390,7 +1390,7 @@ theorem Ico_coe_coe : Ico (a : WithTop α) b = (Ico a b).map Embedding.some :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.hasTop.{u1} α))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Finset.insertNone.{u1} α)) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Finset.{u1} (WithTop.{u1} α)) (Finset.Ioc.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithTop.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (WithTop.some.{u1} α a) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 _inst_2) a))
 Case conversion may be inaccurate. Consider using '#align with_top.Ioc_coe_top WithTop.Ioc_coe_topₓ'. -/
 theorem Ioc_coe_top : Ioc (a : WithTop α) ⊤ = insertNone (Ioi a) :=
   rfl
@@ -1429,7 +1429,7 @@ variable (a b : α)
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Finset.insertNone.{u1} α)) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Icc.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 Case conversion may be inaccurate. Consider using '#align with_bot.Icc_bot_coe WithBot.Icc_bot_coeₓ'. -/
 theorem Icc_bot_coe : Icc (⊥ : WithBot α) b = insertNone (Iic b) :=
   rfl
@@ -1445,7 +1445,7 @@ theorem Icc_coe_coe : Icc (a : WithBot α) b = (Icc a b).map Embedding.some :=
 lean 3 declaration is
   forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.locallyFiniteOrder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) b)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (fun (_x : RelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) => (Finset.{u1} α) -> (Finset.{u1} (Option.{u1} α))) (RelEmbedding.hasCoeToFun.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α)))) (LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)))) (RelEmbedding.toEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Finset.insertNone.{u1} α)) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
+  forall (α : Type.{u1}) [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Finset.{u1} (WithBot.{u1} α)) (Finset.Ico.{u1} (WithBot.{u1} α) (WithBot.preorder.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (WithBot.instLocallyFiniteOrderWithBotPreorderToPreorder.{u1} α _inst_1 _inst_2 _inst_3) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) (WithBot.some.{u1} α b)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (fun (_x : Finset.{u1} α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Finset.{u1} α) => Finset.{u1} (Option.{u1} α)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α))))) (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (Finset.{u1} α) (Finset.{u1} (Option.{u1} α)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Finset.{u1} α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Finset.{u1} α) => LE.le.{u1} (Finset.{u1} α) (Preorder.toLE.{u1} (Finset.{u1} α) (PartialOrder.toPreorder.{u1} (Finset.{u1} α) (Finset.partialOrder.{u1} α))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Finset.{u1} (Option.{u1} α)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Finset.{u1} (Option.{u1} α)) => LE.le.{u1} (Finset.{u1} (Option.{u1} α)) (Preorder.toLE.{u1} (Finset.{u1} (Option.{u1} α)) (PartialOrder.toPreorder.{u1} (Finset.{u1} (Option.{u1} α)) (Finset.partialOrder.{u1} (Option.{u1} α)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Finset.insertNone.{u1} α) (Finset.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 _inst_3) b))
 Case conversion may be inaccurate. Consider using '#align with_bot.Ico_bot_coe WithBot.Ico_bot_coeₓ'. -/
 theorem Ico_bot_coe : Ico (⊥ : WithBot α) b = insertNone (Iio b) :=
   rfl
Diff
@@ -1198,7 +1198,7 @@ instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7233 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7235 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7233 x._@.Mathlib.Order.LocallyFinite._hyg.7235)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7281 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7283 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7281 x._@.Mathlib.Order.LocallyFinite._hyg.7283)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_eq Prod.Icc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1211,7 +1211,7 @@ theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.Icc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7306 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7308 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7306 x._@.Mathlib.Order.LocallyFinite._hyg.7308)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7354 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7356 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7354 x._@.Mathlib.Order.LocallyFinite._hyg.7356)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.Icc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.Icc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.Icc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.Icc_mk_mk Prod.Icc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
@@ -1225,7 +1225,7 @@ theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u2} β _inst_2] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.Icc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.Icc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.Icc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7381 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7383 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7381 x._@.Mathlib.Order.LocallyFinite._hyg.7383)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α _inst_1] [_inst_4 : LocallyFiniteOrder.{u1} β _inst_2] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7429 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7431 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) x._@.Mathlib.Order.LocallyFinite._hyg.7429 x._@.Mathlib.Order.LocallyFinite._hyg.7431)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.Icc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β _inst_1 _inst_2 _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.Icc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.Icc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_Icc Prod.card_Iccₓ'. -/
 theorem card_Icc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
@@ -1245,7 +1245,7 @@ variable [Lattice α] [Lattice β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q)) (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7478 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7480 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7478 x._@.Mathlib.Order.LocallyFinite._hyg.7480)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7526 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7528 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7526 x._@.Mathlib.Order.LocallyFinite._hyg.7528)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{max (succ u2) (succ u1)} (Finset.{max u2 u1} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q)) (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q)))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_eq Prod.uIcc_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
@@ -1258,7 +1258,7 @@ theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{succ (max u1 u2)} (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Finset.product.{u1, u2} α β (Finset.uIcc.{u1} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u2} β _inst_2 _inst_4 b₁ b₂))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7551 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7553 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7551 x._@.Mathlib.Order.LocallyFinite._hyg.7553)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7599 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7601 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7599 x._@.Mathlib.Order.LocallyFinite._hyg.7601)] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β), Eq.{max (succ u2) (succ u1)} (Finset.{max u1 u2} (Prod.{u2, u1} α β)) (Finset.uIcc.{max u1 u2} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) (Prod.mk.{u2, u1} α β a₁ b₁) (Prod.mk.{u2, u1} α β a₂ b₂)) (Finset.product.{u2, u1} α β (Finset.uIcc.{u2} α _inst_1 _inst_3 a₁ a₂) (Finset.uIcc.{u1} β _inst_2 _inst_4 b₁ b₂))
 Case conversion may be inaccurate. Consider using '#align prod.uIcc_mk_mk Prod.uIcc_mk_mkₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
@@ -1272,7 +1272,7 @@ theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : Lattice.{u2} β] [_inst_3 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u1) (succ u2)} (Prod.{u1, u2} α β) (LE.le.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasLe.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))))))] (p : Prod.{u1, u2} α β) (q : Prod.{u1, u2} α β), Eq.{1} Nat (Finset.card.{max u1 u2} (Prod.{u1, u2} α β) (Finset.uIcc.{max u1 u2} (Prod.{u1, u2} α β) (Prod.lattice.{u1, u2} α β _inst_1 _inst_2) (Prod.locallyFiniteOrder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (Finset.card.{u1} α (Finset.uIcc.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β p) (Prod.fst.{u1, u2} α β q))) (Finset.card.{u2} β (Finset.uIcc.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β p) (Prod.snd.{u1, u2} α β q))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7626 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7628 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7626 x._@.Mathlib.Order.LocallyFinite._hyg.7628)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : Lattice.{u1} β] [_inst_3 : LocallyFiniteOrder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))] [_inst_4 : LocallyFiniteOrder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2)))] [_inst_5 : DecidableRel.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (fun (x._@.Mathlib.Order.LocallyFinite._hyg.7674 : Prod.{u2, u1} α β) (x._@.Mathlib.Order.LocallyFinite._hyg.7676 : Prod.{u2, u1} α β) => LE.le.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instLEProd.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))))) x._@.Mathlib.Order.LocallyFinite._hyg.7674 x._@.Mathlib.Order.LocallyFinite._hyg.7676)] (p : Prod.{u2, u1} α β) (q : Prod.{u2, u1} α β), Eq.{1} Nat (Finset.card.{max u2 u1} (Prod.{u2, u1} α β) (Finset.uIcc.{max u2 u1} (Prod.{u2, u1} α β) (Prod.lattice.{u2, u1} α β _inst_1 _inst_2) (Prod.instLocallyFiniteOrderProdInstPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β _inst_2))) _inst_3 _inst_4 (fun (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β) => _inst_5 a b)) p q)) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (Finset.card.{u2} α (Finset.uIcc.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β p) (Prod.fst.{u2, u1} α β q))) (Finset.card.{u1} β (Finset.uIcc.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β p) (Prod.snd.{u2, u1} α β q))))
 Case conversion may be inaccurate. Consider using '#align prod.card_uIcc Prod.card_uIccₓ'. -/
 theorem card_uIcc [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
Diff
@@ -589,12 +589,16 @@ def uIcc (a b : α) : Finset α :=
 -- mathport name: finset.uIcc
 scoped[FinsetInterval] notation "[" a ", " b "]" => Finset.uIcc a b
 
-#print Finset.mem_uIcc /-
+/- warning: finset.mem_uIcc -> Finset.mem_uIcc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] {a : α} {b : α} {x : α}, Iff (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x (Finset.uIcc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : LocallyFiniteOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))] {a : α} {b : α} {x : α}, Iff (Membership.mem.{u1, u1} α (Finset.{u1} α) (Finset.instMembershipFinset.{u1} α) x (Finset.uIcc.{u1} α _inst_1 _inst_2 a b)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)))
+Case conversion may be inaccurate. Consider using '#align finset.mem_uIcc Finset.mem_uIccₓ'. -/
 @[simp]
 theorem mem_uIcc : x ∈ uIcc a b ↔ a ⊓ b ≤ x ∧ x ≤ a ⊔ b :=
   mem_Icc
 #align finset.mem_uIcc Finset.mem_uIcc
--/
 
 #print Finset.coe_uIcc /-
 @[simp, norm_cast]

Changes in mathlib4

mathlib3
mathlib4
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -4,8 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
 import Mathlib.Data.Finset.Preimage
-import Mathlib.Data.Set.Intervals.UnorderedInterval
-import Mathlib.Data.Set.Intervals.Image
+import Mathlib.Order.Interval.Set.Image
+import Mathlib.Order.Interval.Set.UnorderedInterval
 
 #align_import order.locally_finite from "leanprover-community/mathlib"@"1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29"
 
@@ -19,7 +19,7 @@ sense of `Icc`/`Ico`/`Ioc`/`Ioo` as lists, multisets, or finsets.
 Further, if the order is bounded above (resp. below), then we can also make sense of the
 "unbounded" intervals `Ici`/`Ioi` (resp. `Iic`/`Iio`).
 
-Many theorems about these intervals can be found in `Data.Finset.LocallyFinite`.
+Many theorems about these intervals can be found in `Order.Interval.Finset.Basic`.
 
 ## Examples
 
@@ -34,22 +34,14 @@ In a `LocallyFiniteOrder`,
 * `Finset.Ioc`: Open-closed interval as a finset.
 * `Finset.Ioo`: Open-open interval as a finset.
 * `Finset.uIcc`: Unordered closed interval as a finset.
-* `Multiset.Icc`: Closed-closed interval as a multiset.
-* `Multiset.Ico`: Closed-open interval as a multiset.
-* `Multiset.Ioc`: Open-closed interval as a multiset.
-* `Multiset.Ioo`: Open-open interval as a multiset.
 
 In a `LocallyFiniteOrderTop`,
 * `Finset.Ici`: Closed-infinite interval as a finset.
 * `Finset.Ioi`: Open-infinite interval as a finset.
-* `Multiset.Ici`: Closed-infinite interval as a multiset.
-* `Multiset.Ioi`: Open-infinite interval as a multiset.
 
 In a `LocallyFiniteOrderBot`,
 * `Finset.Iic`: Infinite-open interval as a finset.
 * `Finset.Iio`: Infinite-closed interval as a finset.
-* `Multiset.Iic`: Infinite-open interval as a multiset.
-* `Multiset.Iio`: Infinite-closed interval as a multiset.
 
 ## Instances
 
@@ -513,113 +505,6 @@ end Lattice
 
 end Finset
 
-/-! ### Intervals as multisets -/
-
-
-namespace Multiset
-
-variable [Preorder α]
-
-section LocallyFiniteOrder
-
-variable [LocallyFiniteOrder α]
-
-/-- The multiset of elements `x` such that `a ≤ x` and `x ≤ b`. Basically `Set.Icc a b` as a
-multiset. -/
-def Icc (a b : α) : Multiset α :=
-  (Finset.Icc a b).val
-#align multiset.Icc Multiset.Icc
-
-/-- The multiset of elements `x` such that `a ≤ x` and `x < b`. Basically `Set.Ico a b` as a
-multiset. -/
-def Ico (a b : α) : Multiset α :=
-  (Finset.Ico a b).val
-#align multiset.Ico Multiset.Ico
-
-/-- The multiset of elements `x` such that `a < x` and `x ≤ b`. Basically `Set.Ioc a b` as a
-multiset. -/
-def Ioc (a b : α) : Multiset α :=
-  (Finset.Ioc a b).val
-#align multiset.Ioc Multiset.Ioc
-
-/-- The multiset of elements `x` such that `a < x` and `x < b`. Basically `Set.Ioo a b` as a
-multiset. -/
-def Ioo (a b : α) : Multiset α :=
-  (Finset.Ioo a b).val
-#align multiset.Ioo Multiset.Ioo
-
-@[simp]
-theorem mem_Icc {a b x : α} : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b := by
-  rw [Icc, ← Finset.mem_def, Finset.mem_Icc]
-#align multiset.mem_Icc Multiset.mem_Icc
-
-@[simp]
-theorem mem_Ico {a b x : α} : x ∈ Ico a b ↔ a ≤ x ∧ x < b := by
-  rw [Ico, ← Finset.mem_def, Finset.mem_Ico]
-#align multiset.mem_Ico Multiset.mem_Ico
-
-@[simp]
-theorem mem_Ioc {a b x : α} : x ∈ Ioc a b ↔ a < x ∧ x ≤ b := by
-  rw [Ioc, ← Finset.mem_def, Finset.mem_Ioc]
-#align multiset.mem_Ioc Multiset.mem_Ioc
-
-@[simp]
-theorem mem_Ioo {a b x : α} : x ∈ Ioo a b ↔ a < x ∧ x < b := by
-  rw [Ioo, ← Finset.mem_def, Finset.mem_Ioo]
-#align multiset.mem_Ioo Multiset.mem_Ioo
-
-end LocallyFiniteOrder
-
-section LocallyFiniteOrderTop
-
-variable [LocallyFiniteOrderTop α]
-
-/-- The multiset of elements `x` such that `a ≤ x`. Basically `Set.Ici a` as a multiset. -/
-def Ici (a : α) : Multiset α :=
-  (Finset.Ici a).val
-#align multiset.Ici Multiset.Ici
-
-/-- The multiset of elements `x` such that `a < x`. Basically `Set.Ioi a` as a multiset. -/
-def Ioi (a : α) : Multiset α :=
-  (Finset.Ioi a).val
-#align multiset.Ioi Multiset.Ioi
-
-@[simp]
-theorem mem_Ici {a x : α} : x ∈ Ici a ↔ a ≤ x := by rw [Ici, ← Finset.mem_def, Finset.mem_Ici]
-#align multiset.mem_Ici Multiset.mem_Ici
-
-@[simp]
-theorem mem_Ioi {a x : α} : x ∈ Ioi a ↔ a < x := by rw [Ioi, ← Finset.mem_def, Finset.mem_Ioi]
-#align multiset.mem_Ioi Multiset.mem_Ioi
-
-end LocallyFiniteOrderTop
-
-section LocallyFiniteOrderBot
-
-variable [LocallyFiniteOrderBot α]
-
-/-- The multiset of elements `x` such that `x ≤ b`. Basically `Set.Iic b` as a multiset. -/
-def Iic (b : α) : Multiset α :=
-  (Finset.Iic b).val
-#align multiset.Iic Multiset.Iic
-
-/-- The multiset of elements `x` such that `x < b`. Basically `Set.Iio b` as a multiset. -/
-def Iio (b : α) : Multiset α :=
-  (Finset.Iio b).val
-#align multiset.Iio Multiset.Iio
-
-@[simp]
-theorem mem_Iic {b x : α} : x ∈ Iic b ↔ x ≤ b := by rw [Iic, ← Finset.mem_def, Finset.mem_Iic]
-#align multiset.mem_Iic Multiset.mem_Iic
-
-@[simp]
-theorem mem_Iio {b x : α} : x ∈ Iio b ↔ x < b := by rw [Iio, ← Finset.mem_def, Finset.mem_Iio]
-#align multiset.mem_Iio Multiset.mem_Iio
-
-end LocallyFiniteOrderBot
-
-end Multiset
-
 /-! ### Finiteness of `Set` intervals -/
 
 
fix: rename LocallyFiniteOrderTop.ofIic to LocallyFiniteOrderBot (#11371)

It's about LocallyFiniteOrderBot, so the current name is simply wrong.

Also fix documentation mistakes. These errors were already present in Mathlib 3, before the port.

Co-authored-by: Richard Copley <rcopley@gmail.com>

Diff
@@ -193,7 +193,7 @@ def LocallyFiniteOrder.ofIcc (α : Type*) [PartialOrder α] [DecidableEq α]
       rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_and_ne, lt_iff_le_and_ne] }
 #align locally_finite_order.of_Icc LocallyFiniteOrder.ofIcc
 
-/-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
+/-- A constructor from a definition of `Finset.Ici` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrderTop.ofIci`, this one requires `DecidableRel (· ≤ ·)` but
 only `Preorder`. -/
 def LocallyFiniteOrderTop.ofIci' (α : Type*) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
@@ -205,7 +205,7 @@ def LocallyFiniteOrderTop.ofIci' (α : Type*) [Preorder α] [DecidableRel ((· 
     finset_mem_Ioi := fun a x => by rw [mem_filter, mem_Ici, lt_iff_le_not_le] }
 #align locally_finite_order_top.of_Ici' LocallyFiniteOrderTop.ofIci'
 
-/-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
+/-- A constructor from a definition of `Finset.Ici` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrderTop.ofIci'`, this one requires `PartialOrder` but
 only `DecidableEq`. -/
 def LocallyFiniteOrderTop.ofIci (α : Type*) [PartialOrder α] [DecidableEq α]
@@ -218,7 +218,7 @@ def LocallyFiniteOrderTop.ofIci (α : Type*) [PartialOrder α] [DecidableEq α]
 #align locally_finite_order_top.of_Ici LocallyFiniteOrderTop.ofIci
 
 /-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
-the ends. As opposed to `LocallyFiniteOrder.ofIcc`, this one requires `DecidableRel (· ≤ ·)` but
+the ends. As opposed to `LocallyFiniteOrderBot.ofIic`, this one requires `DecidableRel (· ≤ ·)` but
 only `Preorder`. -/
 def LocallyFiniteOrderBot.ofIic' (α : Type*) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     (finsetIic : α → Finset α) (mem_Iic : ∀ a x, x ∈ finsetIic a ↔ x ≤ a) :
@@ -230,16 +230,17 @@ def LocallyFiniteOrderBot.ofIic' (α : Type*) [Preorder α] [DecidableRel ((· 
 #align locally_finite_order_bot.of_Iic' LocallyFiniteOrderBot.ofIic'
 
 /-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
-the ends. As opposed to `LocallyFiniteOrderTop.ofIci'`, this one requires `PartialOrder` but
+the ends. As opposed to `LocallyFiniteOrderBot.ofIic'`, this one requires `PartialOrder` but
 only `DecidableEq`. -/
-def LocallyFiniteOrderTop.ofIic (α : Type*) [PartialOrder α] [DecidableEq α]
+def LocallyFiniteOrderBot.ofIic (α : Type*) [PartialOrder α] [DecidableEq α]
     (finsetIic : α → Finset α) (mem_Iic : ∀ a x, x ∈ finsetIic a ↔ x ≤ a) :
     LocallyFiniteOrderBot α :=
   { finsetIic
     finsetIio := fun a => (finsetIic a).filter fun x => x ≠ a
     finset_mem_Iic := mem_Iic
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_and_ne] }
-#align locally_finite_order_top.of_Iic LocallyFiniteOrderTop.ofIic
+-- Note: this was in the wrong namespace in Mathlib 3.
+#align locally_finite_order_top.of_Iic LocallyFiniteOrderBot.ofIic
 
 variable {α β : Type*}
 
chore: Rename LocallyFiniteOrder instances (#11076)

The generated names were too long

Diff
@@ -818,7 +818,7 @@ following is defeq:
 lemma this : (Icc (toDual (toDual a)) (toDual (toDual b)) : _) = (Icc a b : _) := rfl
 ```
 -/
-instance OrderDual.locallyFiniteOrder : LocallyFiniteOrder αᵒᵈ where
+instance OrderDual.instLocallyFiniteOrder : LocallyFiniteOrder αᵒᵈ where
   finsetIcc a b := @Icc α _ _ (ofDual b) (ofDual a)
   finsetIco a b := @Ioc α _ _ (ofDual b) (ofDual a)
   finsetIoc a b := @Ico α _ _ (ofDual b) (ofDual a)
@@ -896,7 +896,7 @@ instead of `(Ici a).map toDual.toEmbedding` as this means the following is defeq
 lemma this : (Iic (toDual (toDual a)) : _) = (Iic a : _) := rfl
 ```
 -/
-instance : LocallyFiniteOrderBot αᵒᵈ where
+instance OrderDual.instLocallyFiniteOrderBot : LocallyFiniteOrderBot αᵒᵈ where
   finsetIic a := @Ici α _ _ (ofDual a)
   finsetIio a := @Ioi α _ _ (ofDual a)
   finset_mem_Iic _ _ := mem_Ici (α := α)
@@ -930,7 +930,7 @@ instead of `(Iic a).map toDual.toEmbedding` as this means the following is defeq
 lemma this : (Ici (toDual (toDual a)) : _) = (Ici a : _) := rfl
 ```
 -/
-instance : LocallyFiniteOrderTop αᵒᵈ where
+instance OrderDual.instLocallyFiniteOrderTop : LocallyFiniteOrderTop αᵒᵈ where
   finsetIci a := @Iic α _ _ (ofDual a)
   finsetIoi a := @Iio α _ _ (ofDual a)
   finset_mem_Ici _ _ := mem_Iic (α := α)
@@ -1170,8 +1170,8 @@ namespace WithBot
 
 variable (α) [PartialOrder α] [OrderBot α] [LocallyFiniteOrder α]
 
-instance : LocallyFiniteOrder (WithBot α) :=
-  OrderDual.locallyFiniteOrder (α := WithTop αᵒᵈ)
+instance instLocallyFiniteOrder : LocallyFiniteOrder (WithBot α) :=
+  OrderDual.instLocallyFiniteOrder (α := WithTop αᵒᵈ)
 
 variable (a b : α)
 
chore: move BddBelow.finite_of_bddAbove to Order.LocallyFinite (#10613)
Diff
@@ -1396,6 +1396,14 @@ section Finite
 
 variable {α : Type*} {s : Set α}
 
+theorem BddBelow.finite_of_bddAbove [Preorder α] [LocallyFiniteOrder α]
+    {s : Set α} (h₀ : BddBelow s) (h₁ : BddAbove s) :
+    s.Finite :=
+  let ⟨a, ha⟩ := h₀
+  let ⟨b, hb⟩ := h₁
+  (Set.finite_Icc a b).subset fun _x hx ↦ ⟨ha hx, hb hx⟩
+#align bdd_below.finite_of_bdd_above BddBelow.finite_of_bddAbove
+
 theorem Set.finite_iff_bddAbove [SemilatticeSup α] [LocallyFiniteOrder α] [OrderBot α] :
     s.Finite ↔ BddAbove s :=
   ⟨fun h ↦ ⟨h.toFinset.sup id, fun x hx ↦ Finset.le_sup (f := id) (by simpa)⟩,
@@ -1411,7 +1419,7 @@ theorem Set.finite_iff_bddBelow_bddAbove [Nonempty α] [Lattice α] [LocallyFini
   · simp only [Set.finite_empty, bddBelow_empty, bddAbove_empty, and_self]
   exact ⟨fun h ↦ ⟨⟨h.toFinset.inf' (by simpa) id, fun x hx ↦ Finset.inf'_le id (by simpa)⟩,
     ⟨h.toFinset.sup' (by simpa) id, fun x hx ↦ Finset.le_sup' id (by simpa)⟩⟩,
-    fun ⟨⟨a,ha⟩,⟨b,hb⟩⟩ ↦ (Set.finite_Icc a b).subset (fun x hx ↦ ⟨ha hx,hb hx⟩ )⟩
+    fun ⟨h₀, h₁⟩ ↦ BddBelow.finite_of_bddAbove h₀ h₁⟩
 
 end Finite
 
chore: bump to v4.3.0-rc2 (#8366)

PR contents

This is the supremum of

along with some minor fixes from failures on nightly-testing as Mathlib master is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0 branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

leanprover/lean4#2778

We can get rid of all the

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)

macros across Mathlib (and in any projects that want to write natural number powers of reals).

leanprover/lean4#2722

Changes the default behaviour of simp to (config := {decide := false}). This makes simp (and consequentially norm_num) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp or norm_num to decide or rfl, or adding (config := {decide := true}).

leanprover/lean4#2783

This changed the behaviour of simp so that simp [f] will only unfold "fully applied" occurrences of f. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true }). We may in future add a syntax for this, e.g. simp [!f]; please provide feedback! In the meantime, we have made the following changes:

  • switching to using explicit lemmas that have the intended level of application
  • (config := { unfoldPartialApp := true }) in some places, to recover the old behaviour
  • Using @[eqns] to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp and Function.flip.

This change in Lean may require further changes down the line (e.g. adding the !f syntax, and/or upstreaming the special treatment for Function.comp and Function.flip, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -1081,8 +1081,8 @@ instance locallyFiniteOrder : LocallyFiniteOrder (WithTop α) where
         rw [some_mem_insertNone]
         simp
     | (a : α), (b : α), ⊤ => by
-        simp only [some, le_eq_subset, mem_map, mem_Icc, le_top, top_le_iff, and_false, iff_false,
-          not_exists, not_and, and_imp, Embedding.some, forall_const]
+        simp only [Embedding.some, mem_map, mem_Icc, and_false, exists_const, some, le_top,
+          top_le_iff]
     | (a : α), (b : α), (x : α) => by
         simp only [some, le_eq_subset, Embedding.some, mem_map, mem_Icc, Embedding.coeFn_mk,
           some_le_some]
docs(Order/LocallyFinite): Add a ' in a doc-string (#8112)

I did not label it as easy, since you may want to check the definition with a ' to make sure that the doc-strings are now referring to the correct declarations, but the other declaration is not shown in the diff!

Diff
@@ -176,7 +176,7 @@ def LocallyFiniteOrder.ofIcc' (α : Type*) [Preorder α] [DecidableRel ((· ≤
 #align locally_finite_order.of_Icc' LocallyFiniteOrder.ofIcc'
 
 /-- A constructor from a definition of `Finset.Icc` alone, the other ones being derived by removing
-the ends. As opposed to `LocallyFiniteOrder.ofIcc`, this one requires `PartialOrder` but only
+the ends. As opposed to `LocallyFiniteOrder.ofIcc'`, this one requires `PartialOrder` but only
 `DecidableEq`. -/
 def LocallyFiniteOrder.ofIcc (α : Type*) [PartialOrder α] [DecidableEq α]
     (finsetIcc : α → α → Finset α) (mem_Icc : ∀ a b x, x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b) :
chore: fix whitespace typos (#7950)
Diff
@@ -1396,7 +1396,7 @@ section Finite
 
 variable {α : Type*} {s : Set α}
 
-theorem Set.finite_iff_bddAbove [SemilatticeSup α] [LocallyFiniteOrder α] [OrderBot α]:
+theorem Set.finite_iff_bddAbove [SemilatticeSup α] [LocallyFiniteOrder α] [OrderBot α] :
     s.Finite ↔ BddAbove s :=
   ⟨fun h ↦ ⟨h.toFinset.sup id, fun x hx ↦ Finset.le_sup (f := id) (by simpa)⟩,
     fun ⟨m, hm⟩ ↦ (Set.finite_Icc ⊥ m).subset (fun x hx ↦ ⟨bot_le, hm hx⟩)⟩
Revert "chore: revert #7703 (#7710)"

This reverts commit f3695eb2.

Diff
@@ -1085,7 +1085,9 @@ instance locallyFiniteOrder : LocallyFiniteOrder (WithTop α) where
           not_exists, not_and, and_imp, Embedding.some, forall_const]
     | (a : α), (b : α), (x : α) => by
         simp only [some, le_eq_subset, Embedding.some, mem_map, mem_Icc, Embedding.coeFn_mk,
-          some_le_some, aux]
+          some_le_some]
+        -- This used to be in the above `simp` before leanprover/lean4#2644
+        erw [aux]
   finset_mem_Ico a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans_lt h.2
@@ -1093,23 +1095,40 @@ instance locallyFiniteOrder : LocallyFiniteOrder (WithTop α) where
     | (a : α), ⊤, (x : α) => by
         simp only [some, Embedding.some, mem_map, mem_Ici, Embedding.coeFn_mk, some_le_some, aux,
           top, some_lt_none, and_true]
+        -- This used to be in the above `simp` before leanprover/lean4#2644
+        erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some]
     | (a : α), (b : α), (x : α) => by simp [some, Embedding.some, aux]
+                                      -- This used to be in the above `simp` before
+                                      -- leanprover/lean4#2644
+                                      erw [aux]
   finset_mem_Ioc a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans_le h.2
     | (a : α), ⊤, ⊤ => by simp [some, insertNone, top]
     | (a : α), ⊤, (x : α) => by simp [some, Embedding.some, insertNone, aux]
+                                -- This used to be in the above `simp` before
+                                -- leanprover/lean4#2644
+                                erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), (b : α), (x : α) => by simp [some, Embedding.some, insertNone, aux]
+                                      -- This used to be in the above `simp` before
+                                      -- leanprover/lean4#2644
+                                      erw [aux]
   finset_mem_Ioo a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans h.2
     | (a : α), ⊤, ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), ⊤, (x : α) => by simp [some, Embedding.some, insertNone, aux, top]
+                                -- This used to be in the above `simp` before
+                                -- leanprover/lean4#2644
+                                erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), (b : α), (x : α) => by
       simp [some, Embedding.some, insertNone, aux]
+      -- This used to be in the above `simp` before
+      -- leanprover/lean4#2644
+      erw [aux]
 
 variable (a b : α)
 
chore: revert #7703 (#7710)

This reverts commit 26eb2b0a.

Diff
@@ -1085,9 +1085,7 @@ instance locallyFiniteOrder : LocallyFiniteOrder (WithTop α) where
           not_exists, not_and, and_imp, Embedding.some, forall_const]
     | (a : α), (b : α), (x : α) => by
         simp only [some, le_eq_subset, Embedding.some, mem_map, mem_Icc, Embedding.coeFn_mk,
-          some_le_some]
-        -- This used to be in the above `simp` before leanprover/lean4#2644
-        erw [aux]
+          some_le_some, aux]
   finset_mem_Ico a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans_lt h.2
@@ -1095,40 +1093,23 @@ instance locallyFiniteOrder : LocallyFiniteOrder (WithTop α) where
     | (a : α), ⊤, (x : α) => by
         simp only [some, Embedding.some, mem_map, mem_Ici, Embedding.coeFn_mk, some_le_some, aux,
           top, some_lt_none, and_true]
-        -- This used to be in the above `simp` before leanprover/lean4#2644
-        erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some]
     | (a : α), (b : α), (x : α) => by simp [some, Embedding.some, aux]
-                                      -- This used to be in the above `simp` before
-                                      -- leanprover/lean4#2644
-                                      erw [aux]
   finset_mem_Ioc a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans_le h.2
     | (a : α), ⊤, ⊤ => by simp [some, insertNone, top]
     | (a : α), ⊤, (x : α) => by simp [some, Embedding.some, insertNone, aux]
-                                -- This used to be in the above `simp` before
-                                -- leanprover/lean4#2644
-                                erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), (b : α), (x : α) => by simp [some, Embedding.some, insertNone, aux]
-                                      -- This used to be in the above `simp` before
-                                      -- leanprover/lean4#2644
-                                      erw [aux]
   finset_mem_Ioo a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans h.2
     | (a : α), ⊤, ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), ⊤, (x : α) => by simp [some, Embedding.some, insertNone, aux, top]
-                                -- This used to be in the above `simp` before
-                                -- leanprover/lean4#2644
-                                erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), (b : α), (x : α) => by
       simp [some, Embedding.some, insertNone, aux]
-      -- This used to be in the above `simp` before
-      -- leanprover/lean4#2644
-      erw [aux]
 
 variable (a b : α)
 
chore: bump toolchain to v4.2.0-rc2 (#7703)

This includes all the changes from #7606.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -1085,7 +1085,9 @@ instance locallyFiniteOrder : LocallyFiniteOrder (WithTop α) where
           not_exists, not_and, and_imp, Embedding.some, forall_const]
     | (a : α), (b : α), (x : α) => by
         simp only [some, le_eq_subset, Embedding.some, mem_map, mem_Icc, Embedding.coeFn_mk,
-          some_le_some, aux]
+          some_le_some]
+        -- This used to be in the above `simp` before leanprover/lean4#2644
+        erw [aux]
   finset_mem_Ico a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans_lt h.2
@@ -1093,23 +1095,40 @@ instance locallyFiniteOrder : LocallyFiniteOrder (WithTop α) where
     | (a : α), ⊤, (x : α) => by
         simp only [some, Embedding.some, mem_map, mem_Ici, Embedding.coeFn_mk, some_le_some, aux,
           top, some_lt_none, and_true]
+        -- This used to be in the above `simp` before leanprover/lean4#2644
+        erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some]
     | (a : α), (b : α), (x : α) => by simp [some, Embedding.some, aux]
+                                      -- This used to be in the above `simp` before
+                                      -- leanprover/lean4#2644
+                                      erw [aux]
   finset_mem_Ioc a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans_le h.2
     | (a : α), ⊤, ⊤ => by simp [some, insertNone, top]
     | (a : α), ⊤, (x : α) => by simp [some, Embedding.some, insertNone, aux]
+                                -- This used to be in the above `simp` before
+                                -- leanprover/lean4#2644
+                                erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), (b : α), (x : α) => by simp [some, Embedding.some, insertNone, aux]
+                                      -- This used to be in the above `simp` before
+                                      -- leanprover/lean4#2644
+                                      erw [aux]
   finset_mem_Ioo a b x :=
     match a, b, x with
     | ⊤, b, x => iff_of_false (not_mem_empty _) fun h => not_top_lt <| h.1.trans h.2
     | (a : α), ⊤, ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), ⊤, (x : α) => by simp [some, Embedding.some, insertNone, aux, top]
+                                -- This used to be in the above `simp` before
+                                -- leanprover/lean4#2644
+                                erw [aux]
     | (a : α), (b : α), ⊤ => by simp [some, Embedding.some, insertNone]
     | (a : α), (b : α), (x : α) => by
       simp [some, Embedding.some, insertNone, aux]
+      -- This used to be in the above `simp` before
+      -- leanprover/lean4#2644
+      erw [aux]
 
 variable (a b : α)
 
feat: Supremum of Finset.Iic a (#7416)

and lemmas about Set.toFinset of Finset.Ixx

Diff
@@ -1470,3 +1470,46 @@ instance [Preorder α] [LocallyFiniteOrderTop α] : Finite { x : α // y < x } :
   ext
   simp
   rfl
+
+namespace Set
+variable {α : Type*} [Preorder α]
+
+section LocallyFiniteOrder
+variable [LocallyFiniteOrder α]
+
+@[simp] lemma toFinset_Icc (a b : α) [Fintype (Icc a b)] : (Icc a b).toFinset = Finset.Icc a b := by
+  ext; simp
+
+@[simp] lemma toFinset_Ico (a b : α) [Fintype (Ico a b)] : (Ico a b).toFinset = Finset.Ico a b := by
+  ext; simp
+
+@[simp] lemma toFinset_Ioc (a b : α) [Fintype (Ioc a b)] : (Ioc a b).toFinset = Finset.Ioc a b := by
+  ext; simp
+
+@[simp] lemma toFinset_Ioo (a b : α) [Fintype (Ioo a b)] : (Ioo a b).toFinset = Finset.Ioo a b := by
+  ext; simp
+
+end LocallyFiniteOrder
+
+section LocallyFiniteOrderTop
+variable [LocallyFiniteOrderTop α]
+
+@[simp]
+lemma toFinset_Ici (a : α) [Fintype (Ici a)] : (Ici a).toFinset = Finset.Ici a := by ext; simp
+
+@[simp]
+lemma toFinset_Ioi (a : α) [Fintype (Ioi a)] : (Ioi a).toFinset = Finset.Ioi a := by ext; simp
+
+end LocallyFiniteOrderTop
+
+section LocallyFiniteOrderBot
+variable [LocallyFiniteOrderBot α]
+
+@[simp]
+lemma toFinset_Iic (a : α) [Fintype (Iic a)] : (Iic a).toFinset = Finset.Iic a := by ext; simp
+
+@[simp]
+lemma toFinset_Iio (a : α) [Fintype (Iio a)] : (Iio a).toFinset = Finset.Iio a := by ext; simp
+
+end LocallyFiniteOrderBot
+end Set
chore: tidy various files (#7343)
Diff
@@ -86,19 +86,17 @@ We can provide `SuccOrder α` from `LinearOrder α` and `LocallyFiniteOrder α`
 
 ```lean
 lemma exists_min_greater [LinearOrder α] [LocallyFiniteOrder α] {x ub : α} (hx : x < ub) :
-    ∃ lub, x < lub ∧ ∀ y, x < y → lub ≤ y :=
-begin -- very non golfed
-  have h : (Finset.Ioc x ub).Nonempty := ⟨ub, Finset.mem_Ioc_iff.2 ⟨hx, le_rfl⟩⟩
+    ∃ lub, x < lub ∧ ∀ y, x < y → lub ≤ y := by
+  -- very non golfed
+  have h : (Finset.Ioc x ub).Nonempty := ⟨ub, Finset.mem_Ioc.2 ⟨hx, le_rfl⟩⟩
   use Finset.min' (Finset.Ioc x ub) h
   constructor
-  · have := Finset.min'_mem _ h
-    simp * at *
+  · exact (Finset.mem_Ioc.mp <| Finset.min'_mem _ h).1
   rintro y hxy
   obtain hy | hy := le_total y ub
-  apply Finset.min'_le
-  simp * at *
-  exact (Finset.min'_le _ _ (Finset.mem_Ioc_iff.2 ⟨hx, le_rfl⟩)).trans hy
-end
+  · refine Finset.min'_le (Ioc x ub) y ?_
+    simp [*] at *
+  · exact (Finset.min'_le _ _ (Finset.mem_Ioc.2 ⟨hx, le_rfl⟩)).trans hy
 ```
 Note that the converse is not true. Consider `{-2^z | z : ℤ} ∪ {2^z | z : ℤ}`. Any element has a
 successor (and actually a predecessor as well), so it is a `SuccOrder`, but it's not locally finite
chore: only four spaces for subsequent lines (#7286)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -86,7 +86,7 @@ We can provide `SuccOrder α` from `LinearOrder α` and `LocallyFiniteOrder α`
 
 ```lean
 lemma exists_min_greater [LinearOrder α] [LocallyFiniteOrder α] {x ub : α} (hx : x < ub) :
-  ∃ lub, x < lub ∧ ∀ y, x < y → lub ≤ y :=
+    ∃ lub, x < lub ∧ ∀ y, x < y → lub ≤ y :=
 begin -- very non golfed
   have h : (Finset.Ioc x ub).Nonempty := ⟨ub, Finset.mem_Ioc_iff.2 ⟨hx, le_rfl⟩⟩
   use Finset.min' (Finset.Ioc x ub) h
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -105,6 +105,8 @@ successor (and actually a predecessor as well), so it is a `SuccOrder`, but it's
 as `Icc (-1) 1` is infinite.
 -/
 
+set_option autoImplicit true
+
 
 open Finset Function
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -112,7 +112,7 @@ open Finset Function
 that is, is an order where bounded intervals are finite.
 When you don't care too much about definitional equality, you can use `LocallyFiniteOrder.ofIcc` or
 `LocallyFiniteOrder.ofFiniteIcc` to build a locally finite order from just `Finset.Icc`. -/
-class LocallyFiniteOrder (α : Type _) [Preorder α] where
+class LocallyFiniteOrder (α : Type*) [Preorder α] where
   /-- Left-closed right-closed interval -/
   finsetIcc : α → α → Finset α
   /-- Left-closed right-open interval -/
@@ -133,7 +133,7 @@ class LocallyFiniteOrder (α : Type _) [Preorder α] where
 
 /-- This mixin class describes an order where all intervals bounded below are finite. This is
 slightly weaker than `LocallyFiniteOrder` + `OrderTop` as it allows empty types. -/
-class LocallyFiniteOrderTop (α : Type _) [Preorder α] where
+class LocallyFiniteOrderTop (α : Type*) [Preorder α] where
   /-- Left-open right-infinite interval -/
   finsetIoi : α → Finset α
   /-- Left-closed right-infinite interval -/
@@ -146,7 +146,7 @@ class LocallyFiniteOrderTop (α : Type _) [Preorder α] where
 
 /-- This mixin class describes an order where all intervals bounded above are finite. This is
 slightly weaker than `LocallyFiniteOrder` + `OrderBot` as it allows empty types. -/
-class LocallyFiniteOrderBot (α : Type _) [Preorder α] where
+class LocallyFiniteOrderBot (α : Type*) [Preorder α] where
   /-- Left-infinite right-open interval -/
   finsetIio : α → Finset α
   /-- Left-infinite right-closed interval -/
@@ -160,7 +160,7 @@ class LocallyFiniteOrderBot (α : Type _) [Preorder α] where
 /-- A constructor from a definition of `Finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrder.ofIcc`, this one requires `DecidableRel (· ≤ ·)` but
 only `Preorder`. -/
-def LocallyFiniteOrder.ofIcc' (α : Type _) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
+def LocallyFiniteOrder.ofIcc' (α : Type*) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     (finsetIcc : α → α → Finset α) (mem_Icc : ∀ a b x, x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b) :
     LocallyFiniteOrder α :=
   { finsetIcc
@@ -178,7 +178,7 @@ def LocallyFiniteOrder.ofIcc' (α : Type _) [Preorder α] [DecidableRel ((· ≤
 /-- A constructor from a definition of `Finset.Icc` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrder.ofIcc`, this one requires `PartialOrder` but only
 `DecidableEq`. -/
-def LocallyFiniteOrder.ofIcc (α : Type _) [PartialOrder α] [DecidableEq α]
+def LocallyFiniteOrder.ofIcc (α : Type*) [PartialOrder α] [DecidableEq α]
     (finsetIcc : α → α → Finset α) (mem_Icc : ∀ a b x, x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b) :
     LocallyFiniteOrder α :=
   { finsetIcc
@@ -196,7 +196,7 @@ def LocallyFiniteOrder.ofIcc (α : Type _) [PartialOrder α] [DecidableEq α]
 /-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrderTop.ofIci`, this one requires `DecidableRel (· ≤ ·)` but
 only `Preorder`. -/
-def LocallyFiniteOrderTop.ofIci' (α : Type _) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
+def LocallyFiniteOrderTop.ofIci' (α : Type*) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     (finsetIci : α → Finset α) (mem_Ici : ∀ a x, x ∈ finsetIci a ↔ a ≤ x) :
     LocallyFiniteOrderTop α :=
   { finsetIci
@@ -208,7 +208,7 @@ def LocallyFiniteOrderTop.ofIci' (α : Type _) [Preorder α] [DecidableRel ((·
 /-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrderTop.ofIci'`, this one requires `PartialOrder` but
 only `DecidableEq`. -/
-def LocallyFiniteOrderTop.ofIci (α : Type _) [PartialOrder α] [DecidableEq α]
+def LocallyFiniteOrderTop.ofIci (α : Type*) [PartialOrder α] [DecidableEq α]
     (finsetIci : α → Finset α) (mem_Ici : ∀ a x, x ∈ finsetIci a ↔ a ≤ x) :
     LocallyFiniteOrderTop α :=
   { finsetIci
@@ -220,7 +220,7 @@ def LocallyFiniteOrderTop.ofIci (α : Type _) [PartialOrder α] [DecidableEq α]
 /-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrder.ofIcc`, this one requires `DecidableRel (· ≤ ·)` but
 only `Preorder`. -/
-def LocallyFiniteOrderBot.ofIic' (α : Type _) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
+def LocallyFiniteOrderBot.ofIic' (α : Type*) [Preorder α] [DecidableRel ((· ≤ ·) : α → α → Prop)]
     (finsetIic : α → Finset α) (mem_Iic : ∀ a x, x ∈ finsetIic a ↔ x ≤ a) :
     LocallyFiniteOrderBot α :=
   { finsetIic
@@ -232,7 +232,7 @@ def LocallyFiniteOrderBot.ofIic' (α : Type _) [Preorder α] [DecidableRel ((·
 /-- A constructor from a definition of `Finset.Iic` alone, the other ones being derived by removing
 the ends. As opposed to `LocallyFiniteOrderTop.ofIci'`, this one requires `PartialOrder` but
 only `DecidableEq`. -/
-def LocallyFiniteOrderTop.ofIic (α : Type _) [PartialOrder α] [DecidableEq α]
+def LocallyFiniteOrderTop.ofIic (α : Type*) [PartialOrder α] [DecidableEq α]
     (finsetIic : α → Finset α) (mem_Iic : ∀ a x, x ∈ finsetIic a ↔ x ≤ a) :
     LocallyFiniteOrderBot α :=
   { finsetIic
@@ -241,7 +241,7 @@ def LocallyFiniteOrderTop.ofIic (α : Type _) [PartialOrder α] [DecidableEq α]
     finset_mem_Iio := fun a x => by rw [mem_filter, mem_Iic, lt_iff_le_and_ne] }
 #align locally_finite_order_top.of_Iic LocallyFiniteOrderTop.ofIic
 
-variable {α β : Type _}
+variable {α β : Type*}
 
 -- See note [reducible non-instances]
 /-- An empty type is locally finite.
@@ -1375,7 +1375,7 @@ end Finset
 
 section Finite
 
-variable {α : Type _} {s : Set α}
+variable {α : Type*} {s : Set α}
 
 theorem Set.finite_iff_bddAbove [SemilatticeSup α] [LocallyFiniteOrder α] [OrderBot α]:
     s.Finite ↔ BddAbove s :=
feat: add instances for intervals (#5957)

Don't mind at all if anyone would like to push refactors or golfs. My main requirement from this PR is that

import Mathlib

example : WellFoundedLT { x : ℕ // x ≤ 37 }ᵒᵈ := inferInstance

works out of the box.

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Matthew Robert Ballard <matt@mrb.email> Co-authored-by: Xavier Roblot <46200072+xroblot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Jz Pan <acme_pjz@hotmail.com> Co-authored-by: Thomas Browning <tb65536@uw.edu> Co-authored-by: Oliver Nash <github@olivernash.org> Co-authored-by: Christopher Hoskin <christopher.hoskin@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Anatole Dedecker <anatolededecker@gmail.com> Co-authored-by: Matthew Robert Ballard <k.buzzard@imperial.ac.uk> Co-authored-by: Peter Nelson <71660771+apnelson1@users.noreply.github.com> Co-authored-by: Rémy Degenne <remydegenne@gmail.com> Co-authored-by: MohanadAhmed <m.a.m.elhassan@gmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: damiano <adomani@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com> Co-authored-by: Rémy Degenne <Remydegenne@gmail.com> Co-authored-by: Jon Eugster <eugster.jon@gmail.com> Co-authored-by: Kevin Buzzard <k.buzzard@imperial.ac.uk>

Diff
@@ -5,6 +5,7 @@ Authors: Yaël Dillies
 -/
 import Mathlib.Data.Finset.Preimage
 import Mathlib.Data.Set.Intervals.UnorderedInterval
+import Mathlib.Data.Set.Intervals.Image
 
 #align_import order.locally_finite from "leanprover-community/mathlib"@"1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29"
 
@@ -1237,7 +1238,8 @@ end OrderIso
 
 variable [Preorder α] (p : α → Prop) [DecidablePred p]
 
-instance [LocallyFiniteOrder α] : LocallyFiniteOrder (Subtype p) where
+instance Subtype.instLocallyFiniteOrder [LocallyFiniteOrder α] :
+    LocallyFiniteOrder (Subtype p) where
   finsetIcc a b := (Icc (a : α) b).subtype p
   finsetIco a b := (Ico (a : α) b).subtype p
   finsetIoc a b := (Ioc (a : α) b).subtype p
@@ -1249,13 +1251,15 @@ instance [LocallyFiniteOrder α] : LocallyFiniteOrder (Subtype p) where
     simp_rw [Finset.mem_subtype, mem_Ioc, Subtype.coe_le_coe, Subtype.coe_lt_coe]
   finset_mem_Ioo a b x := by simp_rw [Finset.mem_subtype, mem_Ioo, Subtype.coe_lt_coe]
 
-instance [LocallyFiniteOrderTop α] : LocallyFiniteOrderTop (Subtype p) where
+instance Subtype.instLocallyFiniteOrderTop [LocallyFiniteOrderTop α] :
+    LocallyFiniteOrderTop (Subtype p) where
   finsetIci a := (Ici (a : α)).subtype p
   finsetIoi a := (Ioi (a : α)).subtype p
   finset_mem_Ici a x := by simp_rw [Finset.mem_subtype, mem_Ici, Subtype.coe_le_coe]
   finset_mem_Ioi a x := by simp_rw [Finset.mem_subtype, mem_Ioi, Subtype.coe_lt_coe]
 
-instance [LocallyFiniteOrderBot α] : LocallyFiniteOrderBot (Subtype p) where
+instance Subtype.instLocallyFiniteOrderBot [LocallyFiniteOrderBot α] :
+    LocallyFiniteOrderBot (Subtype p) where
   finsetIic a := (Iic (a : α)).subtype p
   finsetIio a := (Iio (a : α)).subtype p
   finset_mem_Iic a x := by simp_rw [Finset.mem_subtype, mem_Iic, Subtype.coe_le_coe]
@@ -1391,3 +1395,78 @@ theorem Set.finite_iff_bddBelow_bddAbove [Nonempty α] [Lattice α] [LocallyFini
     fun ⟨⟨a,ha⟩,⟨b,hb⟩⟩ ↦ (Set.finite_Icc a b).subset (fun x hx ↦ ⟨ha hx,hb hx⟩ )⟩
 
 end Finite
+
+/-! We make the instances below low priority
+so when alternative constructions are available they are preferred. -/
+
+instance (priority := low) [Preorder α] [DecidableRel ((· : α) ≤ ·)] [LocallyFiniteOrder α] :
+    LocallyFiniteOrderTop { x : α // x ≤ y } where
+  finsetIoi a := Finset.Ioc a ⟨y, by rfl⟩
+  finsetIci a := Finset.Icc a ⟨y, by rfl⟩
+  finset_mem_Ici a b := by
+    simp only [Finset.mem_Icc, and_iff_left_iff_imp]
+    exact fun _ => b.property
+  finset_mem_Ioi a b := by
+    simp only [Finset.mem_Ioc, and_iff_left_iff_imp]
+    exact fun _ => b.property
+
+instance (priority := low) [Preorder α] [DecidableRel ((· : α) < ·)] [LocallyFiniteOrder α] :
+    LocallyFiniteOrderTop { x : α // x < y } where
+  finsetIoi a := (Finset.Ioo ↑a y).subtype _
+  finsetIci a := (Finset.Ico ↑a y).subtype _
+  finset_mem_Ici a b := by
+    simp only [Finset.mem_subtype, Finset.mem_Ico, Subtype.coe_le_coe, and_iff_left_iff_imp]
+    exact fun _ => b.property
+  finset_mem_Ioi a b := by
+    simp only [Finset.mem_subtype, Finset.mem_Ioo, Subtype.coe_lt_coe, and_iff_left_iff_imp]
+    exact fun _ => b.property
+
+instance (priority := low) [Preorder α] [DecidableRel ((· : α) ≤ ·)] [LocallyFiniteOrder α] :
+    LocallyFiniteOrderBot { x : α // y ≤ x } where
+  finsetIio a := Finset.Ico ⟨y, by rfl⟩ a
+  finsetIic a := Finset.Icc ⟨y, by rfl⟩ a
+  finset_mem_Iic a b := by
+    simp only [Finset.mem_Icc, and_iff_right_iff_imp]
+    exact fun _ => b.property
+  finset_mem_Iio a b := by
+    simp only [Finset.mem_Ico, and_iff_right_iff_imp]
+    exact fun _ => b.property
+
+instance (priority := low) [Preorder α] [DecidableRel ((· : α) < ·)] [LocallyFiniteOrder α] :
+    LocallyFiniteOrderBot { x : α // y < x } where
+  finsetIio a := (Finset.Ioo y ↑a).subtype _
+  finsetIic a := (Finset.Ioc y ↑a).subtype _
+  finset_mem_Iic a b := by
+    simp only [Finset.mem_subtype, Finset.mem_Ioc, Subtype.coe_le_coe, and_iff_right_iff_imp]
+    exact fun _ => b.property
+  finset_mem_Iio a b := by
+    simp only [Finset.mem_subtype, Finset.mem_Ioo, Subtype.coe_lt_coe, and_iff_right_iff_imp]
+    exact fun _ => b.property
+
+instance [Preorder α] [LocallyFiniteOrderBot α] : Finite { x : α // x ≤ y } := by
+  apply Set.Finite.to_subtype
+  convert (Finset.Iic y).finite_toSet using 1
+  ext
+  simp
+  rfl
+
+instance [Preorder α] [LocallyFiniteOrderBot α] : Finite { x : α // x < y } := by
+  apply Set.Finite.to_subtype
+  convert (Finset.Iio y).finite_toSet using 1
+  ext
+  simp
+  rfl
+
+instance [Preorder α] [LocallyFiniteOrderTop α] : Finite { x : α // y ≤ x } := by
+  apply Set.Finite.to_subtype
+  convert (Finset.Ici y).finite_toSet using 1
+  ext
+  simp
+  rfl
+
+instance [Preorder α] [LocallyFiniteOrderTop α] : Finite { x : α // y < x } := by
+  apply Set.Finite.to_subtype
+  convert (Finset.Ioi y).finite_toSet using 1
+  ext
+  simp
+  rfl
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.locally_finite
-! leanprover-community/mathlib commit 1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Finset.Preimage
 import Mathlib.Data.Set.Intervals.UnorderedInterval
 
+#align_import order.locally_finite from "leanprover-community/mathlib"@"1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29"
+
 /-!
 # Locally finite orders
 
fix: correct doc-string for LocallyFiniteOrderTop/Bot (#5956)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -110,8 +110,9 @@ as `Icc (-1) 1` is infinite.
 
 open Finset Function
 
-/-- A locally finite order is an order where bounded intervals are finite. When you don't care too
-much about definitional equality, you can use `LocallyFiniteOrder.ofIcc` or
+/-- This is a mixin class describing a locally finite order,
+that is, is an order where bounded intervals are finite.
+When you don't care too much about definitional equality, you can use `LocallyFiniteOrder.ofIcc` or
 `LocallyFiniteOrder.ofFiniteIcc` to build a locally finite order from just `Finset.Icc`. -/
 class LocallyFiniteOrder (α : Type _) [Preorder α] where
   /-- Left-closed right-closed interval -/
@@ -132,7 +133,7 @@ class LocallyFiniteOrder (α : Type _) [Preorder α] where
   finset_mem_Ioo : ∀ a b x : α, x ∈ finsetIoo a b ↔ a < x ∧ x < b
 #align locally_finite_order LocallyFiniteOrder
 
-/-- A locally finite order top is an order where all intervals bounded above are finite. This is
+/-- This mixin class describes an order where all intervals bounded below are finite. This is
 slightly weaker than `LocallyFiniteOrder` + `OrderTop` as it allows empty types. -/
 class LocallyFiniteOrderTop (α : Type _) [Preorder α] where
   /-- Left-open right-infinite interval -/
@@ -145,7 +146,7 @@ class LocallyFiniteOrderTop (α : Type _) [Preorder α] where
   finset_mem_Ioi : ∀ a x : α, x ∈ finsetIoi a ↔ a < x
 #align locally_finite_order_top LocallyFiniteOrderTop
 
-/-- A locally finite order bot is an order where all intervals bounded below are finite. This is
+/-- This mixin class describes an order where all intervals bounded above are finite. This is
 slightly weaker than `LocallyFiniteOrder` + `OrderBot` as it allows empty types. -/
 class LocallyFiniteOrderBot (α : Type _) [Preorder α] where
   /-- Left-infinite right-open interval -/
feat: finset.uIcc on concrete structures (#5946)

Match https://github.com/leanprover-community/mathlib/pull/18838

Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 
 ! This file was ported from Lean 3 source module order.locally_finite
-! leanprover-community/mathlib commit 2445c98ae4b87eabebdde552593519b9b6dc350c
+! leanprover-community/mathlib commit 1d29de43a5ba4662dd33b5cfeecfc2a27a5a8a29
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -629,20 +629,16 @@ section Preorder
 
 variable [Preorder α] [LocallyFiniteOrder α] (a b : α)
 
-instance fintypeIcc : Fintype (Icc a b) :=
-  Fintype.ofFinset (Finset.Icc a b) fun x => by rw [Finset.mem_Icc, mem_Icc]
+instance fintypeIcc : Fintype (Icc a b) := Fintype.ofFinset (Finset.Icc a b) fun _ => Finset.mem_Icc
 #align set.fintype_Icc Set.fintypeIcc
 
-instance fintypeIco : Fintype (Ico a b) :=
-  Fintype.ofFinset (Finset.Ico a b) fun x => by rw [Finset.mem_Ico, mem_Ico]
+instance fintypeIco : Fintype (Ico a b) := Fintype.ofFinset (Finset.Ico a b) fun _ => Finset.mem_Ico
 #align set.fintype_Ico Set.fintypeIco
 
-instance fintypeIoc : Fintype (Ioc a b) :=
-  Fintype.ofFinset (Finset.Ioc a b) fun x => by rw [Finset.mem_Ioc, mem_Ioc]
+instance fintypeIoc : Fintype (Ioc a b) := Fintype.ofFinset (Finset.Ioc a b) fun _ => Finset.mem_Ioc
 #align set.fintype_Ioc Set.fintypeIoc
 
-instance fintypeIoo : Fintype (Ioo a b) :=
-  Fintype.ofFinset (Finset.Ioo a b) fun x => by rw [Finset.mem_Ioo, mem_Ioo]
+instance fintypeIoo : Fintype (Ioo a b) := Fintype.ofFinset (Finset.Ioo a b) fun _ => Finset.mem_Ioo
 #align set.fintype_Ioo Set.fintypeIoo
 
 theorem finite_Icc : (Icc a b).Finite :=
@@ -667,12 +663,10 @@ section OrderTop
 
 variable [Preorder α] [LocallyFiniteOrderTop α] (a : α)
 
-instance fintypeIci : Fintype (Ici a) :=
-  Fintype.ofFinset (Finset.Ici a) fun x => by rw [Finset.mem_Ici, mem_Ici]
+instance fintypeIci : Fintype (Ici a) := Fintype.ofFinset (Finset.Ici a) fun _ => Finset.mem_Ici
 #align set.fintype_Ici Set.fintypeIci
 
-instance fintypeIoi : Fintype (Ioi a) :=
-  Fintype.ofFinset (Finset.Ioi a) fun x => by rw [Finset.mem_Ioi, mem_Ioi]
+instance fintypeIoi : Fintype (Ioi a) := Fintype.ofFinset (Finset.Ioi a) fun _ => Finset.mem_Ioi
 #align set.fintype_Ioi Set.fintypeIoi
 
 theorem finite_Ici : (Ici a).Finite :=
@@ -689,12 +683,10 @@ section OrderBot
 
 variable [Preorder α] [LocallyFiniteOrderBot α] (b : α)
 
-instance fintypeIic : Fintype (Iic b) :=
-  Fintype.ofFinset (Finset.Iic b) fun x => by rw [Finset.mem_Iic, mem_Iic]
+instance fintypeIic : Fintype (Iic b) := Fintype.ofFinset (Finset.Iic b) fun _ => Finset.mem_Iic
 #align set.fintype_Iic Set.fintypeIic
 
-instance fintypeIio : Fintype (Iio b) :=
-  Fintype.ofFinset (Finset.Iio b) fun x => by rw [Finset.mem_Iio, mem_Iio]
+instance fintypeIio : Fintype (Iio b) := Fintype.ofFinset (Finset.Iio b) fun _ => Finset.mem_Iio
 #align set.fintype_Iio Set.fintypeIio
 
 theorem finite_Iic : (Iic b).Finite :=
@@ -707,6 +699,19 @@ theorem finite_Iio : (Iio b).Finite :=
 
 end OrderBot
 
+section Lattice
+variable [Lattice α] [LocallyFiniteOrder α] (a b : α)
+
+instance fintypeUIcc : Fintype (uIcc a b) :=
+  Fintype.ofFinset (Finset.uIcc a b) fun _ => Finset.mem_uIcc
+#align set.fintype_uIcc Set.fintypeUIcc
+
+@[simp]
+theorem finite_interval : (uIcc a b).Finite := (uIcc _ _).toFinite
+#align set.finite_interval Set.finite_interval
+
+end Lattice
+
 end Set
 
 /-! ### Instances -/
fix: fix wrong namespace for finite_iff_bdd lemmas (#5783)

This fixes an issue with my earlier PR adding three lemmas about finiteness/boundedness, which were incorrectly defined in the Finset namespace rather than Set.

Diff
@@ -1364,20 +1364,22 @@ theorem map_subtype_embedding_Iio : (Iio a).map (Embedding.subtype p) = (Iio a :
 
 end LocallyFiniteOrderBot
 
+end Finset
+
 section Finite
 
 variable {α : Type _} {s : Set α}
 
-theorem finite_iff_bddAbove [SemilatticeSup α] [LocallyFiniteOrder α] [OrderBot α]:
+theorem Set.finite_iff_bddAbove [SemilatticeSup α] [LocallyFiniteOrder α] [OrderBot α]:
     s.Finite ↔ BddAbove s :=
   ⟨fun h ↦ ⟨h.toFinset.sup id, fun x hx ↦ Finset.le_sup (f := id) (by simpa)⟩,
     fun ⟨m, hm⟩ ↦ (Set.finite_Icc ⊥ m).subset (fun x hx ↦ ⟨bot_le, hm hx⟩)⟩
 
-theorem finite_iff_bddBelow [SemilatticeInf α] [LocallyFiniteOrder α] [OrderTop α] :
+theorem Set.finite_iff_bddBelow [SemilatticeInf α] [LocallyFiniteOrder α] [OrderTop α] :
     s.Finite ↔ BddBelow s :=
   finite_iff_bddAbove (α := αᵒᵈ)
 
-theorem finite_iff_bddBelow_bddAbove [Nonempty α] [Lattice α] [LocallyFiniteOrder α] :
+theorem Set.finite_iff_bddBelow_bddAbove [Nonempty α] [Lattice α] [LocallyFiniteOrder α] :
     s.Finite ↔ BddBelow s ∧ BddAbove s := by
   obtain (rfl | hs) := s.eq_empty_or_nonempty
   · simp only [Set.finite_empty, bddBelow_empty, bddAbove_empty, and_self]
@@ -1386,5 +1388,3 @@ theorem finite_iff_bddBelow_bddAbove [Nonempty α] [Lattice α] [LocallyFiniteOr
     fun ⟨⟨a,ha⟩,⟨b,hb⟩⟩ ↦ (Set.finite_Icc a b).subset (fun x hx ↦ ⟨ha hx,hb hx⟩ )⟩
 
 end Finite
-
-end Finset
feat: Add finite iff bounded lemmas (#5567)

This PR adds a lemma stating that finiteness is equivalent to boundedness above and below in a locally finite lattice, as well as one-way versions for both types of semilattice.

Diff
@@ -1364,4 +1364,27 @@ theorem map_subtype_embedding_Iio : (Iio a).map (Embedding.subtype p) = (Iio a :
 
 end LocallyFiniteOrderBot
 
+section Finite
+
+variable {α : Type _} {s : Set α}
+
+theorem finite_iff_bddAbove [SemilatticeSup α] [LocallyFiniteOrder α] [OrderBot α]:
+    s.Finite ↔ BddAbove s :=
+  ⟨fun h ↦ ⟨h.toFinset.sup id, fun x hx ↦ Finset.le_sup (f := id) (by simpa)⟩,
+    fun ⟨m, hm⟩ ↦ (Set.finite_Icc ⊥ m).subset (fun x hx ↦ ⟨bot_le, hm hx⟩)⟩
+
+theorem finite_iff_bddBelow [SemilatticeInf α] [LocallyFiniteOrder α] [OrderTop α] :
+    s.Finite ↔ BddBelow s :=
+  finite_iff_bddAbove (α := αᵒᵈ)
+
+theorem finite_iff_bddBelow_bddAbove [Nonempty α] [Lattice α] [LocallyFiniteOrder α] :
+    s.Finite ↔ BddBelow s ∧ BddAbove s := by
+  obtain (rfl | hs) := s.eq_empty_or_nonempty
+  · simp only [Set.finite_empty, bddBelow_empty, bddAbove_empty, and_self]
+  exact ⟨fun h ↦ ⟨⟨h.toFinset.inf' (by simpa) id, fun x hx ↦ Finset.inf'_le id (by simpa)⟩,
+    ⟨h.toFinset.sup' (by simpa) id, fun x hx ↦ Finset.le_sup' id (by simpa)⟩⟩,
+    fun ⟨⟨a,ha⟩,⟨b,hb⟩⟩ ↦ (Set.finite_Icc a b).subset (fun x hx ↦ ⟨ha hx,hb hx⟩ )⟩
+
+end Finite
+
 end Finset
chore: remove superfluous parentheses in calls to ext (#5258)

Co-authored-by: Xavier Roblot <46200072+xroblot@users.noreply.github.com> Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr> Co-authored-by: Riccardo Brasca <riccardo.brasca@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Pol'tta / Miyahara Kō <pol_tta@outlook.jp> Co-authored-by: Jason Yuen <jason_yuen2007@hotmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: Jireh Loreaux <loreaujy@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Jujian Zhang <jujian.zhang1998@outlook.com> Co-authored-by: Yaël Dillies <yael.dillies@gmail.com>

Diff
@@ -750,16 +750,16 @@ instance : Subsingleton (LocallyFiniteOrder α) :=
     cases' h₁ with h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo
       h₁_finset_mem_Icc h₁_finset_mem_Ico h₁_finset_mem_Ioc h₁_finset_mem_Ioo
     have hIcc : h₀_finset_Icc = h₁_finset_Icc := by
-      ext (a b x)
+      ext a b x
       rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc]
     have hIco : h₀_finset_Ico = h₁_finset_Ico := by
-      ext (a b x)
+      ext a b x
       rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico]
     have hIoc : h₀_finset_Ioc = h₁_finset_Ioc := by
-      ext (a b x)
+      ext a b x
       rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc]
     have hIoo : h₀_finset_Ioo = h₁_finset_Ioo := by
-      ext (a b x)
+      ext a b x
       rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo]
     simp_rw [hIcc, hIco, hIoc, hIoo]
 
chore: bump to nightly-2023-05-31 (#4530)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Alex J Best <alex.j.best@gmail.com>

Diff
@@ -768,10 +768,10 @@ instance : Subsingleton (LocallyFiniteOrderTop α) :=
     cases' h₀ with h₀_finset_Ioi h₀_finset_Ici h₀_finset_mem_Ici h₀_finset_mem_Ioi
     cases' h₁ with h₁_finset_Ioi h₁_finset_Ici h₁_finset_mem_Ici h₁_finset_mem_Ioi
     have hIci : h₀_finset_Ici = h₁_finset_Ici := by
-      ext (a b x)
+      ext a b
       rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici]
     have hIoi : h₀_finset_Ioi = h₁_finset_Ioi := by
-      ext (a b x)
+      ext a b
       rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi]
     simp_rw [hIci, hIoi]
 
@@ -780,10 +780,10 @@ instance : Subsingleton (LocallyFiniteOrderBot α) :=
     cases' h₀ with h₀_finset_Iio h₀_finset_Iic h₀_finset_mem_Iic h₀_finset_mem_Iio
     cases' h₁ with h₁_finset_Iio h₁_finset_Iic h₁_finset_mem_Iic h₁_finset_mem_Iio
     have hIic : h₀_finset_Iic = h₁_finset_Iic := by
-      ext (a b x)
+      ext a b
       rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic]
     have hIio : h₀_finset_Iio = h₁_finset_Iio := by
-      ext (a b x)
+      ext a b
       rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
     simp_rw [hIic, hIio]
 
refactor: use the typeclass SProd to implement overloaded notation · ×ˢ · (#4200)

Currently, the following notations are changed from · ×ˢ · because Lean 4 can't deal with ambiguous notations. | Definition | Notation | | :

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -954,32 +954,32 @@ namespace Prod
 
 instance [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrder (α × β) :=
-  LocallyFiniteOrder.ofIcc' (α × β) (fun a b => Icc a.fst b.fst ×ᶠ Icc a.snd b.snd) fun a b x => by
+  LocallyFiniteOrder.ofIcc' (α × β) (fun a b => Icc a.fst b.fst ×ˢ Icc a.snd b.snd) fun a b x => by
     rw [mem_product, mem_Icc, mem_Icc, and_and_and_comm]
     rfl
 
 instance [LocallyFiniteOrderTop α] [LocallyFiniteOrderTop β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrderTop (α × β) :=
-  LocallyFiniteOrderTop.ofIci' (α × β) (fun a => Ici a.fst ×ᶠ Ici a.snd) fun a x => by
+  LocallyFiniteOrderTop.ofIci' (α × β) (fun a => Ici a.fst ×ˢ Ici a.snd) fun a x => by
     rw [mem_product, mem_Ici, mem_Ici]
     rfl
 
 instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrderBot (α × β) :=
-  LocallyFiniteOrderBot.ofIic' (α × β) (fun a => Iic a.fst ×ᶠ Iic a.snd) fun a x => by
+  LocallyFiniteOrderBot.ofIic' (α × β) (fun a => Iic a.fst ×ˢ Iic a.snd) fun a x => by
     rw [mem_product, mem_Iic, mem_Iic]
     rfl
 
 theorem Icc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
-    Finset.Icc p q = Finset.Icc p.1 q.1 ×ᶠ Finset.Icc p.2 q.2 :=
+    Finset.Icc p q = Finset.Icc p.1 q.1 ×ˢ Finset.Icc p.2 q.2 :=
   rfl
 #align prod.Icc_eq Prod.Icc_eq
 
 @[simp]
 theorem Icc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (a₁ a₂ : α) (b₁ b₂ : β) :
-    Finset.Icc (a₁, b₁) (a₂, b₂) = Finset.Icc a₁ a₂ ×ᶠ Finset.Icc b₁ b₂ :=
+    Finset.Icc (a₁, b₁) (a₂, b₂) = Finset.Icc a₁ a₂ ×ˢ Finset.Icc b₁ b₂ :=
   rfl
 #align prod.Icc_mk_mk Prod.Icc_mk_mk
 
@@ -999,14 +999,14 @@ variable [Lattice α] [Lattice β]
 
 theorem uIcc_eq [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (p q : α × β) :
-    Finset.uIcc p q = Finset.uIcc p.1 q.1 ×ᶠ Finset.uIcc p.2 q.2 :=
+    Finset.uIcc p q = Finset.uIcc p.1 q.1 ×ˢ Finset.uIcc p.2 q.2 :=
   rfl
 #align prod.uIcc_eq Prod.uIcc_eq
 
 @[simp]
 theorem uIcc_mk_mk [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] (a₁ a₂ : α) (b₁ b₂ : β) :
-    Finset.uIcc (a₁, b₁) (a₂, b₂) = Finset.uIcc a₁ a₂ ×ᶠ Finset.uIcc b₁ b₂ :=
+    Finset.uIcc (a₁, b₁) (a₂, b₂) = Finset.uIcc a₁ a₂ ×ˢ Finset.uIcc b₁ b₂ :=
   rfl
 #align prod.uIcc_mk_mk Prod.uIcc_mk_mk
 
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -749,20 +749,16 @@ instance : Subsingleton (LocallyFiniteOrder α) :=
       h₀_finset_mem_Icc h₀_finset_mem_Ico h₀_finset_mem_Ioc h₀_finset_mem_Ioo
     cases' h₁ with h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo
       h₁_finset_mem_Icc h₁_finset_mem_Ico h₁_finset_mem_Ioc h₁_finset_mem_Ioo
-    have hIcc : h₀_finset_Icc = h₁_finset_Icc :=
-      by
+    have hIcc : h₀_finset_Icc = h₁_finset_Icc := by
       ext (a b x)
       rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc]
-    have hIco : h₀_finset_Ico = h₁_finset_Ico :=
-      by
+    have hIco : h₀_finset_Ico = h₁_finset_Ico := by
       ext (a b x)
       rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico]
-    have hIoc : h₀_finset_Ioc = h₁_finset_Ioc :=
-      by
+    have hIoc : h₀_finset_Ioc = h₁_finset_Ioc := by
       ext (a b x)
       rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc]
-    have hIoo : h₀_finset_Ioo = h₁_finset_Ioo :=
-      by
+    have hIoo : h₀_finset_Ioo = h₁_finset_Ioo := by
       ext (a b x)
       rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo]
     simp_rw [hIcc, hIco, hIoc, hIoo]
@@ -771,12 +767,10 @@ instance : Subsingleton (LocallyFiniteOrderTop α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases' h₀ with h₀_finset_Ioi h₀_finset_Ici h₀_finset_mem_Ici h₀_finset_mem_Ioi
     cases' h₁ with h₁_finset_Ioi h₁_finset_Ici h₁_finset_mem_Ici h₁_finset_mem_Ioi
-    have hIci : h₀_finset_Ici = h₁_finset_Ici :=
-      by
+    have hIci : h₀_finset_Ici = h₁_finset_Ici := by
       ext (a b x)
       rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici]
-    have hIoi : h₀_finset_Ioi = h₁_finset_Ioi :=
-      by
+    have hIoi : h₀_finset_Ioi = h₁_finset_Ioi := by
       ext (a b x)
       rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi]
     simp_rw [hIci, hIoi]
@@ -785,12 +779,10 @@ instance : Subsingleton (LocallyFiniteOrderBot α) :=
   Subsingleton.intro fun h₀ h₁ => by
     cases' h₀ with h₀_finset_Iio h₀_finset_Iic h₀_finset_mem_Iic h₀_finset_mem_Iio
     cases' h₁ with h₁_finset_Iio h₁_finset_Iic h₁_finset_mem_Iic h₁_finset_mem_Iio
-    have hIic : h₀_finset_Iic = h₁_finset_Iic :=
-      by
+    have hIic : h₀_finset_Iic = h₁_finset_Iic := by
       ext (a b x)
       rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic]
-    have hIio : h₀_finset_Iio = h₁_finset_Iio :=
-      by
+    have hIio : h₀_finset_Iio = h₁_finset_Iio := by
       ext (a b x)
       rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
     simp_rw [hIic, hIio]
@@ -962,22 +954,19 @@ namespace Prod
 
 instance [LocallyFiniteOrder α] [LocallyFiniteOrder β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrder (α × β) :=
-  LocallyFiniteOrder.ofIcc' (α × β) (fun a b => Icc a.fst b.fst ×ᶠ Icc a.snd b.snd) fun a b x =>
-    by
+  LocallyFiniteOrder.ofIcc' (α × β) (fun a b => Icc a.fst b.fst ×ᶠ Icc a.snd b.snd) fun a b x => by
     rw [mem_product, mem_Icc, mem_Icc, and_and_and_comm]
     rfl
 
 instance [LocallyFiniteOrderTop α] [LocallyFiniteOrderTop β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrderTop (α × β) :=
-  LocallyFiniteOrderTop.ofIci' (α × β) (fun a => Ici a.fst ×ᶠ Ici a.snd) fun a x =>
-    by
+  LocallyFiniteOrderTop.ofIci' (α × β) (fun a => Ici a.fst ×ᶠ Ici a.snd) fun a x => by
     rw [mem_product, mem_Ici, mem_Ici]
     rfl
 
 instance [LocallyFiniteOrderBot α] [LocallyFiniteOrderBot β]
     [DecidableRel ((· ≤ ·) : α × β → α × β → Prop)] : LocallyFiniteOrderBot (α × β) :=
-  LocallyFiniteOrderBot.ofIic' (α × β) (fun a => Iic a.fst ×ᶠ Iic a.snd) fun a x =>
-    by
+  LocallyFiniteOrderBot.ofIic' (α × β) (fun a => Iic a.fst ×ᶠ Iic a.snd) fun a x => by
     rw [mem_product, mem_Iic, mem_Iic]
     rfl
 
fix: add missing _root_ (#3630)

Mathport doesn't understand this, and apparently nor do many of the humans fixing the errors it creates.

If your #align statement complains the def doesn't exist, don't change the #align; work out why it doesn't exist instead.

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -442,13 +442,13 @@ section OrderTop
 variable [LocallyFiniteOrder α] [OrderTop α] {a x : α}
 
 -- See note [lower priority instance]
-instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyFiniteOrderTop α
-    where
+instance (priority := 100) _root_.LocallyFiniteOrder.toLocallyFiniteOrderTop :
+    LocallyFiniteOrderTop α where
   finsetIci b := Icc b ⊤
   finsetIoi b := Ioc b ⊤
   finset_mem_Ici a x := by rw [mem_Icc, and_iff_left le_top]
   finset_mem_Ioi a x := by rw [mem_Ioc, and_iff_left le_top]
-#align locally_finite_order.to_locally_finite_order_top Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop
+#align locally_finite_order.to_locally_finite_order_top LocallyFiniteOrder.toLocallyFiniteOrderTop
 
 theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
   rfl
chore: fix align linebreaks (#3103)

Apparently we have CI scripts that assume those fall on a single line. The command line used to fix the aligns was:

find . -type f -name "*.lean" -exec sed -i -E 'N;s/^#align ([^[:space:]]+)\n *([^[:space:]]+)$/#align \1 \2/' {} \;

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -448,8 +448,7 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderTop : LocallyF
   finsetIoi b := Ioc b ⊤
   finset_mem_Ici a x := by rw [mem_Icc, and_iff_left le_top]
   finset_mem_Ioi a x := by rw [mem_Ioc, and_iff_left le_top]
-#align locally_finite_order.to_locally_finite_order_top
-  Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop
+#align locally_finite_order.to_locally_finite_order_top Finset.LocallyFiniteOrder.toLocallyFiniteOrderTop
 
 theorem Ici_eq_Icc (a : α) : Ici a = Icc a ⊤ :=
   rfl
@@ -472,8 +471,7 @@ instance (priority := 100) LocallyFiniteOrder.toLocallyFiniteOrderBot : LocallyF
   finsetIio := Ico ⊥
   finset_mem_Iic a x := by rw [mem_Icc, and_iff_right bot_le]
   finset_mem_Iio a x := by rw [mem_Ico, and_iff_right bot_le]
-#align finset.locally_finite_order.to_locally_finite_order_bot
-  Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot
+#align finset.locally_finite_order.to_locally_finite_order_bot Finset.LocallyFiniteOrder.toLocallyFiniteOrderBot
 
 theorem Iic_eq_Icc : Iic = Icc (⊥ : α) :=
   rfl
feat: add uppercase lean 3 linter (#1796)

Implements a linter for lean 3 declarations containing capital letters (as suggested on Zulip).

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -809,7 +809,7 @@ protected noncomputable def OrderEmbedding.locallyFiniteOrder [LocallyFiniteOrde
   finset_mem_Ico a b x := by rw [mem_preimage, mem_Ico, f.le_iff_le, f.lt_iff_lt]
   finset_mem_Ioc a b x := by rw [mem_preimage, mem_Ioc, f.lt_iff_lt, f.le_iff_le]
   finset_mem_Ioo a b x := by rw [mem_preimage, mem_Ioo, f.lt_iff_lt, f.lt_iff_lt]
-#align order_embedding.locallyFiniteOrder OrderEmbedding.locallyFiniteOrder
+#align order_embedding.locally_finite_order OrderEmbedding.locallyFiniteOrder
 
 open OrderDual
 
feat: port Order.LocallyFinite (#1754)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Dependencies 7 + 225

226 files ported (97.0%)
99490 lines ported (97.0%)
Show graph

The unported dependencies are