order.modular_latticeMathlib.Order.ModularLattice

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -462,7 +462,7 @@ theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot
     Disjoint (a ⊔ b) c := by
   rw [disjoint_comm, sup_comm]
   apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
-  rwa [sup_comm, disjoint_comm] at hsup 
+  rwa [sup_comm, disjoint_comm] at hsup
 #align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
 -/
 
Diff
@@ -64,7 +64,7 @@ variable {α : Type _}
 /-- A weakly upper modular lattice is a lattice where `a ⊔ b` covers `a` and `b` if `a` and `b` both
 cover `a ⊓ b`. -/
 class IsWeakUpperModularLattice (α : Type _) [Lattice α] : Prop where
-  covby_sup_of_inf_covby_covby {a b : α} : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b
+  covBy_sup_of_inf_covBy_covBy {a b : α} : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b
 #align is_weak_upper_modular_lattice IsWeakUpperModularLattice
 -/
 
@@ -72,7 +72,7 @@ class IsWeakUpperModularLattice (α : Type _) [Lattice α] : Prop where
 /-- A weakly lower modular lattice is a lattice where `a` and `b` cover `a ⊓ b` if `a ⊔ b` covers
 both `a` and `b`. -/
 class IsWeakLowerModularLattice (α : Type _) [Lattice α] : Prop where
-  inf_covby_of_covby_covby_sup {a b : α} : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a
+  inf_covBy_of_covBy_covBy_sup {a b : α} : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a
 #align is_weak_lower_modular_lattice IsWeakLowerModularLattice
 -/
 
@@ -80,7 +80,7 @@ class IsWeakLowerModularLattice (α : Type _) [Lattice α] : Prop where
 /-- An upper modular lattice, aka semimodular lattice, is a lattice where `a ⊔ b` covers `a` and `b`
 if either `a` or `b` covers `a ⊓ b`. -/
 class IsUpperModularLattice (α : Type _) [Lattice α] : Prop where
-  covby_sup_of_inf_covby {a b : α} : a ⊓ b ⋖ a → b ⋖ a ⊔ b
+  covBy_sup_of_inf_covBy {a b : α} : a ⊓ b ⋖ a → b ⋖ a ⊔ b
 #align is_upper_modular_lattice IsUpperModularLattice
 -/
 
@@ -88,7 +88,7 @@ class IsUpperModularLattice (α : Type _) [Lattice α] : Prop where
 /-- A lower modular lattice is a lattice where `a` and `b` both cover `a ⊓ b` if `a ⊔ b` covers
 either `a` or `b`. -/
 class IsLowerModularLattice (α : Type _) [Lattice α] : Prop where
-  inf_covby_of_covby_sup {a b : α} : a ⋖ a ⊔ b → a ⊓ b ⋖ b
+  inf_covBy_of_covBy_sup {a b : α} : a ⋖ a ⊔ b → a ⊓ b ⋖ b
 #align is_lower_modular_lattice IsLowerModularLattice
 -/
 
@@ -103,23 +103,23 @@ section WeakUpperModular
 
 variable [Lattice α] [IsWeakUpperModularLattice α] {a b : α}
 
-#print covby_sup_of_inf_covby_of_inf_covby_left /-
-theorem covby_sup_of_inf_covby_of_inf_covby_left : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
-  IsWeakUpperModularLattice.covby_sup_of_inf_covby_covby
-#align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_left
+#print covBy_sup_of_inf_covBy_of_inf_covBy_left /-
+theorem covBy_sup_of_inf_covBy_of_inf_covBy_left : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
+  IsWeakUpperModularLattice.covBy_sup_of_inf_covBy_covBy
+#align covby_sup_of_inf_covby_of_inf_covby_left covBy_sup_of_inf_covBy_of_inf_covBy_left
 -/
 
-#print covby_sup_of_inf_covby_of_inf_covby_right /-
-theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b := by
-  rw [inf_comm, sup_comm]; exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
-#align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
+#print covBy_sup_of_inf_covBy_of_inf_covBy_right /-
+theorem covBy_sup_of_inf_covBy_of_inf_covBy_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b := by
+  rw [inf_comm, sup_comm]; exact fun ha hb => covBy_sup_of_inf_covBy_of_inf_covBy_left hb ha
+#align covby_sup_of_inf_covby_of_inf_covby_right covBy_sup_of_inf_covBy_of_inf_covBy_right
 -/
 
-alias Covby.sup_of_inf_of_inf_left := covby_sup_of_inf_covby_of_inf_covby_left
-#align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
+alias CovBy.sup_of_inf_of_inf_left := covBy_sup_of_inf_covBy_of_inf_covBy_left
+#align covby.sup_of_inf_of_inf_left CovBy.sup_of_inf_of_inf_left
 
-alias Covby.sup_of_inf_of_inf_right := covby_sup_of_inf_covby_of_inf_covby_right
-#align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_right
+alias CovBy.sup_of_inf_of_inf_right := covBy_sup_of_inf_covBy_of_inf_covBy_right
+#align covby.sup_of_inf_of_inf_right CovBy.sup_of_inf_of_inf_right
 
 instance : IsWeakLowerModularLattice (OrderDual α) :=
   ⟨fun a b ha hb => (ha.ofDual.sup_of_inf_of_inf_left hb.ofDual).toDual⟩
@@ -130,23 +130,23 @@ section WeakLowerModular
 
 variable [Lattice α] [IsWeakLowerModularLattice α] {a b : α}
 
-#print inf_covby_of_covby_sup_of_covby_sup_left /-
-theorem inf_covby_of_covby_sup_of_covby_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
-  IsWeakLowerModularLattice.inf_covby_of_covby_covby_sup
-#align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_left
+#print inf_covBy_of_covBy_sup_of_covBy_sup_left /-
+theorem inf_covBy_of_covBy_sup_of_covBy_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
+  IsWeakLowerModularLattice.inf_covBy_of_covBy_covBy_sup
+#align inf_covby_of_covby_sup_of_covby_sup_left inf_covBy_of_covBy_sup_of_covBy_sup_left
 -/
 
-#print inf_covby_of_covby_sup_of_covby_sup_right /-
-theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b := by
-  rw [sup_comm, inf_comm]; exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
-#align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
+#print inf_covBy_of_covBy_sup_of_covBy_sup_right /-
+theorem inf_covBy_of_covBy_sup_of_covBy_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b := by
+  rw [sup_comm, inf_comm]; exact fun ha hb => inf_covBy_of_covBy_sup_of_covBy_sup_left hb ha
+#align inf_covby_of_covby_sup_of_covby_sup_right inf_covBy_of_covBy_sup_of_covBy_sup_right
 -/
 
-alias Covby.inf_of_sup_of_sup_left := inf_covby_of_covby_sup_of_covby_sup_left
-#align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
+alias CovBy.inf_of_sup_of_sup_left := inf_covBy_of_covBy_sup_of_covBy_sup_left
+#align covby.inf_of_sup_of_sup_left CovBy.inf_of_sup_of_sup_left
 
-alias Covby.inf_of_sup_of_sup_right := inf_covby_of_covby_sup_of_covby_sup_right
-#align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_right
+alias CovBy.inf_of_sup_of_sup_right := inf_covBy_of_covBy_sup_of_covBy_sup_right
+#align covby.inf_of_sup_of_sup_right CovBy.inf_of_sup_of_sup_right
 
 instance : IsWeakUpperModularLattice (OrderDual α) :=
   ⟨fun a b ha hb => (ha.ofDual.inf_of_sup_of_sup_left hb.ofDual).toDual⟩
@@ -157,29 +157,29 @@ section UpperModular
 
 variable [Lattice α] [IsUpperModularLattice α] {a b : α}
 
-#print covby_sup_of_inf_covby_left /-
-theorem covby_sup_of_inf_covby_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
-  IsUpperModularLattice.covby_sup_of_inf_covby
-#align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_left
+#print covBy_sup_of_inf_covBy_left /-
+theorem covBy_sup_of_inf_covBy_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
+  IsUpperModularLattice.covBy_sup_of_inf_covBy
+#align covby_sup_of_inf_covby_left covBy_sup_of_inf_covBy_left
 -/
 
-#print covby_sup_of_inf_covby_right /-
-theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by rw [sup_comm, inf_comm];
-  exact covby_sup_of_inf_covby_left
-#align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
+#print covBy_sup_of_inf_covBy_right /-
+theorem covBy_sup_of_inf_covBy_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by rw [sup_comm, inf_comm];
+  exact covBy_sup_of_inf_covBy_left
+#align covby_sup_of_inf_covby_right covBy_sup_of_inf_covBy_right
 -/
 
-alias Covby.sup_of_inf_left := covby_sup_of_inf_covby_left
-#align covby.sup_of_inf_left Covby.sup_of_inf_left
+alias CovBy.sup_of_inf_left := covBy_sup_of_inf_covBy_left
+#align covby.sup_of_inf_left CovBy.sup_of_inf_left
 
-alias Covby.sup_of_inf_right := covby_sup_of_inf_covby_right
-#align covby.sup_of_inf_right Covby.sup_of_inf_right
+alias CovBy.sup_of_inf_right := covBy_sup_of_inf_covBy_right
+#align covby.sup_of_inf_right CovBy.sup_of_inf_right
 
 #print IsUpperModularLattice.to_isWeakUpperModularLattice /-
 -- See note [lower instance priority]
 instance (priority := 100) IsUpperModularLattice.to_isWeakUpperModularLattice :
     IsWeakUpperModularLattice α :=
-  ⟨fun a b _ => Covby.sup_of_inf_right⟩
+  ⟨fun a b _ => CovBy.sup_of_inf_right⟩
 #align is_upper_modular_lattice.to_is_weak_upper_modular_lattice IsUpperModularLattice.to_isWeakUpperModularLattice
 -/
 
@@ -192,29 +192,29 @@ section LowerModular
 
 variable [Lattice α] [IsLowerModularLattice α] {a b : α}
 
-#print inf_covby_of_covby_sup_left /-
-theorem inf_covby_of_covby_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
-  IsLowerModularLattice.inf_covby_of_covby_sup
-#align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_left
+#print inf_covBy_of_covBy_sup_left /-
+theorem inf_covBy_of_covBy_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
+  IsLowerModularLattice.inf_covBy_of_covBy_sup
+#align inf_covby_of_covby_sup_left inf_covBy_of_covBy_sup_left
 -/
 
-#print inf_covby_of_covby_sup_right /-
-theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by rw [inf_comm, sup_comm];
-  exact inf_covby_of_covby_sup_left
-#align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
+#print inf_covBy_of_covBy_sup_right /-
+theorem inf_covBy_of_covBy_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by rw [inf_comm, sup_comm];
+  exact inf_covBy_of_covBy_sup_left
+#align inf_covby_of_covby_sup_right inf_covBy_of_covBy_sup_right
 -/
 
-alias Covby.inf_of_sup_left := inf_covby_of_covby_sup_left
-#align covby.inf_of_sup_left Covby.inf_of_sup_left
+alias CovBy.inf_of_sup_left := inf_covBy_of_covBy_sup_left
+#align covby.inf_of_sup_left CovBy.inf_of_sup_left
 
-alias Covby.inf_of_sup_right := inf_covby_of_covby_sup_right
-#align covby.inf_of_sup_right Covby.inf_of_sup_right
+alias CovBy.inf_of_sup_right := inf_covBy_of_covBy_sup_right
+#align covby.inf_of_sup_right CovBy.inf_of_sup_right
 
 #print IsLowerModularLattice.to_isWeakLowerModularLattice /-
 -- See note [lower instance priority]
 instance (priority := 100) IsLowerModularLattice.to_isWeakLowerModularLattice :
     IsWeakLowerModularLattice α :=
-  ⟨fun a b _ => Covby.inf_of_sup_right⟩
+  ⟨fun a b _ => CovBy.inf_of_sup_right⟩
 #align is_lower_modular_lattice.to_is_weak_lower_modular_lattice IsLowerModularLattice.to_isWeakLowerModularLattice
 -/
 
@@ -395,7 +395,7 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b)
 instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerModularLattice α :=
   ⟨fun a b =>
     by
-    simp_rw [covby_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← is_empty_coe_sort, right_lt_sup,
+    simp_rw [covBy_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← is_empty_coe_sort, right_lt_sup,
       inf_lt_left, (infIooOrderIsoIooSup _ _).symm.toEquiv.isEmpty_congr]
     exact id⟩
 #align is_modular_lattice.to_is_lower_modular_lattice IsModularLattice.to_isLowerModularLattice
@@ -406,7 +406,7 @@ instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerMo
 instance (priority := 100) IsModularLattice.to_isUpperModularLattice : IsUpperModularLattice α :=
   ⟨fun a b =>
     by
-    simp_rw [covby_iff_Ioo_eq, ← is_empty_coe_sort, right_lt_sup, inf_lt_left,
+    simp_rw [covBy_iff_Ioo_eq, ← is_empty_coe_sort, right_lt_sup, inf_lt_left,
       (infIooOrderIsoIooSup _ _).toEquiv.isEmpty_congr]
     exact id⟩
 #align is_modular_lattice.to_is_upper_modular_lattice IsModularLattice.to_isUpperModularLattice
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Aaron Anderson. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Yaël Dillies
 -/
-import Mathbin.Order.Cover
-import Mathbin.Order.LatticeIntervals
+import Order.Cover
+import Order.LatticeIntervals
 
 #align_import order.modular_lattice from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -115,10 +115,10 @@ theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b 
 #align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
 -/
 
-alias covby_sup_of_inf_covby_of_inf_covby_left ← Covby.sup_of_inf_of_inf_left
+alias Covby.sup_of_inf_of_inf_left := covby_sup_of_inf_covby_of_inf_covby_left
 #align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
 
-alias covby_sup_of_inf_covby_of_inf_covby_right ← Covby.sup_of_inf_of_inf_right
+alias Covby.sup_of_inf_of_inf_right := covby_sup_of_inf_covby_of_inf_covby_right
 #align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_right
 
 instance : IsWeakLowerModularLattice (OrderDual α) :=
@@ -142,10 +142,10 @@ theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a 
 #align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
 -/
 
-alias inf_covby_of_covby_sup_of_covby_sup_left ← Covby.inf_of_sup_of_sup_left
+alias Covby.inf_of_sup_of_sup_left := inf_covby_of_covby_sup_of_covby_sup_left
 #align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
 
-alias inf_covby_of_covby_sup_of_covby_sup_right ← Covby.inf_of_sup_of_sup_right
+alias Covby.inf_of_sup_of_sup_right := inf_covby_of_covby_sup_of_covby_sup_right
 #align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_right
 
 instance : IsWeakUpperModularLattice (OrderDual α) :=
@@ -169,10 +169,10 @@ theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by rw
 #align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
 -/
 
-alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
+alias Covby.sup_of_inf_left := covby_sup_of_inf_covby_left
 #align covby.sup_of_inf_left Covby.sup_of_inf_left
 
-alias covby_sup_of_inf_covby_right ← Covby.sup_of_inf_right
+alias Covby.sup_of_inf_right := covby_sup_of_inf_covby_right
 #align covby.sup_of_inf_right Covby.sup_of_inf_right
 
 #print IsUpperModularLattice.to_isWeakUpperModularLattice /-
@@ -204,10 +204,10 @@ theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by rw
 #align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
 -/
 
-alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
+alias Covby.inf_of_sup_left := inf_covby_of_covby_sup_left
 #align covby.inf_of_sup_left Covby.inf_of_sup_left
 
-alias inf_covby_of_covby_sup_right ← Covby.inf_of_sup_right
+alias Covby.inf_of_sup_right := inf_covby_of_covby_sup_right
 #align covby.inf_of_sup_right Covby.inf_of_sup_right
 
 #print IsLowerModularLattice.to_isWeakLowerModularLattice /-
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Aaron Anderson. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Yaël Dillies
-
-! This file was ported from Lean 3 source module order.modular_lattice
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.Cover
 import Mathbin.Order.LatticeIntervals
 
+#align_import order.modular_lattice from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Modular Lattices
 
Diff
@@ -492,7 +492,7 @@ variable [BoundedOrder α] [ComplementedLattice α]
 #print IsModularLattice.complementedLattice_Iic /-
 instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
   ⟨fun ⟨x, hx⟩ =>
-    let ⟨y, hy⟩ := exists_isCompl x
+    let ⟨y, hy⟩ := exists_is_compl x
     ⟨⟨y ⊓ a, Set.mem_Iic.2 inf_le_right⟩, by
       constructor
       · rw [disjoint_iff_inf_le]
@@ -510,7 +510,7 @@ instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
 #print IsModularLattice.complementedLattice_Ici /-
 instance complementedLattice_Ici : ComplementedLattice (Set.Ici a) :=
   ⟨fun ⟨x, hx⟩ =>
-    let ⟨y, hy⟩ := exists_isCompl x
+    let ⟨y, hy⟩ := exists_is_compl x
     ⟨⟨y ⊔ a, Set.mem_Ici.2 le_sup_right⟩, by
       constructor
       · rw [disjoint_iff_inf_le]
Diff
@@ -106,13 +106,17 @@ section WeakUpperModular
 
 variable [Lattice α] [IsWeakUpperModularLattice α] {a b : α}
 
+#print covby_sup_of_inf_covby_of_inf_covby_left /-
 theorem covby_sup_of_inf_covby_of_inf_covby_left : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
   IsWeakUpperModularLattice.covby_sup_of_inf_covby_covby
 #align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_left
+-/
 
+#print covby_sup_of_inf_covby_of_inf_covby_right /-
 theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b := by
   rw [inf_comm, sup_comm]; exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
 #align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
+-/
 
 alias covby_sup_of_inf_covby_of_inf_covby_left ← Covby.sup_of_inf_of_inf_left
 #align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
@@ -129,13 +133,17 @@ section WeakLowerModular
 
 variable [Lattice α] [IsWeakLowerModularLattice α] {a b : α}
 
+#print inf_covby_of_covby_sup_of_covby_sup_left /-
 theorem inf_covby_of_covby_sup_of_covby_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
   IsWeakLowerModularLattice.inf_covby_of_covby_covby_sup
 #align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_left
+-/
 
+#print inf_covby_of_covby_sup_of_covby_sup_right /-
 theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b := by
   rw [sup_comm, inf_comm]; exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
 #align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
+-/
 
 alias inf_covby_of_covby_sup_of_covby_sup_left ← Covby.inf_of_sup_of_sup_left
 #align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
@@ -152,13 +160,17 @@ section UpperModular
 
 variable [Lattice α] [IsUpperModularLattice α] {a b : α}
 
+#print covby_sup_of_inf_covby_left /-
 theorem covby_sup_of_inf_covby_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
   IsUpperModularLattice.covby_sup_of_inf_covby
 #align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_left
+-/
 
+#print covby_sup_of_inf_covby_right /-
 theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by rw [sup_comm, inf_comm];
   exact covby_sup_of_inf_covby_left
 #align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
+-/
 
 alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
 #align covby.sup_of_inf_left Covby.sup_of_inf_left
@@ -183,13 +195,17 @@ section LowerModular
 
 variable [Lattice α] [IsLowerModularLattice α] {a b : α}
 
+#print inf_covby_of_covby_sup_left /-
 theorem inf_covby_of_covby_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
   IsLowerModularLattice.inf_covby_of_covby_sup
 #align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_left
+-/
 
+#print inf_covby_of_covby_sup_right /-
 theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by rw [inf_comm, sup_comm];
   exact inf_covby_of_covby_sup_left
 #align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
+-/
 
 alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
 #align covby.inf_of_sup_left Covby.inf_of_sup_left
@@ -214,18 +230,24 @@ section IsModularLattice
 
 variable [Lattice α] [IsModularLattice α]
 
+#print sup_inf_assoc_of_le /-
 theorem sup_inf_assoc_of_le {x : α} (y : α) {z : α} (h : x ≤ z) : (x ⊔ y) ⊓ z = x ⊔ y ⊓ z :=
   le_antisymm (IsModularLattice.sup_inf_le_assoc_of_le y h)
     (le_inf (sup_le_sup_left inf_le_left _) (sup_le h inf_le_right))
 #align sup_inf_assoc_of_le sup_inf_assoc_of_le
+-/
 
+#print IsModularLattice.inf_sup_inf_assoc /-
 theorem IsModularLattice.inf_sup_inf_assoc {x y z : α} : x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z :=
   (sup_inf_assoc_of_le y inf_le_right).symm
 #align is_modular_lattice.inf_sup_inf_assoc IsModularLattice.inf_sup_inf_assoc
+-/
 
+#print inf_sup_assoc_of_le /-
 theorem inf_sup_assoc_of_le {x : α} (y : α) {z : α} (h : z ≤ x) : x ⊓ y ⊔ z = x ⊓ (y ⊔ z) := by
   rw [inf_comm, sup_comm, ← sup_inf_assoc_of_le y h, inf_comm, sup_comm]
 #align inf_sup_assoc_of_le inf_sup_assoc_of_le
+-/
 
 instance : IsModularLattice αᵒᵈ :=
   ⟨fun x y z xz =>
@@ -236,10 +258,13 @@ instance : IsModularLattice αᵒᵈ :=
 
 variable {x y z : α}
 
+#print IsModularLattice.sup_inf_sup_assoc /-
 theorem IsModularLattice.sup_inf_sup_assoc : (x ⊔ z) ⊓ (y ⊔ z) = (x ⊔ z) ⊓ y ⊔ z :=
   @IsModularLattice.inf_sup_inf_assoc αᵒᵈ _ _ _ _ _
 #align is_modular_lattice.sup_inf_sup_assoc IsModularLattice.sup_inf_sup_assoc
+-/
 
+#print eq_of_le_of_inf_le_of_sup_le /-
 theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z) (hsup : y ⊔ z ≤ x ⊔ z) :
     x = y :=
   le_antisymm hxy <|
@@ -253,16 +278,22 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
       _ ≤ x ⊔ z ⊓ x := (sup_le_sup_left (by rw [inf_comm, @inf_comm _ _ z] <;> exact hinf) _)
       _ ≤ x := sup_le le_rfl inf_le_right
 #align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_le
+-/
 
+#print sup_lt_sup_of_lt_of_inf_le_inf /-
 theorem sup_lt_sup_of_lt_of_inf_le_inf (hxy : x < y) (hinf : y ⊓ z ≤ x ⊓ z) : x ⊔ z < y ⊔ z :=
   lt_of_le_of_ne (sup_le_sup_right (le_of_lt hxy) _) fun hsup =>
     ne_of_lt hxy <| eq_of_le_of_inf_le_of_sup_le (le_of_lt hxy) hinf (le_of_eq hsup.symm)
 #align sup_lt_sup_of_lt_of_inf_le_inf sup_lt_sup_of_lt_of_inf_le_inf
+-/
 
+#print inf_lt_inf_of_lt_of_sup_le_sup /-
 theorem inf_lt_inf_of_lt_of_sup_le_sup (hxy : x < y) (hinf : y ⊔ z ≤ x ⊔ z) : x ⊓ z < y ⊓ z :=
   @sup_lt_sup_of_lt_of_inf_le_inf αᵒᵈ _ _ _ _ _ hxy hinf
 #align inf_lt_inf_of_lt_of_sup_le_sup inf_lt_inf_of_lt_of_sup_le_sup
+-/
 
+#print wellFounded_lt_exact_sequence /-
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Artinian, then `M` is Artinian. -/
 theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preorder γ]
@@ -282,7 +313,9 @@ theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preord
         · exact Or.inr ⟨h, sup_lt_sup_of_lt_of_inf_le_inf hAB (le_of_eq h.symm)⟩)
     (InvImage.wf _ (WellFounded.prod_lex h₁ h₂))
 #align well_founded_lt_exact_sequence wellFounded_lt_exact_sequence
+-/
 
+#print wellFounded_gt_exact_sequence /-
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Noetherian, then `M` is Noetherian.  -/
 theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrder γ]
@@ -292,7 +325,9 @@ theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrd
     WellFounded ((· > ·) : α → α → Prop) :=
   @wellFounded_lt_exact_sequence αᵒᵈ _ _ γᵒᵈ βᵒᵈ _ _ h₂ h₁ K g₁ g₂ f₁ f₂ gi.dual gci.dual hg hf
 #align well_founded_gt_exact_sequence wellFounded_gt_exact_sequence
+-/
 
+#print infIccOrderIsoIccSup /-
 /-- The diamond isomorphism between the intervals `[a ⊓ b, a]` and `[b, a ⊔ b]` -/
 @[simps]
 def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔ b)
@@ -318,15 +353,21 @@ def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔
       sup_eq_right.2 y.prop.1, inf_sup_assoc_of_le _ y.prop.2, @sup_comm _ _ b]
     exact inf_le_inf_left _ h
 #align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSup
+-/
 
+#print inf_strictMonoOn_Icc_sup /-
 theorem inf_strictMonoOn_Icc_sup {a b : α} : StrictMonoOn (fun c => a ⊓ c) (Icc b (a ⊔ b)) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).symm.StrictMono
 #align inf_strict_mono_on_Icc_sup inf_strictMonoOn_Icc_sup
+-/
 
+#print sup_strictMonoOn_Icc_inf /-
 theorem sup_strictMonoOn_Icc_inf {a b : α} : StrictMonoOn (fun c => c ⊔ b) (Icc (a ⊓ b) a) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).StrictMono
 #align sup_strict_mono_on_Icc_inf sup_strictMonoOn_Icc_inf
+-/
 
+#print infIooOrderIsoIooSup /-
 /-- The diamond isomorphism between the intervals `]a ⊓ b, a[` and `}b, a ⊔ b[`. -/
 @[simps]
 def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b)
@@ -350,6 +391,7 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b)
     @OrderIso.le_iff_le _ _ _ _ (infIccOrderIsoIccSup _ _) ⟨c.1, Ioo_subset_Icc_self c.2⟩
       ⟨d.1, Ioo_subset_Icc_self d.2⟩
 #align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSup
+-/
 
 #print IsModularLattice.to_isLowerModularLattice /-
 -- See note [lower instance priority]
@@ -391,11 +433,13 @@ def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
 
 end IsCompl
 
+#print isModularLattice_iff_inf_sup_inf_assoc /-
 theorem isModularLattice_iff_inf_sup_inf_assoc [Lattice α] :
     IsModularLattice α ↔ ∀ x y z : α, x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z :=
   ⟨fun h => @IsModularLattice.inf_sup_inf_assoc _ _ h, fun h =>
     ⟨fun x y z xz => by rw [← inf_eq_left.2 xz, h]⟩⟩
 #align is_modular_lattice_iff_inf_sup_inf_assoc isModularLattice_iff_inf_sup_inf_assoc
+-/
 
 namespace DistribLattice
 
@@ -404,6 +448,7 @@ instance (priority := 100) [DistribLattice α] : IsModularLattice α :=
 
 end DistribLattice
 
+#print Disjoint.disjoint_sup_right_of_disjoint_sup_left /-
 theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint a b) (hsup : Disjoint (a ⊔ b) c) :
     Disjoint a (b ⊔ c) := by
@@ -412,7 +457,9 @@ theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot
   apply (inf_le_inf_right (c ⊔ b) le_sup_right).trans
   rw [sup_comm, IsModularLattice.sup_inf_sup_assoc, hsup.eq_bot, bot_sup_eq]
 #align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_left
+-/
 
+#print Disjoint.disjoint_sup_left_of_disjoint_sup_right /-
 theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint b c) (hsup : Disjoint a (b ⊔ c)) :
     Disjoint (a ⊔ b) c := by
@@ -420,14 +467,17 @@ theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot
   apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
   rwa [sup_comm, disjoint_comm] at hsup 
 #align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
+-/
 
 namespace IsModularLattice
 
 variable [Lattice α] [IsModularLattice α] {a : α}
 
+#print IsModularLattice.isModularLattice_Iic /-
 instance isModularLattice_Iic : IsModularLattice (Set.Iic a) :=
   ⟨fun x y z xz => (sup_inf_le_assoc_of_le (y : α) xz : (↑x ⊔ ↑y) ⊓ ↑z ≤ ↑x ⊔ ↑y ⊓ ↑z)⟩
 #align is_modular_lattice.is_modular_lattice_Iic IsModularLattice.isModularLattice_Iic
+-/
 
 #print IsModularLattice.isModularLattice_Ici /-
 instance isModularLattice_Ici : IsModularLattice (Set.Ici a) :=
@@ -439,6 +489,7 @@ section ComplementedLattice
 
 variable [BoundedOrder α] [ComplementedLattice α]
 
+#print IsModularLattice.complementedLattice_Iic /-
 instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
   ⟨fun ⟨x, hx⟩ =>
     let ⟨y, hy⟩ := exists_isCompl x
@@ -454,6 +505,7 @@ instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
         -- improve lattice subtype API
         rw [← sup_inf_assoc_of_le _ (Set.mem_Iic.1 hx), hy.2.eq_top, top_inf_eq]⟩⟩
 #align is_modular_lattice.complemented_lattice_Iic IsModularLattice.complementedLattice_Iic
+-/
 
 #print IsModularLattice.complementedLattice_Ici /-
 instance complementedLattice_Ici : ComplementedLattice (Set.Ici a) :=
Diff
@@ -247,13 +247,11 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
       calc
         y ≤ y ⊔ z := le_sup_left
         _ ≤ x ⊔ z := hsup
-        
     calc
       y ≤ (x ⊔ z) ⊓ y := le_inf h le_rfl
       _ = x ⊔ z ⊓ y := (sup_inf_assoc_of_le _ hxy)
       _ ≤ x ⊔ z ⊓ x := (sup_le_sup_left (by rw [inf_comm, @inf_comm _ _ z] <;> exact hinf) _)
       _ ≤ x := sup_le le_rfl inf_le_right
-      
 #align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_le
 
 theorem sup_lt_sup_of_lt_of_inf_le_inf (hxy : x < y) (hinf : y ⊓ z ≤ x ⊓ z) : x ⊔ z < y ⊔ z :=
Diff
@@ -420,7 +420,7 @@ theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot
     Disjoint (a ⊔ b) c := by
   rw [disjoint_comm, sup_comm]
   apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
-  rwa [sup_comm, disjoint_comm] at hsup
+  rwa [sup_comm, disjoint_comm] at hsup 
 #align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
 
 namespace IsModularLattice
Diff
@@ -381,6 +381,7 @@ namespace IsCompl
 
 variable [Lattice α] [BoundedOrder α] [IsModularLattice α]
 
+#print IsCompl.IicOrderIsoIci /-
 /-- The diamond isomorphism between the intervals `set.Iic a` and `set.Ici b`. -/
 def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
   (OrderIso.setCongr (Set.Iic a) (Set.Icc (a ⊓ b) a)
@@ -388,6 +389,7 @@ def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
     (infIccOrderIsoIccSup a b).trans
       (OrderIso.setCongr (Set.Icc b (a ⊔ b)) (Set.Ici b) (h.sup_eq_top.symm ▸ Set.Icc_top))
 #align is_compl.Iic_order_iso_Ici IsCompl.IicOrderIsoIci
+-/
 
 end IsCompl
 
@@ -455,6 +457,7 @@ instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
         rw [← sup_inf_assoc_of_le _ (Set.mem_Iic.1 hx), hy.2.eq_top, top_inf_eq]⟩⟩
 #align is_modular_lattice.complemented_lattice_Iic IsModularLattice.complementedLattice_Iic
 
+#print IsModularLattice.complementedLattice_Ici /-
 instance complementedLattice_Ici : ComplementedLattice (Set.Ici a) :=
   ⟨fun ⟨x, hx⟩ =>
     let ⟨y, hy⟩ := exists_isCompl x
@@ -470,6 +473,7 @@ instance complementedLattice_Ici : ComplementedLattice (Set.Ici a) :=
         rw [← sup_assoc]
         exact le_trans hy.2.top_le le_sup_left⟩⟩
 #align is_modular_lattice.complemented_lattice_Ici IsModularLattice.complementedLattice_Ici
+-/
 
 end ComplementedLattice
 
Diff
@@ -106,41 +106,17 @@ section WeakUpperModular
 
 variable [Lattice α] [IsWeakUpperModularLattice α] {a b : α}
 
-/- warning: covby_sup_of_inf_covby_of_inf_covby_left -> covby_sup_of_inf_covby_of_inf_covby_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_leftₓ'. -/
 theorem covby_sup_of_inf_covby_of_inf_covby_left : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
   IsWeakUpperModularLattice.covby_sup_of_inf_covby_covby
 #align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_left
 
-/- warning: covby_sup_of_inf_covby_of_inf_covby_right -> covby_sup_of_inf_covby_of_inf_covby_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_rightₓ'. -/
 theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b := by
   rw [inf_comm, sup_comm]; exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
 #align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
 
-/- warning: covby.sup_of_inf_of_inf_left -> Covby.sup_of_inf_of_inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_leftₓ'. -/
 alias covby_sup_of_inf_covby_of_inf_covby_left ← Covby.sup_of_inf_of_inf_left
 #align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
 
-/- warning: covby.sup_of_inf_of_inf_right -> Covby.sup_of_inf_of_inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_rightₓ'. -/
 alias covby_sup_of_inf_covby_of_inf_covby_right ← Covby.sup_of_inf_of_inf_right
 #align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_right
 
@@ -153,41 +129,17 @@ section WeakLowerModular
 
 variable [Lattice α] [IsWeakLowerModularLattice α] {a b : α}
 
-/- warning: inf_covby_of_covby_sup_of_covby_sup_left -> inf_covby_of_covby_sup_of_covby_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_leftₓ'. -/
 theorem inf_covby_of_covby_sup_of_covby_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
   IsWeakLowerModularLattice.inf_covby_of_covby_covby_sup
 #align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_left
 
-/- warning: inf_covby_of_covby_sup_of_covby_sup_right -> inf_covby_of_covby_sup_of_covby_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_rightₓ'. -/
 theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b := by
   rw [sup_comm, inf_comm]; exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
 #align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
 
-/- warning: covby.inf_of_sup_of_sup_left -> Covby.inf_of_sup_of_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_leftₓ'. -/
 alias inf_covby_of_covby_sup_of_covby_sup_left ← Covby.inf_of_sup_of_sup_left
 #align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
 
-/- warning: covby.inf_of_sup_of_sup_right -> Covby.inf_of_sup_of_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_rightₓ'. -/
 alias inf_covby_of_covby_sup_of_covby_sup_right ← Covby.inf_of_sup_of_sup_right
 #align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_right
 
@@ -200,41 +152,17 @@ section UpperModular
 
 variable [Lattice α] [IsUpperModularLattice α] {a b : α}
 
-/- warning: covby_sup_of_inf_covby_left -> covby_sup_of_inf_covby_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_leftₓ'. -/
 theorem covby_sup_of_inf_covby_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
   IsUpperModularLattice.covby_sup_of_inf_covby
 #align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_left
 
-/- warning: covby_sup_of_inf_covby_right -> covby_sup_of_inf_covby_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_rightₓ'. -/
 theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by rw [sup_comm, inf_comm];
   exact covby_sup_of_inf_covby_left
 #align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
 
-/- warning: covby.sup_of_inf_left -> Covby.sup_of_inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_left Covby.sup_of_inf_leftₓ'. -/
 alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
 #align covby.sup_of_inf_left Covby.sup_of_inf_left
 
-/- warning: covby.sup_of_inf_right -> Covby.sup_of_inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_right Covby.sup_of_inf_rightₓ'. -/
 alias covby_sup_of_inf_covby_right ← Covby.sup_of_inf_right
 #align covby.sup_of_inf_right Covby.sup_of_inf_right
 
@@ -255,41 +183,17 @@ section LowerModular
 
 variable [Lattice α] [IsLowerModularLattice α] {a b : α}
 
-/- warning: inf_covby_of_covby_sup_left -> inf_covby_of_covby_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_leftₓ'. -/
 theorem inf_covby_of_covby_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
   IsLowerModularLattice.inf_covby_of_covby_sup
 #align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_left
 
-/- warning: inf_covby_of_covby_sup_right -> inf_covby_of_covby_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_rightₓ'. -/
 theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by rw [inf_comm, sup_comm];
   exact inf_covby_of_covby_sup_left
 #align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
 
-/- warning: covby.inf_of_sup_left -> Covby.inf_of_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_left Covby.inf_of_sup_leftₓ'. -/
 alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
 #align covby.inf_of_sup_left Covby.inf_of_sup_left
 
-/- warning: covby.inf_of_sup_right -> Covby.inf_of_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_right Covby.inf_of_sup_rightₓ'. -/
 alias inf_covby_of_covby_sup_right ← Covby.inf_of_sup_right
 #align covby.inf_of_sup_right Covby.inf_of_sup_right
 
@@ -310,33 +214,15 @@ section IsModularLattice
 
 variable [Lattice α] [IsModularLattice α]
 
-/- warning: sup_inf_assoc_of_le -> sup_inf_assoc_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x z) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x z) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z)))
-Case conversion may be inaccurate. Consider using '#align sup_inf_assoc_of_le sup_inf_assoc_of_leₓ'. -/
 theorem sup_inf_assoc_of_le {x : α} (y : α) {z : α} (h : x ≤ z) : (x ⊔ y) ⊓ z = x ⊔ y ⊓ z :=
   le_antisymm (IsModularLattice.sup_inf_le_assoc_of_le y h)
     (le_inf (sup_le_sup_left inf_le_left _) (sup_le h inf_le_right))
 #align sup_inf_assoc_of_le sup_inf_assoc_of_le
 
-/- warning: is_modular_lattice.inf_sup_inf_assoc -> IsModularLattice.inf_sup_inf_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) y) z)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) y) z)
-Case conversion may be inaccurate. Consider using '#align is_modular_lattice.inf_sup_inf_assoc IsModularLattice.inf_sup_inf_assocₓ'. -/
 theorem IsModularLattice.inf_sup_inf_assoc {x y z : α} : x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z :=
   (sup_inf_assoc_of_le y inf_le_right).symm
 #align is_modular_lattice.inf_sup_inf_assoc IsModularLattice.inf_sup_inf_assoc
 
-/- warning: inf_sup_assoc_of_le -> inf_sup_assoc_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) z x) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) z x) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)))
-Case conversion may be inaccurate. Consider using '#align inf_sup_assoc_of_le inf_sup_assoc_of_leₓ'. -/
 theorem inf_sup_assoc_of_le {x : α} (y : α) {z : α} (h : z ≤ x) : x ⊓ y ⊔ z = x ⊓ (y ⊔ z) := by
   rw [inf_comm, sup_comm, ← sup_inf_assoc_of_le y h, inf_comm, sup_comm]
 #align inf_sup_assoc_of_le inf_sup_assoc_of_le
@@ -350,22 +236,10 @@ instance : IsModularLattice αᵒᵈ :=
 
 variable {x y z : α}
 
-/- warning: is_modular_lattice.sup_inf_sup_assoc -> IsModularLattice.sup_inf_sup_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) y) z)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) y) z)
-Case conversion may be inaccurate. Consider using '#align is_modular_lattice.sup_inf_sup_assoc IsModularLattice.sup_inf_sup_assocₓ'. -/
 theorem IsModularLattice.sup_inf_sup_assoc : (x ⊔ z) ⊓ (y ⊔ z) = (x ⊔ z) ⊓ y ⊔ z :=
   @IsModularLattice.inf_sup_inf_assoc αᵒᵈ _ _ _ _ _
 #align is_modular_lattice.sup_inf_sup_assoc IsModularLattice.sup_inf_sup_assoc
 
-/- warning: eq_of_le_of_inf_le_of_sup_le -> eq_of_le_of_inf_le_of_sup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (Eq.{succ u1} α x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (Eq.{succ u1} α x y)
-Case conversion may be inaccurate. Consider using '#align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_leₓ'. -/
 theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z) (hsup : y ⊔ z ≤ x ⊔ z) :
     x = y :=
   le_antisymm hxy <|
@@ -382,33 +256,15 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
       
 #align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_le
 
-/- warning: sup_lt_sup_of_lt_of_inf_le_inf -> sup_lt_sup_of_lt_of_inf_le_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z))
-Case conversion may be inaccurate. Consider using '#align sup_lt_sup_of_lt_of_inf_le_inf sup_lt_sup_of_lt_of_inf_le_infₓ'. -/
 theorem sup_lt_sup_of_lt_of_inf_le_inf (hxy : x < y) (hinf : y ⊓ z ≤ x ⊓ z) : x ⊔ z < y ⊔ z :=
   lt_of_le_of_ne (sup_le_sup_right (le_of_lt hxy) _) fun hsup =>
     ne_of_lt hxy <| eq_of_le_of_inf_le_of_sup_le (le_of_lt hxy) hinf (le_of_eq hsup.symm)
 #align sup_lt_sup_of_lt_of_inf_le_inf sup_lt_sup_of_lt_of_inf_le_inf
 
-/- warning: inf_lt_inf_of_lt_of_sup_le_sup -> inf_lt_inf_of_lt_of_sup_le_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z))
-Case conversion may be inaccurate. Consider using '#align inf_lt_inf_of_lt_of_sup_le_sup inf_lt_inf_of_lt_of_sup_le_supₓ'. -/
 theorem inf_lt_inf_of_lt_of_sup_le_sup (hxy : x < y) (hinf : y ⊔ z ≤ x ⊔ z) : x ⊓ z < y ⊓ z :=
   @sup_lt_sup_of_lt_of_inf_le_inf αᵒᵈ _ _ _ _ _ hxy hinf
 #align inf_lt_inf_of_lt_of_sup_le_sup inf_lt_inf_of_lt_of_sup_le_sup
 
-/- warning: well_founded_lt_exact_sequence -> wellFounded_lt_exact_sequence is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : PartialOrder.{u2} β] [_inst_4 : Preorder.{u3} γ], (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))) -> (WellFounded.{succ u3} γ (LT.lt.{u3} γ (Preorder.toHasLt.{u3} γ _inst_4))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : PartialOrder.{u3} β] [_inst_4 : Preorder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1542 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1544 : β) => LT.lt.{u3} β (Preorder.toLT.{u3} β (PartialOrder.toPreorder.{u3} β _inst_3)) x._@.Mathlib.Order.ModularLattice._hyg.1542 x._@.Mathlib.Order.ModularLattice._hyg.1544)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1565 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1567 : γ) => LT.lt.{u2} γ (Preorder.toLT.{u2} γ _inst_4) x._@.Mathlib.Order.ModularLattice._hyg.1565 x._@.Mathlib.Order.ModularLattice._hyg.1567)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α (PartialOrder.toPreorder.{u3} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1637 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1639 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1637 x._@.Mathlib.Order.ModularLattice._hyg.1639)))
-Case conversion may be inaccurate. Consider using '#align well_founded_lt_exact_sequence wellFounded_lt_exact_sequenceₓ'. -/
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Artinian, then `M` is Artinian. -/
 theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preorder γ]
@@ -429,12 +285,6 @@ theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preord
     (InvImage.wf _ (WellFounded.prod_lex h₁ h₂))
 #align well_founded_lt_exact_sequence wellFounded_lt_exact_sequence
 
-/- warning: well_founded_gt_exact_sequence -> wellFounded_gt_exact_sequence is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : Preorder.{u2} β] [_inst_4 : PartialOrder.{u3} γ], (WellFounded.{succ u2} β (GT.gt.{u2} β (Preorder.toHasLt.{u2} β _inst_3))) -> (WellFounded.{succ u3} γ (GT.gt.{u3} γ (Preorder.toHasLt.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_4)))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : Preorder.{u3} β] [_inst_4 : PartialOrder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1793 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1795 : β) => GT.gt.{u3} β (Preorder.toLT.{u3} β _inst_3) x._@.Mathlib.Order.ModularLattice._hyg.1793 x._@.Mathlib.Order.ModularLattice._hyg.1795)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1816 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1818 : γ) => GT.gt.{u2} γ (Preorder.toLT.{u2} γ (PartialOrder.toPreorder.{u2} γ _inst_4)) x._@.Mathlib.Order.ModularLattice._hyg.1816 x._@.Mathlib.Order.ModularLattice._hyg.1818)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1888 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1890 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1888 x._@.Mathlib.Order.ModularLattice._hyg.1890)))
-Case conversion may be inaccurate. Consider using '#align well_founded_gt_exact_sequence wellFounded_gt_exact_sequenceₓ'. -/
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Noetherian, then `M` is Noetherian.  -/
 theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrder γ]
@@ -445,12 +295,6 @@ theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrd
   @wellFounded_lt_exact_sequence αᵒᵈ _ _ γᵒᵈ βᵒᵈ _ _ h₂ h₁ K g₁ g₂ f₁ f₂ gi.dual gci.dual hg hf
 #align well_founded_gt_exact_sequence wellFounded_gt_exact_sequence
 
-/- warning: inf_Icc_order_iso_Icc_sup -> infIccOrderIsoIccSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)) (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
-Case conversion may be inaccurate. Consider using '#align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSupₓ'. -/
 /-- The diamond isomorphism between the intervals `[a ⊓ b, a]` and `[b, a ⊔ b]` -/
 @[simps]
 def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔ b)
@@ -477,32 +321,14 @@ def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔
     exact inf_le_inf_left _ h
 #align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSup
 
-/- warning: inf_strict_mono_on_Icc_sup -> inf_strictMonoOn_Icc_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align inf_strict_mono_on_Icc_sup inf_strictMonoOn_Icc_supₓ'. -/
 theorem inf_strictMonoOn_Icc_sup {a b : α} : StrictMonoOn (fun c => a ⊓ c) (Icc b (a ⊔ b)) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).symm.StrictMono
 #align inf_strict_mono_on_Icc_sup inf_strictMonoOn_Icc_sup
 
-/- warning: sup_strict_mono_on_Icc_inf -> sup_strictMonoOn_Icc_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) c b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) c b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align sup_strict_mono_on_Icc_inf sup_strictMonoOn_Icc_infₓ'. -/
 theorem sup_strictMonoOn_Icc_inf {a b : α} : StrictMonoOn (fun c => c ⊔ b) (Icc (a ⊓ b) a) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).StrictMono
 #align sup_strict_mono_on_Icc_inf sup_strictMonoOn_Icc_inf
 
-/- warning: inf_Ioo_order_iso_Ioo_sup -> infIooOrderIsoIooSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)) (Set.Elem.{u1} α (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
-Case conversion may be inaccurate. Consider using '#align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSupₓ'. -/
 /-- The diamond isomorphism between the intervals `]a ⊓ b, a[` and `}b, a ⊔ b[`. -/
 @[simps]
 def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b)
@@ -555,12 +381,6 @@ namespace IsCompl
 
 variable [Lattice α] [BoundedOrder α] [IsModularLattice α]
 
-/- warning: is_compl.Iic_order_iso_Ici -> IsCompl.IicOrderIsoIci is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b)) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Elem.{u1} α (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b)) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b))))
-Case conversion may be inaccurate. Consider using '#align is_compl.Iic_order_iso_Ici IsCompl.IicOrderIsoIciₓ'. -/
 /-- The diamond isomorphism between the intervals `set.Iic a` and `set.Ici b`. -/
 def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
   (OrderIso.setCongr (Set.Iic a) (Set.Icc (a ⊓ b) a)
@@ -571,12 +391,6 @@ def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
 
 end IsCompl
 
-/- warning: is_modular_lattice_iff_inf_sup_inf_assoc -> isModularLattice_iff_inf_sup_inf_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], Iff (IsModularLattice.{u1} α _inst_1) (forall (x : α) (y : α) (z : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) y) z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], Iff (IsModularLattice.{u1} α _inst_1) (forall (x : α) (y : α) (z : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) y) z))
-Case conversion may be inaccurate. Consider using '#align is_modular_lattice_iff_inf_sup_inf_assoc isModularLattice_iff_inf_sup_inf_assocₓ'. -/
 theorem isModularLattice_iff_inf_sup_inf_assoc [Lattice α] :
     IsModularLattice α ↔ ∀ x y z : α, x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z :=
   ⟨fun h => @IsModularLattice.inf_sup_inf_assoc _ _ h, fun h =>
@@ -590,12 +404,6 @@ instance (priority := 100) [DistribLattice α] : IsModularLattice α :=
 
 end DistribLattice
 
-/- warning: disjoint.disjoint_sup_right_of_disjoint_sup_left -> Disjoint.disjoint_sup_right_of_disjoint_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
-Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_leftₓ'. -/
 theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint a b) (hsup : Disjoint (a ⊔ b) c) :
     Disjoint a (b ⊔ c) := by
@@ -605,12 +413,6 @@ theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot
   rw [sup_comm, IsModularLattice.sup_inf_sup_assoc, hsup.eq_bot, bot_sup_eq]
 #align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_left
 
-/- warning: disjoint.disjoint_sup_left_of_disjoint_sup_right -> Disjoint.disjoint_sup_left_of_disjoint_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)
-Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_rightₓ'. -/
 theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint b c) (hsup : Disjoint a (b ⊔ c)) :
     Disjoint (a ⊔ b) c := by
@@ -623,12 +425,6 @@ namespace IsModularLattice
 
 variable [Lattice α] [IsModularLattice α] {a : α}
 
-/- warning: is_modular_lattice.is_modular_lattice_Iic -> IsModularLattice.isModularLattice_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α}, IsModularLattice.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Iic.lattice.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α}, IsModularLattice.{u1} (Set.Elem.{u1} α (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Iic.instLatticeElemIicToPreorderToPartialOrderToSemilatticeInf.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align is_modular_lattice.is_modular_lattice_Iic IsModularLattice.isModularLattice_Iicₓ'. -/
 instance isModularLattice_Iic : IsModularLattice (Set.Iic a) :=
   ⟨fun x y z xz => (sup_inf_le_assoc_of_le (y : α) xz : (↑x ⊔ ↑y) ⊓ ↑z ≤ ↑x ⊔ ↑y ⊓ ↑z)⟩
 #align is_modular_lattice.is_modular_lattice_Iic IsModularLattice.isModularLattice_Iic
@@ -643,12 +439,6 @@ section ComplementedLattice
 
 variable [BoundedOrder α] [ComplementedLattice α]
 
-/- warning: is_modular_lattice.complemented_lattice_Iic -> IsModularLattice.complementedLattice_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Iic.lattice.{u1} α _inst_1 a) (Set.Iic.boundedOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (Set.Elem.{u1} α (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Iic.instLatticeElemIicToPreorderToPartialOrderToSemilatticeInf.{u1} α _inst_1 a) (Set.Iic.instBoundedOrderElemIicLeToLEMemSetInstMembershipSet.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
-Case conversion may be inaccurate. Consider using '#align is_modular_lattice.complemented_lattice_Iic IsModularLattice.complementedLattice_Iicₓ'. -/
 instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
   ⟨fun ⟨x, hx⟩ =>
     let ⟨y, hy⟩ := exists_isCompl x
@@ -665,12 +455,6 @@ instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
         rw [← sup_inf_assoc_of_le _ (Set.mem_Iic.1 hx), hy.2.eq_top, top_inf_eq]⟩⟩
 #align is_modular_lattice.complemented_lattice_Iic IsModularLattice.complementedLattice_Iic
 
-/- warning: is_modular_lattice.complemented_lattice_Ici -> IsModularLattice.complementedLattice_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Ici.lattice.{u1} α _inst_1 a) (Set.Ici.boundedOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (Set.Elem.{u1} α (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Ici.lattice.{u1} α _inst_1 a) (Set.Ici.boundedOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
-Case conversion may be inaccurate. Consider using '#align is_modular_lattice.complemented_lattice_Ici IsModularLattice.complementedLattice_Iciₓ'. -/
 instance complementedLattice_Ici : ComplementedLattice (Set.Ici a) :=
   ⟨fun ⟨x, hx⟩ =>
     let ⟨y, hy⟩ := exists_isCompl x
Diff
@@ -122,10 +122,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_rightₓ'. -/
-theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b :=
-  by
-  rw [inf_comm, sup_comm]
-  exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
+theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b := by
+  rw [inf_comm, sup_comm]; exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
 #align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
 
 /- warning: covby.sup_of_inf_of_inf_left -> Covby.sup_of_inf_of_inf_left is a dubious translation:
@@ -171,10 +169,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_rightₓ'. -/
-theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b :=
-  by
-  rw [sup_comm, inf_comm]
-  exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
+theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b := by
+  rw [sup_comm, inf_comm]; exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
 #align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
 
 /- warning: covby.inf_of_sup_of_sup_left -> Covby.inf_of_sup_of_sup_left is a dubious translation:
@@ -220,9 +216,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_rightₓ'. -/
-theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
-  by
-  rw [sup_comm, inf_comm]
+theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by rw [sup_comm, inf_comm];
   exact covby_sup_of_inf_covby_left
 #align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
 
@@ -277,9 +271,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_rightₓ'. -/
-theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
-  by
-  rw [inf_comm, sup_comm]
+theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by rw [inf_comm, sup_comm];
   exact inf_covby_of_covby_sup_left
 #align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
 
@@ -525,12 +517,10 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b)
       inf_le_left.trans_lt' <|
         inf_strictMonoOn_Icc_sup (Ioo_subset_Icc_self c.2) (right_mem_Icc.2 le_sup_right) c.2.2⟩
   left_inv c :=
-    Subtype.ext <| by
-      dsimp
+    Subtype.ext <| by dsimp;
       rw [sup_comm, ← inf_sup_assoc_of_le _ c.prop.2.le, sup_eq_right.2 c.prop.1.le]
   right_inv c :=
-    Subtype.ext <| by
-      dsimp
+    Subtype.ext <| by dsimp;
       rw [inf_comm, inf_sup_assoc_of_le _ c.prop.1.le, inf_eq_left.2 c.prop.2.le]
   map_rel_iff' c d :=
     @OrderIso.le_iff_le _ _ _ _ (infIccOrderIsoIccSup _ _) ⟨c.1, Ioo_subset_Icc_self c.2⟩
Diff
@@ -108,7 +108,7 @@ variable [Lattice α] [IsWeakUpperModularLattice α] {a b : α}
 
 /- warning: covby_sup_of_inf_covby_of_inf_covby_left -> covby_sup_of_inf_covby_of_inf_covby_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_leftₓ'. -/
@@ -118,7 +118,7 @@ theorem covby_sup_of_inf_covby_of_inf_covby_left : a ⊓ b ⋖ a → a ⊓ b ⋖
 
 /- warning: covby_sup_of_inf_covby_of_inf_covby_right -> covby_sup_of_inf_covby_of_inf_covby_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_rightₓ'. -/
@@ -130,7 +130,7 @@ theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b 
 
 /- warning: covby.sup_of_inf_of_inf_left -> Covby.sup_of_inf_of_inf_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_leftₓ'. -/
@@ -139,7 +139,7 @@ alias covby_sup_of_inf_covby_of_inf_covby_left ← Covby.sup_of_inf_of_inf_left
 
 /- warning: covby.sup_of_inf_of_inf_right -> Covby.sup_of_inf_of_inf_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_rightₓ'. -/
@@ -157,7 +157,7 @@ variable [Lattice α] [IsWeakLowerModularLattice α] {a b : α}
 
 /- warning: inf_covby_of_covby_sup_of_covby_sup_left -> inf_covby_of_covby_sup_of_covby_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_leftₓ'. -/
@@ -167,7 +167,7 @@ theorem inf_covby_of_covby_sup_of_covby_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔
 
 /- warning: inf_covby_of_covby_sup_of_covby_sup_right -> inf_covby_of_covby_sup_of_covby_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_rightₓ'. -/
@@ -179,7 +179,7 @@ theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a 
 
 /- warning: covby.inf_of_sup_of_sup_left -> Covby.inf_of_sup_of_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_leftₓ'. -/
@@ -188,7 +188,7 @@ alias inf_covby_of_covby_sup_of_covby_sup_left ← Covby.inf_of_sup_of_sup_left
 
 /- warning: covby.inf_of_sup_of_sup_right -> Covby.inf_of_sup_of_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_rightₓ'. -/
@@ -206,7 +206,7 @@ variable [Lattice α] [IsUpperModularLattice α] {a b : α}
 
 /- warning: covby_sup_of_inf_covby_left -> covby_sup_of_inf_covby_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_leftₓ'. -/
@@ -216,7 +216,7 @@ theorem covby_sup_of_inf_covby_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
 
 /- warning: covby_sup_of_inf_covby_right -> covby_sup_of_inf_covby_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_rightₓ'. -/
@@ -228,7 +228,7 @@ theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
 
 /- warning: covby.sup_of_inf_left -> Covby.sup_of_inf_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_left Covby.sup_of_inf_leftₓ'. -/
@@ -237,7 +237,7 @@ alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
 
 /- warning: covby.sup_of_inf_right -> Covby.sup_of_inf_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
 Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_right Covby.sup_of_inf_rightₓ'. -/
@@ -263,7 +263,7 @@ variable [Lattice α] [IsLowerModularLattice α] {a b : α}
 
 /- warning: inf_covby_of_covby_sup_left -> inf_covby_of_covby_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_leftₓ'. -/
@@ -273,7 +273,7 @@ theorem inf_covby_of_covby_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
 
 /- warning: inf_covby_of_covby_sup_right -> inf_covby_of_covby_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_rightₓ'. -/
@@ -285,7 +285,7 @@ theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
 
 /- warning: covby.inf_of_sup_left -> Covby.inf_of_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_left Covby.inf_of_sup_leftₓ'. -/
@@ -294,7 +294,7 @@ alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
 
 /- warning: covby.inf_of_sup_right -> Covby.inf_of_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_right Covby.inf_of_sup_rightₓ'. -/
@@ -320,7 +320,7 @@ variable [Lattice α] [IsModularLattice α]
 
 /- warning: sup_inf_assoc_of_le -> sup_inf_assoc_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x z) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x z) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x z) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z)))
 Case conversion may be inaccurate. Consider using '#align sup_inf_assoc_of_le sup_inf_assoc_of_leₓ'. -/
@@ -341,7 +341,7 @@ theorem IsModularLattice.inf_sup_inf_assoc {x y z : α} : x ⊓ z ⊔ y ⊓ z =
 
 /- warning: inf_sup_assoc_of_le -> inf_sup_assoc_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) z x) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) z x) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) z x) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)))
 Case conversion may be inaccurate. Consider using '#align inf_sup_assoc_of_le inf_sup_assoc_of_leₓ'. -/
@@ -370,7 +370,7 @@ theorem IsModularLattice.sup_inf_sup_assoc : (x ⊔ z) ⊓ (y ⊔ z) = (x ⊔ z)
 
 /- warning: eq_of_le_of_inf_le_of_sup_le -> eq_of_le_of_inf_le_of_sup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (Eq.{succ u1} α x y)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (Eq.{succ u1} α x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (Eq.{succ u1} α x y)
 Case conversion may be inaccurate. Consider using '#align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_leₓ'. -/
@@ -392,7 +392,7 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
 
 /- warning: sup_lt_sup_of_lt_of_inf_le_inf -> sup_lt_sup_of_lt_of_inf_le_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z))
 Case conversion may be inaccurate. Consider using '#align sup_lt_sup_of_lt_of_inf_le_inf sup_lt_sup_of_lt_of_inf_le_infₓ'. -/
@@ -403,7 +403,7 @@ theorem sup_lt_sup_of_lt_of_inf_le_inf (hxy : x < y) (hinf : y ⊓ z ≤ x ⊓ z
 
 /- warning: inf_lt_inf_of_lt_of_sup_le_sup -> inf_lt_inf_of_lt_of_sup_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z))
 Case conversion may be inaccurate. Consider using '#align inf_lt_inf_of_lt_of_sup_le_sup inf_lt_inf_of_lt_of_sup_le_supₓ'. -/
@@ -413,7 +413,7 @@ theorem inf_lt_inf_of_lt_of_sup_le_sup (hxy : x < y) (hinf : y ⊔ z ≤ x ⊔ z
 
 /- warning: well_founded_lt_exact_sequence -> wellFounded_lt_exact_sequence is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : PartialOrder.{u2} β] [_inst_4 : Preorder.{u3} γ], (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))) -> (WellFounded.{succ u3} γ (LT.lt.{u3} γ (Preorder.toLT.{u3} γ _inst_4))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : PartialOrder.{u2} β] [_inst_4 : Preorder.{u3} γ], (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))) -> (WellFounded.{succ u3} γ (LT.lt.{u3} γ (Preorder.toHasLt.{u3} γ _inst_4))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : PartialOrder.{u3} β] [_inst_4 : Preorder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1542 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1544 : β) => LT.lt.{u3} β (Preorder.toLT.{u3} β (PartialOrder.toPreorder.{u3} β _inst_3)) x._@.Mathlib.Order.ModularLattice._hyg.1542 x._@.Mathlib.Order.ModularLattice._hyg.1544)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1565 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1567 : γ) => LT.lt.{u2} γ (Preorder.toLT.{u2} γ _inst_4) x._@.Mathlib.Order.ModularLattice._hyg.1565 x._@.Mathlib.Order.ModularLattice._hyg.1567)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α (PartialOrder.toPreorder.{u3} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1637 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1639 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1637 x._@.Mathlib.Order.ModularLattice._hyg.1639)))
 Case conversion may be inaccurate. Consider using '#align well_founded_lt_exact_sequence wellFounded_lt_exact_sequenceₓ'. -/
@@ -439,7 +439,7 @@ theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preord
 
 /- warning: well_founded_gt_exact_sequence -> wellFounded_gt_exact_sequence is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : Preorder.{u2} β] [_inst_4 : PartialOrder.{u3} γ], (WellFounded.{succ u2} β (GT.gt.{u2} β (Preorder.toLT.{u2} β _inst_3))) -> (WellFounded.{succ u3} γ (GT.gt.{u3} γ (Preorder.toLT.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_4)))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : Preorder.{u2} β] [_inst_4 : PartialOrder.{u3} γ], (WellFounded.{succ u2} β (GT.gt.{u2} β (Preorder.toHasLt.{u2} β _inst_3))) -> (WellFounded.{succ u3} γ (GT.gt.{u3} γ (Preorder.toHasLt.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_4)))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : Preorder.{u3} β] [_inst_4 : PartialOrder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1793 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1795 : β) => GT.gt.{u3} β (Preorder.toLT.{u3} β _inst_3) x._@.Mathlib.Order.ModularLattice._hyg.1793 x._@.Mathlib.Order.ModularLattice._hyg.1795)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1816 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1818 : γ) => GT.gt.{u2} γ (Preorder.toLT.{u2} γ (PartialOrder.toPreorder.{u2} γ _inst_4)) x._@.Mathlib.Order.ModularLattice._hyg.1816 x._@.Mathlib.Order.ModularLattice._hyg.1818)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1888 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1890 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1888 x._@.Mathlib.Order.ModularLattice._hyg.1890)))
 Case conversion may be inaccurate. Consider using '#align well_founded_gt_exact_sequence wellFounded_gt_exact_sequenceₓ'. -/
@@ -455,7 +455,7 @@ theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrd
 
 /- warning: inf_Icc_order_iso_Icc_sup -> infIccOrderIsoIccSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)) (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
 Case conversion may be inaccurate. Consider using '#align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSupₓ'. -/
@@ -507,7 +507,7 @@ theorem sup_strictMonoOn_Icc_inf {a b : α} : StrictMonoOn (fun c => c ⊔ b) (I
 
 /- warning: inf_Ioo_order_iso_Ioo_sup -> infIooOrderIsoIooSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)) (Set.Elem.{u1} α (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
 Case conversion may be inaccurate. Consider using '#align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSupₓ'. -/
@@ -565,7 +565,12 @@ namespace IsCompl
 
 variable [Lattice α] [BoundedOrder α] [IsModularLattice α]
 
-#print IsCompl.IicOrderIsoIci /-
+/- warning: is_compl.Iic_order_iso_Ici -> IsCompl.IicOrderIsoIci is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b)) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a))) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Elem.{u1} α (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b)) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b))))
+Case conversion may be inaccurate. Consider using '#align is_compl.Iic_order_iso_Ici IsCompl.IicOrderIsoIciₓ'. -/
 /-- The diamond isomorphism between the intervals `set.Iic a` and `set.Ici b`. -/
 def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
   (OrderIso.setCongr (Set.Iic a) (Set.Icc (a ⊓ b) a)
@@ -573,7 +578,6 @@ def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
     (infIccOrderIsoIccSup a b).trans
       (OrderIso.setCongr (Set.Icc b (a ⊔ b)) (Set.Ici b) (h.sup_eq_top.symm ▸ Set.Icc_top))
 #align is_compl.Iic_order_iso_Ici IsCompl.IicOrderIsoIci
--/
 
 end IsCompl
 
@@ -598,7 +602,7 @@ end DistribLattice
 
 /- warning: disjoint.disjoint_sup_right_of_disjoint_sup_left -> Disjoint.disjoint_sup_right_of_disjoint_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
 Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_leftₓ'. -/
@@ -613,7 +617,7 @@ theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot
 
 /- warning: disjoint.disjoint_sup_left_of_disjoint_sup_right -> Disjoint.disjoint_sup_left_of_disjoint_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)
 Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_rightₓ'. -/
@@ -651,7 +655,7 @@ variable [BoundedOrder α] [ComplementedLattice α]
 
 /- warning: is_modular_lattice.complemented_lattice_Iic -> IsModularLattice.complementedLattice_Iic is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Iic.lattice.{u1} α _inst_1 a) (Set.Iic.boundedOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Iic.lattice.{u1} α _inst_1 a) (Set.Iic.boundedOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (Set.Elem.{u1} α (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Iic.instLatticeElemIicToPreorderToPartialOrderToSemilatticeInf.{u1} α _inst_1 a) (Set.Iic.instBoundedOrderElemIicLeToLEMemSetInstMembershipSet.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
 Case conversion may be inaccurate. Consider using '#align is_modular_lattice.complemented_lattice_Iic IsModularLattice.complementedLattice_Iicₓ'. -/
@@ -671,7 +675,12 @@ instance complementedLattice_Iic : ComplementedLattice (Set.Iic a) :=
         rw [← sup_inf_assoc_of_le _ (Set.mem_Iic.1 hx), hy.2.eq_top, top_inf_eq]⟩⟩
 #align is_modular_lattice.complemented_lattice_Iic IsModularLattice.complementedLattice_Iic
 
-#print IsModularLattice.complementedLattice_Ici /-
+/- warning: is_modular_lattice.complemented_lattice_Ici -> IsModularLattice.complementedLattice_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Ici.lattice.{u1} α _inst_1 a) (Set.Ici.boundedOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_4 : ComplementedLattice.{u1} α _inst_1 _inst_3], ComplementedLattice.{u1} (Set.Elem.{u1} α (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) a)) (Set.Ici.lattice.{u1} α _inst_1 a) (Set.Ici.boundedOrder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_3) a)
+Case conversion may be inaccurate. Consider using '#align is_modular_lattice.complemented_lattice_Ici IsModularLattice.complementedLattice_Iciₓ'. -/
 instance complementedLattice_Ici : ComplementedLattice (Set.Ici a) :=
   ⟨fun ⟨x, hx⟩ =>
     let ⟨y, hy⟩ := exists_isCompl x
@@ -687,7 +696,6 @@ instance complementedLattice_Ici : ComplementedLattice (Set.Ici a) :=
         rw [← sup_assoc]
         exact le_trans hy.2.top_le le_sup_left⟩⟩
 #align is_modular_lattice.complemented_lattice_Ici IsModularLattice.complementedLattice_Ici
--/
 
 end ComplementedLattice
 
Diff
@@ -384,8 +384,8 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
         
     calc
       y ≤ (x ⊔ z) ⊓ y := le_inf h le_rfl
-      _ = x ⊔ z ⊓ y := sup_inf_assoc_of_le _ hxy
-      _ ≤ x ⊔ z ⊓ x := sup_le_sup_left (by rw [inf_comm, @inf_comm _ _ z] <;> exact hinf) _
+      _ = x ⊔ z ⊓ y := (sup_inf_assoc_of_le _ hxy)
+      _ ≤ x ⊔ z ⊓ x := (sup_le_sup_left (by rw [inf_comm, @inf_comm _ _ z] <;> exact hinf) _)
       _ ≤ x := sup_le le_rfl inf_le_right
       
 #align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_le
Diff
@@ -106,23 +106,43 @@ section WeakUpperModular
 
 variable [Lattice α] [IsWeakUpperModularLattice α] {a b : α}
 
-#print covby_sup_of_inf_covby_of_inf_covby_left /-
+/- warning: covby_sup_of_inf_covby_of_inf_covby_left -> covby_sup_of_inf_covby_of_inf_covby_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_leftₓ'. -/
 theorem covby_sup_of_inf_covby_of_inf_covby_left : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
   IsWeakUpperModularLattice.covby_sup_of_inf_covby_covby
 #align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_left
--/
 
-#print covby_sup_of_inf_covby_of_inf_covby_right /-
+/- warning: covby_sup_of_inf_covby_of_inf_covby_right -> covby_sup_of_inf_covby_of_inf_covby_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_rightₓ'. -/
 theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b :=
   by
   rw [inf_comm, sup_comm]
   exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
 #align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
--/
 
+/- warning: covby.sup_of_inf_of_inf_left -> Covby.sup_of_inf_of_inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_leftₓ'. -/
 alias covby_sup_of_inf_covby_of_inf_covby_left ← Covby.sup_of_inf_of_inf_left
 #align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
 
+/- warning: covby.sup_of_inf_of_inf_right -> Covby.sup_of_inf_of_inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_rightₓ'. -/
 alias covby_sup_of_inf_covby_of_inf_covby_right ← Covby.sup_of_inf_of_inf_right
 #align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_right
 
@@ -135,23 +155,43 @@ section WeakLowerModular
 
 variable [Lattice α] [IsWeakLowerModularLattice α] {a b : α}
 
-#print inf_covby_of_covby_sup_of_covby_sup_left /-
+/- warning: inf_covby_of_covby_sup_of_covby_sup_left -> inf_covby_of_covby_sup_of_covby_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_leftₓ'. -/
 theorem inf_covby_of_covby_sup_of_covby_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
   IsWeakLowerModularLattice.inf_covby_of_covby_covby_sup
 #align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_left
--/
 
-#print inf_covby_of_covby_sup_of_covby_sup_right /-
+/- warning: inf_covby_of_covby_sup_of_covby_sup_right -> inf_covby_of_covby_sup_of_covby_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
+Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_rightₓ'. -/
 theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b :=
   by
   rw [sup_comm, inf_comm]
   exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
 #align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
--/
 
+/- warning: covby.inf_of_sup_of_sup_left -> Covby.inf_of_sup_of_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_leftₓ'. -/
 alias inf_covby_of_covby_sup_of_covby_sup_left ← Covby.inf_of_sup_of_sup_left
 #align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
 
+/- warning: covby.inf_of_sup_of_sup_right -> Covby.inf_of_sup_of_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsWeakLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
+Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_rightₓ'. -/
 alias inf_covby_of_covby_sup_of_covby_sup_right ← Covby.inf_of_sup_of_sup_right
 #align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_right
 
@@ -164,23 +204,43 @@ section UpperModular
 
 variable [Lattice α] [IsUpperModularLattice α] {a b : α}
 
-#print covby_sup_of_inf_covby_left /-
+/- warning: covby_sup_of_inf_covby_left -> covby_sup_of_inf_covby_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_leftₓ'. -/
 theorem covby_sup_of_inf_covby_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
   IsUpperModularLattice.covby_sup_of_inf_covby
 #align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_left
--/
 
-#print covby_sup_of_inf_covby_right /-
+/- warning: covby_sup_of_inf_covby_right -> covby_sup_of_inf_covby_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_rightₓ'. -/
 theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
   by
   rw [sup_comm, inf_comm]
   exact covby_sup_of_inf_covby_left
 #align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
--/
 
+/- warning: covby.sup_of_inf_left -> Covby.sup_of_inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_left Covby.sup_of_inf_leftₓ'. -/
 alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
 #align covby.sup_of_inf_left Covby.sup_of_inf_left
 
+/- warning: covby.sup_of_inf_right -> Covby.sup_of_inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsUpperModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align covby.sup_of_inf_right Covby.sup_of_inf_rightₓ'. -/
 alias covby_sup_of_inf_covby_right ← Covby.sup_of_inf_right
 #align covby.sup_of_inf_right Covby.sup_of_inf_right
 
@@ -201,23 +261,43 @@ section LowerModular
 
 variable [Lattice α] [IsLowerModularLattice α] {a b : α}
 
-#print inf_covby_of_covby_sup_left /-
+/- warning: inf_covby_of_covby_sup_left -> inf_covby_of_covby_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
+Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_leftₓ'. -/
 theorem inf_covby_of_covby_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
   IsLowerModularLattice.inf_covby_of_covby_sup
 #align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_left
--/
 
-#print inf_covby_of_covby_sup_right /-
+/- warning: inf_covby_of_covby_sup_right -> inf_covby_of_covby_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_rightₓ'. -/
 theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
   by
   rw [inf_comm, sup_comm]
   exact inf_covby_of_covby_sup_left
 #align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
--/
 
+/- warning: covby.inf_of_sup_left -> Covby.inf_of_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) b)
+Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_left Covby.inf_of_sup_leftₓ'. -/
 alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
 #align covby.inf_of_sup_left Covby.inf_of_sup_left
 
+/- warning: covby.inf_of_sup_right -> Covby.inf_of_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsLowerModularLattice.{u1} α _inst_1] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align covby.inf_of_sup_right Covby.inf_of_sup_rightₓ'. -/
 alias inf_covby_of_covby_sup_right ← Covby.inf_of_sup_right
 #align covby.inf_of_sup_right Covby.inf_of_sup_right
 
@@ -238,24 +318,36 @@ section IsModularLattice
 
 variable [Lattice α] [IsModularLattice α]
 
-#print sup_inf_assoc_of_le /-
+/- warning: sup_inf_assoc_of_le -> sup_inf_assoc_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x z) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x z) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z)))
+Case conversion may be inaccurate. Consider using '#align sup_inf_assoc_of_le sup_inf_assoc_of_leₓ'. -/
 theorem sup_inf_assoc_of_le {x : α} (y : α) {z : α} (h : x ≤ z) : (x ⊔ y) ⊓ z = x ⊔ y ⊓ z :=
   le_antisymm (IsModularLattice.sup_inf_le_assoc_of_le y h)
     (le_inf (sup_le_sup_left inf_le_left _) (sup_le h inf_le_right))
 #align sup_inf_assoc_of_le sup_inf_assoc_of_le
--/
 
-#print IsModularLattice.inf_sup_inf_assoc /-
+/- warning: is_modular_lattice.inf_sup_inf_assoc -> IsModularLattice.inf_sup_inf_assoc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) y) z)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) y) z)
+Case conversion may be inaccurate. Consider using '#align is_modular_lattice.inf_sup_inf_assoc IsModularLattice.inf_sup_inf_assocₓ'. -/
 theorem IsModularLattice.inf_sup_inf_assoc {x y z : α} : x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z :=
   (sup_inf_assoc_of_le y inf_le_right).symm
 #align is_modular_lattice.inf_sup_inf_assoc IsModularLattice.inf_sup_inf_assoc
--/
 
-#print inf_sup_assoc_of_le /-
+/- warning: inf_sup_assoc_of_le -> inf_sup_assoc_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) z x) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} (y : α) {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) z x) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)))
+Case conversion may be inaccurate. Consider using '#align inf_sup_assoc_of_le inf_sup_assoc_of_leₓ'. -/
 theorem inf_sup_assoc_of_le {x : α} (y : α) {z : α} (h : z ≤ x) : x ⊓ y ⊔ z = x ⊓ (y ⊔ z) := by
   rw [inf_comm, sup_comm, ← sup_inf_assoc_of_le y h, inf_comm, sup_comm]
 #align inf_sup_assoc_of_le inf_sup_assoc_of_le
--/
 
 instance : IsModularLattice αᵒᵈ :=
   ⟨fun x y z xz =>
@@ -266,13 +358,22 @@ instance : IsModularLattice αᵒᵈ :=
 
 variable {x y z : α}
 
-#print IsModularLattice.sup_inf_sup_assoc /-
+/- warning: is_modular_lattice.sup_inf_sup_assoc -> IsModularLattice.sup_inf_sup_assoc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) y) z)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) y) z)
+Case conversion may be inaccurate. Consider using '#align is_modular_lattice.sup_inf_sup_assoc IsModularLattice.sup_inf_sup_assocₓ'. -/
 theorem IsModularLattice.sup_inf_sup_assoc : (x ⊔ z) ⊓ (y ⊔ z) = (x ⊔ z) ⊓ y ⊔ z :=
   @IsModularLattice.inf_sup_inf_assoc αᵒᵈ _ _ _ _ _
 #align is_modular_lattice.sup_inf_sup_assoc IsModularLattice.sup_inf_sup_assoc
--/
 
-#print eq_of_le_of_inf_le_of_sup_le /-
+/- warning: eq_of_le_of_inf_le_of_sup_le -> eq_of_le_of_inf_le_of_sup_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (Eq.{succ u1} α x y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (Eq.{succ u1} α x y)
+Case conversion may be inaccurate. Consider using '#align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_leₓ'. -/
 theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z) (hsup : y ⊔ z ≤ x ⊔ z) :
     x = y :=
   le_antisymm hxy <|
@@ -288,26 +389,33 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
       _ ≤ x := sup_le le_rfl inf_le_right
       
 #align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_le
--/
 
-#print sup_lt_sup_of_lt_of_inf_le_inf /-
+/- warning: sup_lt_sup_of_lt_of_inf_le_inf -> sup_lt_sup_of_lt_of_inf_le_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z))
+Case conversion may be inaccurate. Consider using '#align sup_lt_sup_of_lt_of_inf_le_inf sup_lt_sup_of_lt_of_inf_le_infₓ'. -/
 theorem sup_lt_sup_of_lt_of_inf_le_inf (hxy : x < y) (hinf : y ⊓ z ≤ x ⊓ z) : x ⊔ z < y ⊔ z :=
   lt_of_le_of_ne (sup_le_sup_right (le_of_lt hxy) _) fun hsup =>
     ne_of_lt hxy <| eq_of_le_of_inf_le_of_sup_le (le_of_lt hxy) hinf (le_of_eq hsup.symm)
 #align sup_lt_sup_of_lt_of_inf_le_inf sup_lt_sup_of_lt_of_inf_le_inf
--/
 
-#print inf_lt_inf_of_lt_of_sup_le_sup /-
+/- warning: inf_lt_inf_of_lt_of_sup_le_sup -> inf_lt_inf_of_lt_of_sup_le_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {x : α} {y : α} {z : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) y z) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x z)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z))
+Case conversion may be inaccurate. Consider using '#align inf_lt_inf_of_lt_of_sup_le_sup inf_lt_inf_of_lt_of_sup_le_supₓ'. -/
 theorem inf_lt_inf_of_lt_of_sup_le_sup (hxy : x < y) (hinf : y ⊔ z ≤ x ⊔ z) : x ⊓ z < y ⊓ z :=
   @sup_lt_sup_of_lt_of_inf_le_inf αᵒᵈ _ _ _ _ _ hxy hinf
 #align inf_lt_inf_of_lt_of_sup_le_sup inf_lt_inf_of_lt_of_sup_le_sup
--/
 
 /- warning: well_founded_lt_exact_sequence -> wellFounded_lt_exact_sequence is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : PartialOrder.{u2} β] [_inst_4 : Preorder.{u3} γ], (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))) -> (WellFounded.{succ u3} γ (LT.lt.{u3} γ (Preorder.toLT.{u3} γ _inst_4))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : PartialOrder.{u2} β] [_inst_4 : Preorder.{u3} γ], (WellFounded.{succ u2} β (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))) -> (WellFounded.{succ u3} γ (LT.lt.{u3} γ (Preorder.toLT.{u3} γ _inst_4))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : PartialOrder.{u3} β] [_inst_4 : Preorder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1542 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1544 : β) => LT.lt.{u3} β (Preorder.toLT.{u3} β (PartialOrder.toPreorder.{u3} β _inst_3)) x._@.Mathlib.Order.ModularLattice._hyg.1542 x._@.Mathlib.Order.ModularLattice._hyg.1544)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1565 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1567 : γ) => LT.lt.{u2} γ (Preorder.toLT.{u2} γ _inst_4) x._@.Mathlib.Order.ModularLattice._hyg.1565 x._@.Mathlib.Order.ModularLattice._hyg.1567)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α (PartialOrder.toPreorder.{u3} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1637 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1639 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1637 x._@.Mathlib.Order.ModularLattice._hyg.1639)))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : PartialOrder.{u3} β] [_inst_4 : Preorder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1542 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1544 : β) => LT.lt.{u3} β (Preorder.toLT.{u3} β (PartialOrder.toPreorder.{u3} β _inst_3)) x._@.Mathlib.Order.ModularLattice._hyg.1542 x._@.Mathlib.Order.ModularLattice._hyg.1544)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1565 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1567 : γ) => LT.lt.{u2} γ (Preorder.toLT.{u2} γ _inst_4) x._@.Mathlib.Order.ModularLattice._hyg.1565 x._@.Mathlib.Order.ModularLattice._hyg.1567)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α (PartialOrder.toPreorder.{u3} β _inst_3) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) _inst_4 g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1637 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1639 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1637 x._@.Mathlib.Order.ModularLattice._hyg.1639)))
 Case conversion may be inaccurate. Consider using '#align well_founded_lt_exact_sequence wellFounded_lt_exact_sequenceₓ'. -/
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Artinian, then `M` is Artinian. -/
@@ -331,9 +439,9 @@ theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preord
 
 /- warning: well_founded_gt_exact_sequence -> wellFounded_gt_exact_sequence is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : Preorder.{u2} β] [_inst_4 : PartialOrder.{u3} γ], (WellFounded.{succ u2} β (GT.gt.{u2} β (Preorder.toLT.{u2} β _inst_3))) -> (WellFounded.{succ u3} γ (GT.gt.{u3} γ (Preorder.toLT.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_4)))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u2}} {γ : Type.{u3}} [_inst_3 : Preorder.{u2} β] [_inst_4 : PartialOrder.{u3} γ], (WellFounded.{succ u2} β (GT.gt.{u2} β (Preorder.toLT.{u2} β _inst_3))) -> (WellFounded.{succ u3} γ (GT.gt.{u3} γ (Preorder.toLT.{u3} γ (PartialOrder.toPreorder.{u3} γ _inst_4)))) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u2, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : Preorder.{u3} β] [_inst_4 : PartialOrder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1793 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1795 : β) => GT.gt.{u3} β (Preorder.toLT.{u3} β _inst_3) x._@.Mathlib.Order.ModularLattice._hyg.1793 x._@.Mathlib.Order.ModularLattice._hyg.1795)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1816 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1818 : γ) => GT.gt.{u2} γ (Preorder.toLT.{u2} γ (PartialOrder.toPreorder.{u2} γ _inst_4)) x._@.Mathlib.Order.ModularLattice._hyg.1816 x._@.Mathlib.Order.ModularLattice._hyg.1818)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1888 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1890 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1888 x._@.Mathlib.Order.ModularLattice._hyg.1890)))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {β : Type.{u3}} {γ : Type.{u2}} [_inst_3 : Preorder.{u3} β] [_inst_4 : PartialOrder.{u2} γ], (WellFounded.{succ u3} β (fun (x._@.Mathlib.Order.ModularLattice._hyg.1793 : β) (x._@.Mathlib.Order.ModularLattice._hyg.1795 : β) => GT.gt.{u3} β (Preorder.toLT.{u3} β _inst_3) x._@.Mathlib.Order.ModularLattice._hyg.1793 x._@.Mathlib.Order.ModularLattice._hyg.1795)) -> (WellFounded.{succ u2} γ (fun (x._@.Mathlib.Order.ModularLattice._hyg.1816 : γ) (x._@.Mathlib.Order.ModularLattice._hyg.1818 : γ) => GT.gt.{u2} γ (Preorder.toLT.{u2} γ (PartialOrder.toPreorder.{u2} γ _inst_4)) x._@.Mathlib.Order.ModularLattice._hyg.1816 x._@.Mathlib.Order.ModularLattice._hyg.1818)) -> (forall (K : α) (f₁ : β -> α) (f₂ : α -> β) (g₁ : γ -> α) (g₂ : α -> γ), (GaloisCoinsertion.{u3, u1} β α _inst_3 (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) f₁ f₂) -> (GaloisInsertion.{u1, u2} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} γ _inst_4) g₂ g₁) -> (forall (a : α), Eq.{succ u1} α (f₁ (f₂ a)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a K)) -> (forall (a : α), Eq.{succ u1} α (g₁ (g₂ a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a K)) -> (WellFounded.{succ u1} α (fun (x._@.Mathlib.Order.ModularLattice._hyg.1888 : α) (x._@.Mathlib.Order.ModularLattice._hyg.1890 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.ModularLattice._hyg.1888 x._@.Mathlib.Order.ModularLattice._hyg.1890)))
 Case conversion may be inaccurate. Consider using '#align well_founded_gt_exact_sequence wellFounded_gt_exact_sequenceₓ'. -/
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Noetherian, then `M` is Noetherian.  -/
@@ -345,7 +453,12 @@ theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrd
   @wellFounded_lt_exact_sequence αᵒᵈ _ _ γᵒᵈ βᵒᵈ _ _ h₂ h₁ K g₁ g₂ f₁ f₂ gi.dual gci.dual hg hf
 #align well_founded_gt_exact_sequence wellFounded_gt_exact_sequence
 
-#print infIccOrderIsoIccSup /-
+/- warning: inf_Icc_order_iso_Icc_sup -> infIccOrderIsoIccSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)) (Set.Elem.{u1} α (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
+Case conversion may be inaccurate. Consider using '#align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSupₓ'. -/
 /-- The diamond isomorphism between the intervals `[a ⊓ b, a]` and `[b, a ⊔ b]` -/
 @[simps]
 def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔ b)
@@ -371,21 +484,33 @@ def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔
       sup_eq_right.2 y.prop.1, inf_sup_assoc_of_le _ y.prop.2, @sup_comm _ _ b]
     exact inf_le_inf_left _ h
 #align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSup
--/
 
-#print inf_strictMonoOn_Icc_sup /-
+/- warning: inf_strict_mono_on_Icc_sup -> inf_strictMonoOn_Icc_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a c) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a c) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align inf_strict_mono_on_Icc_sup inf_strictMonoOn_Icc_supₓ'. -/
 theorem inf_strictMonoOn_Icc_sup {a b : α} : StrictMonoOn (fun c => a ⊓ c) (Icc b (a ⊔ b)) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).symm.StrictMono
 #align inf_strict_mono_on_Icc_sup inf_strictMonoOn_Icc_sup
--/
 
-#print sup_strictMonoOn_Icc_inf /-
+/- warning: sup_strict_mono_on_Icc_inf -> sup_strictMonoOn_Icc_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) c b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α}, StrictMonoOn.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (fun (c : α) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) c b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)
+Case conversion may be inaccurate. Consider using '#align sup_strict_mono_on_Icc_inf sup_strictMonoOn_Icc_infₓ'. -/
 theorem sup_strictMonoOn_Icc_inf {a b : α} : StrictMonoOn (fun c => c ⊔ b) (Icc (a ⊓ b) a) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).StrictMono
 #align sup_strict_mono_on_Icc_inf sup_strictMonoOn_Icc_inf
--/
 
-#print infIooOrderIsoIooSup /-
+/- warning: inf_Ioo_order_iso_Ioo_sup -> infIooOrderIsoIooSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a)) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) a b) a))) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : IsModularLattice.{u1} α _inst_1] (a : α) (b : α), OrderIso.{u1, u1} (Set.Elem.{u1} α (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a)) (Set.Elem.{u1} α (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) a b) a))) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b))))
+Case conversion may be inaccurate. Consider using '#align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSupₓ'. -/
 /-- The diamond isomorphism between the intervals `]a ⊓ b, a[` and `}b, a ⊔ b[`. -/
 @[simps]
 def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b)
@@ -411,7 +536,6 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b)
     @OrderIso.le_iff_le _ _ _ _ (infIccOrderIsoIccSup _ _) ⟨c.1, Ioo_subset_Icc_self c.2⟩
       ⟨d.1, Ioo_subset_Icc_self d.2⟩
 #align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSup
--/
 
 #print IsModularLattice.to_isLowerModularLattice /-
 -- See note [lower instance priority]
@@ -453,13 +577,17 @@ def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
 
 end IsCompl
 
-#print isModularLattice_iff_inf_sup_inf_assoc /-
+/- warning: is_modular_lattice_iff_inf_sup_inf_assoc -> isModularLattice_iff_inf_sup_inf_assoc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], Iff (IsModularLattice.{u1} α _inst_1) (forall (x : α) (y : α) (z : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) y z)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x z) y) z))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α], Iff (IsModularLattice.{u1} α _inst_1) (forall (x : α) (y : α) (z : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) y z)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x z) y) z))
+Case conversion may be inaccurate. Consider using '#align is_modular_lattice_iff_inf_sup_inf_assoc isModularLattice_iff_inf_sup_inf_assocₓ'. -/
 theorem isModularLattice_iff_inf_sup_inf_assoc [Lattice α] :
     IsModularLattice α ↔ ∀ x y z : α, x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z :=
   ⟨fun h => @IsModularLattice.inf_sup_inf_assoc _ _ h, fun h =>
     ⟨fun x y z xz => by rw [← inf_eq_left.2 xz, h]⟩⟩
 #align is_modular_lattice_iff_inf_sup_inf_assoc isModularLattice_iff_inf_sup_inf_assoc
--/
 
 namespace DistribLattice
 
@@ -468,7 +596,12 @@ instance (priority := 100) [DistribLattice α] : IsModularLattice α :=
 
 end DistribLattice
 
-#print Disjoint.disjoint_sup_right_of_disjoint_sup_left /-
+/- warning: disjoint.disjoint_sup_right_of_disjoint_sup_left -> Disjoint.disjoint_sup_right_of_disjoint_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c))
+Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_leftₓ'. -/
 theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint a b) (hsup : Disjoint (a ⊔ b) c) :
     Disjoint a (b ⊔ c) := by
@@ -477,9 +610,13 @@ theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot
   apply (inf_le_inf_right (c ⊔ b) le_sup_right).trans
   rw [sup_comm, IsModularLattice.sup_inf_sup_assoc, hsup.eq_bot, bot_sup_eq]
 #align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_left
--/
 
-#print Disjoint.disjoint_sup_left_of_disjoint_sup_right /-
+/- warning: disjoint.disjoint_sup_left_of_disjoint_sup_right -> Disjoint.disjoint_sup_left_of_disjoint_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] [_inst_3 : IsModularLattice.{u1} α _inst_1] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) a b) c)
+Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_rightₓ'. -/
 theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint b c) (hsup : Disjoint a (b ⊔ c)) :
     Disjoint (a ⊔ b) c := by
@@ -487,7 +624,6 @@ theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot
   apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
   rwa [sup_comm, disjoint_comm] at hsup
 #align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
--/
 
 namespace IsModularLattice
 

Changes in mathlib4

mathlib3
mathlib4
chore(Order): Make more arguments explicit (#11033)

Those lemmas have historically been very annoying to use in rw since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.

Downstream code broken by this change can fix it by adding appropriately many _s.

Also marks CauSeq.ext @[ext].

Order.BoundedOrder

  • top_sup_eq
  • sup_top_eq
  • bot_sup_eq
  • sup_bot_eq
  • top_inf_eq
  • inf_top_eq
  • bot_inf_eq
  • inf_bot_eq

Order.Lattice

  • sup_idem
  • sup_comm
  • sup_assoc
  • sup_left_idem
  • sup_right_idem
  • inf_idem
  • inf_comm
  • inf_assoc
  • inf_left_idem
  • inf_right_idem
  • sup_inf_left
  • sup_inf_right
  • inf_sup_left
  • inf_sup_right

Order.MinMax

  • max_min_distrib_left
  • max_min_distrib_right
  • min_max_distrib_left
  • min_max_distrib_right

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -240,7 +240,7 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
     calc
       y ≤ (x ⊔ z) ⊓ y := le_inf h le_rfl
       _ = x ⊔ z ⊓ y := sup_inf_assoc_of_le _ hxy
-      _ ≤ x ⊔ z ⊓ x := sup_le_sup_left (by rw [inf_comm, @inf_comm _ _ z]; exact hinf) _
+      _ ≤ x ⊔ z ⊓ x := sup_le_sup_left (by rw [inf_comm, inf_comm z]; exact hinf) _
       _ ≤ x := sup_le le_rfl inf_le_right
 #align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_le
 
@@ -302,7 +302,7 @@ def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔
     rw [← Subtype.coe_le_coe]
     refine' ⟨fun h => _, fun h => sup_le_sup_right h _⟩
     rw [← sup_eq_right.2 x.prop.1, inf_sup_assoc_of_le _ x.prop.2, sup_comm, ←
-      sup_eq_right.2 y.prop.1, inf_sup_assoc_of_le _ y.prop.2, @sup_comm _ _ b]
+      sup_eq_right.2 y.prop.1, inf_sup_assoc_of_le _ y.prop.2, sup_comm b]
     exact inf_le_inf_left _ h
 #align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSup
 #align inf_Icc_order_iso_Icc_sup_apply_coe infIccOrderIsoIccSup_apply_coe
@@ -347,7 +347,7 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b) where
 -- See note [lower instance priority]
 instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerModularLattice α :=
   ⟨fun {a b} => by
-    simp_rw [covBy_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← isEmpty_coe_sort, right_lt_sup,
+    simp_rw [covBy_iff_Ioo_eq, sup_comm a, inf_comm a, ← isEmpty_coe_sort, right_lt_sup,
       inf_lt_left, (infIooOrderIsoIooSup b a).symm.toEquiv.isEmpty_congr]
     exact id⟩
 #align is_modular_lattice.to_is_lower_modular_lattice IsModularLattice.to_isLowerModularLattice
chore(Order/*): move SupSet, Set.sUnion etc to a new file (#10232)
Diff
@@ -5,6 +5,7 @@ Authors: Aaron Anderson, Yaël Dillies
 -/
 import Mathlib.Order.Cover
 import Mathlib.Order.LatticeIntervals
+import Mathlib.Order.GaloisConnection
 
 #align_import order.modular_lattice from "leanprover-community/mathlib"@"207cfac9fcd06138865b5d04f7091e46d9320432"
 
chore(Covby): rename Covby to CovBy (#9578)

Rename

  • CovbyCovBy, WcovbyWCovBy
  • *covby**covBy*
  • wcovby.finset_valWCovBy.finset_val, wcovby.finset_coeWCovBy.finset_coe
  • Covby.is_coatomCovBy.isCoatom
Diff
@@ -61,28 +61,28 @@ variable {α : Type*}
 cover `a ⊓ b`. -/
 class IsWeakUpperModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a ⊔ b` covers `a` and `b` if `a` and `b` both cover `a ⊓ b`. -/
-  covby_sup_of_inf_covby_covby {a b : α} : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b
+  covBy_sup_of_inf_covBy_covBy {a b : α} : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b
 #align is_weak_upper_modular_lattice IsWeakUpperModularLattice
 
 /-- A weakly lower modular lattice is a lattice where `a` and `b` cover `a ⊓ b` if `a ⊔ b` covers
 both `a` and `b`. -/
 class IsWeakLowerModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a` and `b` cover `a ⊓ b` if `a ⊔ b` covers both `a` and `b` -/
-  inf_covby_of_covby_covby_sup {a b : α} : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a
+  inf_covBy_of_covBy_covBy_sup {a b : α} : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a
 #align is_weak_lower_modular_lattice IsWeakLowerModularLattice
 
 /-- An upper modular lattice, aka semimodular lattice, is a lattice where `a ⊔ b` covers `a` and `b`
 if either `a` or `b` covers `a ⊓ b`. -/
 class IsUpperModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a ⊔ b` covers `a` and `b` if either `a` or `b` covers `a ⊓ b` -/
-  covby_sup_of_inf_covby {a b : α} : a ⊓ b ⋖ a → b ⋖ a ⊔ b
+  covBy_sup_of_inf_covBy {a b : α} : a ⊓ b ⋖ a → b ⋖ a ⊔ b
 #align is_upper_modular_lattice IsUpperModularLattice
 
 /-- A lower modular lattice is a lattice where `a` and `b` both cover `a ⊓ b` if `a ⊔ b` covers
 either `a` or `b`. -/
 class IsLowerModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a` and `b` both cover `a ⊓ b` if `a ⊔ b` covers either `a` or `b` -/
-  inf_covby_of_covby_sup {a b : α} : a ⋖ a ⊔ b → a ⊓ b ⋖ b
+  inf_covBy_of_covBy_sup {a b : α} : a ⋖ a ⊔ b → a ⊓ b ⋖ b
 #align is_lower_modular_lattice IsLowerModularLattice
 
 /-- A modular lattice is one with a limited associativity between `⊓` and `⊔`. -/
@@ -95,20 +95,20 @@ section WeakUpperModular
 
 variable [Lattice α] [IsWeakUpperModularLattice α] {a b : α}
 
-theorem covby_sup_of_inf_covby_of_inf_covby_left : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
-  IsWeakUpperModularLattice.covby_sup_of_inf_covby_covby
-#align covby_sup_of_inf_covby_of_inf_covby_left covby_sup_of_inf_covby_of_inf_covby_left
+theorem covBy_sup_of_inf_covBy_of_inf_covBy_left : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b :=
+  IsWeakUpperModularLattice.covBy_sup_of_inf_covBy_covBy
+#align covby_sup_of_inf_covby_of_inf_covby_left covBy_sup_of_inf_covBy_of_inf_covBy_left
 
-theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b := by
+theorem covBy_sup_of_inf_covBy_of_inf_covBy_right : a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b := by
   rw [inf_comm, sup_comm]
-  exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
-#align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
+  exact fun ha hb => covBy_sup_of_inf_covBy_of_inf_covBy_left hb ha
+#align covby_sup_of_inf_covby_of_inf_covby_right covBy_sup_of_inf_covBy_of_inf_covBy_right
 
-alias Covby.sup_of_inf_of_inf_left := covby_sup_of_inf_covby_of_inf_covby_left
-#align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
+alias CovBy.sup_of_inf_of_inf_left := covBy_sup_of_inf_covBy_of_inf_covBy_left
+#align covby.sup_of_inf_of_inf_left CovBy.sup_of_inf_of_inf_left
 
-alias Covby.sup_of_inf_of_inf_right := covby_sup_of_inf_covby_of_inf_covby_right
-#align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_right
+alias CovBy.sup_of_inf_of_inf_right := covBy_sup_of_inf_covBy_of_inf_covBy_right
+#align covby.sup_of_inf_of_inf_right CovBy.sup_of_inf_of_inf_right
 
 instance : IsWeakLowerModularLattice (OrderDual α) :=
   ⟨fun ha hb => (ha.ofDual.sup_of_inf_of_inf_left hb.ofDual).toDual⟩
@@ -119,20 +119,20 @@ section WeakLowerModular
 
 variable [Lattice α] [IsWeakLowerModularLattice α] {a b : α}
 
-theorem inf_covby_of_covby_sup_of_covby_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
-  IsWeakLowerModularLattice.inf_covby_of_covby_covby_sup
-#align inf_covby_of_covby_sup_of_covby_sup_left inf_covby_of_covby_sup_of_covby_sup_left
+theorem inf_covBy_of_covBy_sup_of_covBy_sup_left : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a :=
+  IsWeakLowerModularLattice.inf_covBy_of_covBy_covBy_sup
+#align inf_covby_of_covby_sup_of_covby_sup_left inf_covBy_of_covBy_sup_of_covBy_sup_left
 
-theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b := by
+theorem inf_covBy_of_covBy_sup_of_covBy_sup_right : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b := by
   rw [sup_comm, inf_comm]
-  exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
-#align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
+  exact fun ha hb => inf_covBy_of_covBy_sup_of_covBy_sup_left hb ha
+#align inf_covby_of_covby_sup_of_covby_sup_right inf_covBy_of_covBy_sup_of_covBy_sup_right
 
-alias Covby.inf_of_sup_of_sup_left := inf_covby_of_covby_sup_of_covby_sup_left
-#align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
+alias CovBy.inf_of_sup_of_sup_left := inf_covBy_of_covBy_sup_of_covBy_sup_left
+#align covby.inf_of_sup_of_sup_left CovBy.inf_of_sup_of_sup_left
 
-alias Covby.inf_of_sup_of_sup_right := inf_covby_of_covby_sup_of_covby_sup_right
-#align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_right
+alias CovBy.inf_of_sup_of_sup_right := inf_covBy_of_covBy_sup_of_covBy_sup_right
+#align covby.inf_of_sup_of_sup_right CovBy.inf_of_sup_of_sup_right
 
 instance : IsWeakUpperModularLattice (OrderDual α) :=
   ⟨fun ha hb => (ha.ofDual.inf_of_sup_of_sup_left hb.ofDual).toDual⟩
@@ -143,25 +143,25 @@ section UpperModular
 
 variable [Lattice α] [IsUpperModularLattice α] {a b : α}
 
-theorem covby_sup_of_inf_covby_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
-  IsUpperModularLattice.covby_sup_of_inf_covby
-#align covby_sup_of_inf_covby_left covby_sup_of_inf_covby_left
+theorem covBy_sup_of_inf_covBy_left : a ⊓ b ⋖ a → b ⋖ a ⊔ b :=
+  IsUpperModularLattice.covBy_sup_of_inf_covBy
+#align covby_sup_of_inf_covby_left covBy_sup_of_inf_covBy_left
 
-theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by
+theorem covBy_sup_of_inf_covBy_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by
   rw [sup_comm, inf_comm]
-  exact covby_sup_of_inf_covby_left
-#align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
+  exact covBy_sup_of_inf_covBy_left
+#align covby_sup_of_inf_covby_right covBy_sup_of_inf_covBy_right
 
-alias Covby.sup_of_inf_left := covby_sup_of_inf_covby_left
-#align covby.sup_of_inf_left Covby.sup_of_inf_left
+alias CovBy.sup_of_inf_left := covBy_sup_of_inf_covBy_left
+#align covby.sup_of_inf_left CovBy.sup_of_inf_left
 
-alias Covby.sup_of_inf_right := covby_sup_of_inf_covby_right
-#align covby.sup_of_inf_right Covby.sup_of_inf_right
+alias CovBy.sup_of_inf_right := covBy_sup_of_inf_covBy_right
+#align covby.sup_of_inf_right CovBy.sup_of_inf_right
 
 -- See note [lower instance priority]
 instance (priority := 100) IsUpperModularLattice.to_isWeakUpperModularLattice :
     IsWeakUpperModularLattice α :=
-  ⟨fun _ => Covby.sup_of_inf_right⟩
+  ⟨fun _ => CovBy.sup_of_inf_right⟩
 #align is_upper_modular_lattice.to_is_weak_upper_modular_lattice IsUpperModularLattice.to_isWeakUpperModularLattice
 
 instance : IsLowerModularLattice (OrderDual α) :=
@@ -173,25 +173,25 @@ section LowerModular
 
 variable [Lattice α] [IsLowerModularLattice α] {a b : α}
 
-theorem inf_covby_of_covby_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
-  IsLowerModularLattice.inf_covby_of_covby_sup
-#align inf_covby_of_covby_sup_left inf_covby_of_covby_sup_left
+theorem inf_covBy_of_covBy_sup_left : a ⋖ a ⊔ b → a ⊓ b ⋖ b :=
+  IsLowerModularLattice.inf_covBy_of_covBy_sup
+#align inf_covby_of_covby_sup_left inf_covBy_of_covBy_sup_left
 
-theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by
+theorem inf_covBy_of_covBy_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by
   rw [inf_comm, sup_comm]
-  exact inf_covby_of_covby_sup_left
-#align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
+  exact inf_covBy_of_covBy_sup_left
+#align inf_covby_of_covby_sup_right inf_covBy_of_covBy_sup_right
 
-alias Covby.inf_of_sup_left := inf_covby_of_covby_sup_left
-#align covby.inf_of_sup_left Covby.inf_of_sup_left
+alias CovBy.inf_of_sup_left := inf_covBy_of_covBy_sup_left
+#align covby.inf_of_sup_left CovBy.inf_of_sup_left
 
-alias Covby.inf_of_sup_right := inf_covby_of_covby_sup_right
-#align covby.inf_of_sup_right Covby.inf_of_sup_right
+alias CovBy.inf_of_sup_right := inf_covBy_of_covBy_sup_right
+#align covby.inf_of_sup_right CovBy.inf_of_sup_right
 
 -- See note [lower instance priority]
 instance (priority := 100) IsLowerModularLattice.to_isWeakLowerModularLattice :
     IsWeakLowerModularLattice α :=
-  ⟨fun _ => Covby.inf_of_sup_right⟩
+  ⟨fun _ => CovBy.inf_of_sup_right⟩
 #align is_lower_modular_lattice.to_is_weak_lower_modular_lattice IsLowerModularLattice.to_isWeakLowerModularLattice
 
 instance : IsUpperModularLattice (OrderDual α) :=
@@ -346,7 +346,7 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b) where
 -- See note [lower instance priority]
 instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerModularLattice α :=
   ⟨fun {a b} => by
-    simp_rw [covby_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← isEmpty_coe_sort, right_lt_sup,
+    simp_rw [covBy_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← isEmpty_coe_sort, right_lt_sup,
       inf_lt_left, (infIooOrderIsoIooSup b a).symm.toEquiv.isEmpty_congr]
     exact id⟩
 #align is_modular_lattice.to_is_lower_modular_lattice IsModularLattice.to_isLowerModularLattice
@@ -354,7 +354,7 @@ instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerMo
 -- See note [lower instance priority]
 instance (priority := 100) IsModularLattice.to_isUpperModularLattice : IsUpperModularLattice α :=
   ⟨fun {a b} => by
-    simp_rw [covby_iff_Ioo_eq, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left,
+    simp_rw [covBy_iff_Ioo_eq, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left,
       (infIooOrderIsoIooSup a b).toEquiv.isEmpty_congr]
     exact id⟩
 #align is_modular_lattice.to_is_upper_modular_lattice IsModularLattice.to_isUpperModularLattice
chore: remove uses of cases' (#9171)

I literally went through and regex'd some uses of cases', replacing them with rcases; this is meant to be a low effort PR as I hope that tools can do this in the future.

rcases is an easier replacement than cases, though with better tools we could in future do a second pass converting simple rcases added here (and existing ones) to cases.

Diff
@@ -265,7 +265,7 @@ theorem wellFounded_lt_exact_sequence {β γ : Type*} [PartialOrder β] [Preorde
         simp only [Prod.lex_def, lt_iff_le_not_le, ← gci.l_le_l_iff, ← gi.u_le_u_iff, hf, hg,
           le_antisymm_iff]
         simp only [gci.l_le_l_iff, gi.u_le_u_iff, ← lt_iff_le_not_le, ← le_antisymm_iff]
-        cases' lt_or_eq_of_le (inf_le_inf_right K (le_of_lt hAB)) with h h
+        rcases lt_or_eq_of_le (inf_le_inf_right K (le_of_lt hAB)) with h | h
         · exact Or.inl h
         · exact Or.inr ⟨h, sup_lt_sup_of_lt_of_inf_le_inf hAB (le_of_eq h.symm)⟩)
     (InvImage.wf _ (h₁.prod_lex h₂))
chore: relax typeclass assumptions in two modular lattice lemmas (#7555)

Co-authored-by: Junyan Xu <junyanxumath@gmail.com> @alreadydone

Diff
@@ -409,12 +409,12 @@ theorem disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
   rwa [sup_comm, disjoint_comm] at hsup
 #align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
 
-theorem isCompl_sup_right_of_isCompl_sup_left [CompleteLattice α] [IsModularLattice α]
+theorem isCompl_sup_right_of_isCompl_sup_left [Lattice α] [BoundedOrder α] [IsModularLattice α]
     (h : Disjoint a b) (hcomp : IsCompl (a ⊔ b) c) :
     IsCompl a (b ⊔ c) :=
   ⟨h.disjoint_sup_right_of_disjoint_sup_left hcomp.disjoint, codisjoint_assoc.mp hcomp.codisjoint⟩
 
-theorem isCompl_sup_left_of_isCompl_sup_right [CompleteLattice α] [IsModularLattice α]
+theorem isCompl_sup_left_of_isCompl_sup_right [Lattice α] [BoundedOrder α] [IsModularLattice α]
     (h : Disjoint b c) (hcomp : IsCompl a (b ⊔ c)) :
     IsCompl (a ⊔ b) c :=
   ⟨h.disjoint_sup_left_of_disjoint_sup_right hcomp.disjoint, codisjoint_assoc.mpr hcomp.codisjoint⟩
feat: add lemmas Disjoint.isCompl_sup_right_of_isCompl_sup_left (and partner) (#7483)
Diff
@@ -388,8 +388,12 @@ instance (priority := 100) [DistribLattice α] : IsModularLattice α :=
 
 end DistribLattice
 
-theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot α]
-    [IsModularLattice α] {a b c : α} (h : Disjoint a b) (hsup : Disjoint (a ⊔ b) c) :
+namespace Disjoint
+
+variable {a b c : α}
+
+theorem disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot α]
+    [IsModularLattice α] (h : Disjoint a b) (hsup : Disjoint (a ⊔ b) c) :
     Disjoint a (b ⊔ c) := by
   rw [disjoint_iff_inf_le, ← h.eq_bot, sup_comm]
   apply le_inf inf_le_left
@@ -397,14 +401,26 @@ theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot
   rw [sup_comm, IsModularLattice.sup_inf_sup_assoc, hsup.eq_bot, bot_sup_eq]
 #align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_left
 
-theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
-    [IsModularLattice α] {a b c : α} (h : Disjoint b c) (hsup : Disjoint a (b ⊔ c)) :
+theorem disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
+    [IsModularLattice α] (h : Disjoint b c) (hsup : Disjoint a (b ⊔ c)) :
     Disjoint (a ⊔ b) c := by
   rw [disjoint_comm, sup_comm]
   apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
   rwa [sup_comm, disjoint_comm] at hsup
 #align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
 
+theorem isCompl_sup_right_of_isCompl_sup_left [CompleteLattice α] [IsModularLattice α]
+    (h : Disjoint a b) (hcomp : IsCompl (a ⊔ b) c) :
+    IsCompl a (b ⊔ c) :=
+  ⟨h.disjoint_sup_right_of_disjoint_sup_left hcomp.disjoint, codisjoint_assoc.mp hcomp.codisjoint⟩
+
+theorem isCompl_sup_left_of_isCompl_sup_right [CompleteLattice α] [IsModularLattice α]
+    (h : Disjoint b c) (hcomp : IsCompl a (b ⊔ c)) :
+    IsCompl (a ⊔ b) c :=
+  ⟨h.disjoint_sup_left_of_disjoint_sup_right hcomp.disjoint, codisjoint_assoc.mpr hcomp.codisjoint⟩
+
+end Disjoint
+
 namespace IsModularLattice
 
 variable [Lattice α] [IsModularLattice α] {a : α}
feat: patch for new alias command (#6172)
Diff
@@ -104,10 +104,10 @@ theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b 
   exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
 #align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
 
-alias covby_sup_of_inf_covby_of_inf_covby_left ← Covby.sup_of_inf_of_inf_left
+alias Covby.sup_of_inf_of_inf_left := covby_sup_of_inf_covby_of_inf_covby_left
 #align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
 
-alias covby_sup_of_inf_covby_of_inf_covby_right ← Covby.sup_of_inf_of_inf_right
+alias Covby.sup_of_inf_of_inf_right := covby_sup_of_inf_covby_of_inf_covby_right
 #align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_right
 
 instance : IsWeakLowerModularLattice (OrderDual α) :=
@@ -128,10 +128,10 @@ theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a 
   exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
 #align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
 
-alias inf_covby_of_covby_sup_of_covby_sup_left ← Covby.inf_of_sup_of_sup_left
+alias Covby.inf_of_sup_of_sup_left := inf_covby_of_covby_sup_of_covby_sup_left
 #align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
 
-alias inf_covby_of_covby_sup_of_covby_sup_right ← Covby.inf_of_sup_of_sup_right
+alias Covby.inf_of_sup_of_sup_right := inf_covby_of_covby_sup_of_covby_sup_right
 #align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_right
 
 instance : IsWeakUpperModularLattice (OrderDual α) :=
@@ -152,10 +152,10 @@ theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by
   exact covby_sup_of_inf_covby_left
 #align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
 
-alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
+alias Covby.sup_of_inf_left := covby_sup_of_inf_covby_left
 #align covby.sup_of_inf_left Covby.sup_of_inf_left
 
-alias covby_sup_of_inf_covby_right ← Covby.sup_of_inf_right
+alias Covby.sup_of_inf_right := covby_sup_of_inf_covby_right
 #align covby.sup_of_inf_right Covby.sup_of_inf_right
 
 -- See note [lower instance priority]
@@ -182,10 +182,10 @@ theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by
   exact inf_covby_of_covby_sup_left
 #align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
 
-alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
+alias Covby.inf_of_sup_left := inf_covby_of_covby_sup_left
 #align covby.inf_of_sup_left Covby.inf_of_sup_left
 
-alias inf_covby_of_covby_sup_right ← Covby.inf_of_sup_right
+alias Covby.inf_of_sup_right := inf_covby_of_covby_sup_right
 #align covby.inf_of_sup_right Covby.inf_of_sup_right
 
 -- See note [lower instance priority]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -55,38 +55,38 @@ We define (semi)modularity typeclasses as Prop-valued mixins.
 
 open Set
 
-variable {α : Type _}
+variable {α : Type*}
 
 /-- A weakly upper modular lattice is a lattice where `a ⊔ b` covers `a` and `b` if `a` and `b` both
 cover `a ⊓ b`. -/
-class IsWeakUpperModularLattice (α : Type _) [Lattice α] : Prop where
+class IsWeakUpperModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a ⊔ b` covers `a` and `b` if `a` and `b` both cover `a ⊓ b`. -/
   covby_sup_of_inf_covby_covby {a b : α} : a ⊓ b ⋖ a → a ⊓ b ⋖ b → a ⋖ a ⊔ b
 #align is_weak_upper_modular_lattice IsWeakUpperModularLattice
 
 /-- A weakly lower modular lattice is a lattice where `a` and `b` cover `a ⊓ b` if `a ⊔ b` covers
 both `a` and `b`. -/
-class IsWeakLowerModularLattice (α : Type _) [Lattice α] : Prop where
+class IsWeakLowerModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a` and `b` cover `a ⊓ b` if `a ⊔ b` covers both `a` and `b` -/
   inf_covby_of_covby_covby_sup {a b : α} : a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ a
 #align is_weak_lower_modular_lattice IsWeakLowerModularLattice
 
 /-- An upper modular lattice, aka semimodular lattice, is a lattice where `a ⊔ b` covers `a` and `b`
 if either `a` or `b` covers `a ⊓ b`. -/
-class IsUpperModularLattice (α : Type _) [Lattice α] : Prop where
+class IsUpperModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a ⊔ b` covers `a` and `b` if either `a` or `b` covers `a ⊓ b` -/
   covby_sup_of_inf_covby {a b : α} : a ⊓ b ⋖ a → b ⋖ a ⊔ b
 #align is_upper_modular_lattice IsUpperModularLattice
 
 /-- A lower modular lattice is a lattice where `a` and `b` both cover `a ⊓ b` if `a ⊔ b` covers
 either `a` or `b`. -/
-class IsLowerModularLattice (α : Type _) [Lattice α] : Prop where
+class IsLowerModularLattice (α : Type*) [Lattice α] : Prop where
 /-- `a` and `b` both cover `a ⊓ b` if `a ⊔ b` covers either `a` or `b` -/
   inf_covby_of_covby_sup {a b : α} : a ⋖ a ⊔ b → a ⊓ b ⋖ b
 #align is_lower_modular_lattice IsLowerModularLattice
 
 /-- A modular lattice is one with a limited associativity between `⊓` and `⊔`. -/
-class IsModularLattice (α : Type _) [Lattice α] : Prop where
+class IsModularLattice (α : Type*) [Lattice α] : Prop where
 /-- Whenever `x ≤ z`, then for any `y`, `(x ⊔ y) ⊓ z ≤ x ⊔ (y ⊓ z)`  -/
   sup_inf_le_assoc_of_le : ∀ {x : α} (y : α) {z : α}, x ≤ z → (x ⊔ y) ⊓ z ≤ x ⊔ y ⊓ z
 #align is_modular_lattice IsModularLattice
@@ -254,7 +254,7 @@ theorem inf_lt_inf_of_lt_of_sup_le_sup (hxy : x < y) (hinf : y ⊔ z ≤ x ⊔ z
 
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Artinian, then `M` is Artinian. -/
-theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preorder γ]
+theorem wellFounded_lt_exact_sequence {β γ : Type*} [PartialOrder β] [Preorder γ]
     (h₁ : WellFounded ((· < ·) : β → β → Prop)) (h₂ : WellFounded ((· < ·) : γ → γ → Prop)) (K : α)
     (f₁ : β → α) (f₂ : α → β) (g₁ : γ → α) (g₂ : α → γ) (gci : GaloisCoinsertion f₁ f₂)
     (gi : GaloisInsertion g₂ g₁) (hf : ∀ a, f₁ (f₂ a) = a ⊓ K) (hg : ∀ a, g₁ (g₂ a) = a ⊔ K) :
@@ -273,7 +273,7 @@ theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preord
 
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
   `N` and `M / N` are both Noetherian, then `M` is Noetherian.  -/
-theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrder γ]
+theorem wellFounded_gt_exact_sequence {β γ : Type*} [Preorder β] [PartialOrder γ]
     (h₁ : WellFounded ((· > ·) : β → β → Prop)) (h₂ : WellFounded ((· > ·) : γ → γ → Prop)) (K : α)
     (f₁ : β → α) (f₂ : α → β) (g₁ : γ → α) (g₂ : α → γ) (gci : GaloisCoinsertion f₁ f₂)
     (gi : GaloisInsertion g₂ g₁) (hf : ∀ a, f₁ (f₂ a) = a ⊓ K) (hg : ∀ a, g₁ (g₂ a) = a ⊔ K) :
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Aaron Anderson. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Yaël Dillies
-
-! This file was ported from Lean 3 source module order.modular_lattice
-! leanprover-community/mathlib commit 207cfac9fcd06138865b5d04f7091e46d9320432
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.Cover
 import Mathlib.Order.LatticeIntervals
 
+#align_import order.modular_lattice from "leanprover-community/mathlib"@"207cfac9fcd06138865b5d04f7091e46d9320432"
+
 /-!
 # Modular Lattices
 
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -239,13 +239,11 @@ theorem eq_of_le_of_inf_le_of_sup_le (hxy : x ≤ y) (hinf : y ⊓ z ≤ x ⊓ z
       calc
         y ≤ y ⊔ z := le_sup_left
         _ ≤ x ⊔ z := hsup
-
     calc
       y ≤ (x ⊔ z) ⊓ y := le_inf h le_rfl
       _ = x ⊔ z ⊓ y := sup_inf_assoc_of_le _ hxy
       _ ≤ x ⊔ z ⊓ x := sup_le_sup_left (by rw [inf_comm, @inf_comm _ _ z]; exact hinf) _
       _ ≤ x := sup_le le_rfl inf_le_right
-
 #align eq_of_le_of_inf_le_of_sup_le eq_of_le_of_inf_le_of_sup_le
 
 theorem sup_lt_sup_of_lt_of_inf_le_inf (hxy : x < y) (hinf : y ⊓ z ≤ x ⊓ z) : x ⊔ z < y ⊔ z :=
fix: replace symmApply by symm_apply (#2560)
Diff
@@ -310,7 +310,7 @@ def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔
     exact inf_le_inf_left _ h
 #align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSup
 #align inf_Icc_order_iso_Icc_sup_apply_coe infIccOrderIsoIccSup_apply_coe
-#align inf_Icc_order_iso_Icc_sup_symm_apply_coe infIccOrderIsoIccSup_symmApply_coe
+#align inf_Icc_order_iso_Icc_sup_symm_apply_coe infIccOrderIsoIccSup_symm_apply_coe
 
 theorem inf_strictMonoOn_Icc_sup {a b : α} : StrictMonoOn (fun c => a ⊓ c) (Icc b (a ⊔ b)) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).symm.strictMono
@@ -346,7 +346,7 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b) where
       ⟨d.1, Ioo_subset_Icc_self d.2⟩
 #align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSup
 #align inf_Ioo_order_iso_Ioo_sup_apply_coe infIooOrderIsoIooSup_apply_coe
-#align inf_Ioo_order_iso_Ioo_sup_symm_apply_coe infIooOrderIsoIooSup_symmApply_coe
+#align inf_Ioo_order_iso_Ioo_sup_symm_apply_coe infIooOrderIsoIooSup_symm_apply_coe
 
 -- See note [lower instance priority]
 instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerModularLattice α :=
feat: port Order.Extension.Well (#2333)
Diff
@@ -273,7 +273,7 @@ theorem wellFounded_lt_exact_sequence {β γ : Type _} [PartialOrder β] [Preord
         cases' lt_or_eq_of_le (inf_le_inf_right K (le_of_lt hAB)) with h h
         · exact Or.inl h
         · exact Or.inr ⟨h, sup_lt_sup_of_lt_of_inf_le_inf hAB (le_of_eq h.symm)⟩)
-    (InvImage.wf _ (Prod.lex ⟨_, h₁⟩ ⟨_, h₂⟩).wf)
+    (InvImage.wf _ (h₁.prod_lex h₂))
 #align well_founded_lt_exact_sequence wellFounded_lt_exact_sequence
 
 /-- A generalization of the theorem that if `N` is a submodule of `M` and
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -108,8 +108,10 @@ theorem covby_sup_of_inf_covby_of_inf_covby_right : a ⊓ b ⋖ a → a ⊓ b 
 #align covby_sup_of_inf_covby_of_inf_covby_right covby_sup_of_inf_covby_of_inf_covby_right
 
 alias covby_sup_of_inf_covby_of_inf_covby_left ← Covby.sup_of_inf_of_inf_left
+#align covby.sup_of_inf_of_inf_left Covby.sup_of_inf_of_inf_left
 
 alias covby_sup_of_inf_covby_of_inf_covby_right ← Covby.sup_of_inf_of_inf_right
+#align covby.sup_of_inf_of_inf_right Covby.sup_of_inf_of_inf_right
 
 instance : IsWeakLowerModularLattice (OrderDual α) :=
   ⟨fun ha hb => (ha.ofDual.sup_of_inf_of_inf_left hb.ofDual).toDual⟩
@@ -130,8 +132,10 @@ theorem inf_covby_of_covby_sup_of_covby_sup_right : a ⋖ a ⊔ b → b ⋖ a 
 #align inf_covby_of_covby_sup_of_covby_sup_right inf_covby_of_covby_sup_of_covby_sup_right
 
 alias inf_covby_of_covby_sup_of_covby_sup_left ← Covby.inf_of_sup_of_sup_left
+#align covby.inf_of_sup_of_sup_left Covby.inf_of_sup_of_sup_left
 
 alias inf_covby_of_covby_sup_of_covby_sup_right ← Covby.inf_of_sup_of_sup_right
+#align covby.inf_of_sup_of_sup_right Covby.inf_of_sup_of_sup_right
 
 instance : IsWeakUpperModularLattice (OrderDual α) :=
   ⟨fun ha hb => (ha.ofDual.inf_of_sup_of_sup_left hb.ofDual).toDual⟩
@@ -152,8 +156,10 @@ theorem covby_sup_of_inf_covby_right : a ⊓ b ⋖ b → a ⋖ a ⊔ b := by
 #align covby_sup_of_inf_covby_right covby_sup_of_inf_covby_right
 
 alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
+#align covby.sup_of_inf_left Covby.sup_of_inf_left
 
 alias covby_sup_of_inf_covby_right ← Covby.sup_of_inf_right
+#align covby.sup_of_inf_right Covby.sup_of_inf_right
 
 -- See note [lower instance priority]
 instance (priority := 100) IsUpperModularLattice.to_isWeakUpperModularLattice :
@@ -180,8 +186,10 @@ theorem inf_covby_of_covby_sup_right : b ⋖ a ⊔ b → a ⊓ b ⋖ a := by
 #align inf_covby_of_covby_sup_right inf_covby_of_covby_sup_right
 
 alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
+#align covby.inf_of_sup_left Covby.inf_of_sup_left
 
 alias inf_covby_of_covby_sup_right ← Covby.inf_of_sup_right
+#align covby.inf_of_sup_right Covby.inf_of_sup_right
 
 -- See note [lower instance priority]
 instance (priority := 100) IsLowerModularLattice.to_isWeakLowerModularLattice :
@@ -301,6 +309,8 @@ def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔
       sup_eq_right.2 y.prop.1, inf_sup_assoc_of_le _ y.prop.2, @sup_comm _ _ b]
     exact inf_le_inf_left _ h
 #align inf_Icc_order_iso_Icc_sup infIccOrderIsoIccSup
+#align inf_Icc_order_iso_Icc_sup_apply_coe infIccOrderIsoIccSup_apply_coe
+#align inf_Icc_order_iso_Icc_sup_symm_apply_coe infIccOrderIsoIccSup_symmApply_coe
 
 theorem inf_strictMonoOn_Icc_sup {a b : α} : StrictMonoOn (fun c => a ⊓ c) (Icc b (a ⊔ b)) :=
   StrictMono.of_restrict (infIccOrderIsoIccSup a b).symm.strictMono
@@ -335,6 +345,8 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b) where
     @OrderIso.le_iff_le _ _ _ _ (infIccOrderIsoIccSup _ _) ⟨c.1, Ioo_subset_Icc_self c.2⟩
       ⟨d.1, Ioo_subset_Icc_self d.2⟩
 #align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSup
+#align inf_Ioo_order_iso_Ioo_sup_apply_coe infIooOrderIsoIooSup_apply_coe
+#align inf_Ioo_order_iso_Ioo_sup_symm_apply_coe infIooOrderIsoIooSup_symmApply_coe
 
 -- See note [lower instance priority]
 instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerModularLattice α :=
chore: fix casing errors per naming scheme (#1670)
Diff
@@ -358,7 +358,7 @@ namespace IsCompl
 
 variable [Lattice α] [BoundedOrder α] [IsModularLattice α]
 
-/-- The diamond isomorphism between the intervals `set.Iic a` and `set.Ici b`. -/
+/-- The diamond isomorphism between the intervals `Set.Iic a` and `Set.Ici b`. -/
 def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
   (OrderIso.setCongr (Set.Iic a) (Set.Icc (a ⊓ b) a)
         (h.inf_eq_bot.symm ▸ Set.Icc_bot.symm)).trans <|
chore: the style linter shouldn't complain about long #align lines (#1643)
Diff
@@ -159,9 +159,7 @@ alias covby_sup_of_inf_covby_right ← Covby.sup_of_inf_right
 instance (priority := 100) IsUpperModularLattice.to_isWeakUpperModularLattice :
     IsWeakUpperModularLattice α :=
   ⟨fun _ => Covby.sup_of_inf_right⟩
-#align
-  is_upper_modular_lattice.to_is_weak_upper_modular_lattice
-  IsUpperModularLattice.to_isWeakUpperModularLattice
+#align is_upper_modular_lattice.to_is_weak_upper_modular_lattice IsUpperModularLattice.to_isWeakUpperModularLattice
 
 instance : IsLowerModularLattice (OrderDual α) :=
   ⟨fun h => h.ofDual.sup_of_inf_left.toDual⟩
@@ -189,9 +187,7 @@ alias inf_covby_of_covby_sup_right ← Covby.inf_of_sup_right
 instance (priority := 100) IsLowerModularLattice.to_isWeakLowerModularLattice :
     IsWeakLowerModularLattice α :=
   ⟨fun _ => Covby.inf_of_sup_right⟩
-#align
-  is_lower_modular_lattice.to_is_weak_lower_modular_lattice
-  IsLowerModularLattice.to_isWeakLowerModularLattice
+#align is_lower_modular_lattice.to_is_weak_lower_modular_lattice IsLowerModularLattice.to_isWeakLowerModularLattice
 
 instance : IsUpperModularLattice (OrderDual α) :=
   ⟨fun h => h.ofDual.inf_of_sup_left.toDual⟩
@@ -392,8 +388,7 @@ theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot
   apply le_inf inf_le_left
   apply (inf_le_inf_right (c ⊔ b) le_sup_right).trans
   rw [sup_comm, IsModularLattice.sup_inf_sup_assoc, hsup.eq_bot, bot_sup_eq]
-#align
-  disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_left
+#align disjoint.disjoint_sup_right_of_disjoint_sup_left Disjoint.disjoint_sup_right_of_disjoint_sup_left
 
 theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint b c) (hsup : Disjoint a (b ⊔ c)) :
@@ -401,8 +396,7 @@ theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot
   rw [disjoint_comm, sup_comm]
   apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
   rwa [sup_comm, disjoint_comm] at hsup
-#align
-  disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
+#align disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
 
 namespace IsModularLattice
 
Diff
@@ -398,9 +398,9 @@ theorem Disjoint.disjoint_sup_right_of_disjoint_sup_left [Lattice α] [OrderBot
 theorem Disjoint.disjoint_sup_left_of_disjoint_sup_right [Lattice α] [OrderBot α]
     [IsModularLattice α] {a b c : α} (h : Disjoint b c) (hsup : Disjoint a (b ⊔ c)) :
     Disjoint (a ⊔ b) c := by
-  rw [Disjoint.comm, sup_comm]
+  rw [disjoint_comm, sup_comm]
   apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
-  rwa [sup_comm, Disjoint.comm] at hsup
+  rwa [sup_comm, disjoint_comm] at hsup
 #align
   disjoint.disjoint_sup_left_of_disjoint_sup_right Disjoint.disjoint_sup_left_of_disjoint_sup_right
 
chore: fix more casing errors per naming scheme (#1232)

I've avoided anything under Tactic or test.

In correcting the names, I found Option.isNone_iff_eq_none duplicated between Std and Mathlib, so the Mathlib one has been removed.

Co-authored-by: Reid Barton <rwbarton@gmail.com>

Diff
@@ -156,12 +156,12 @@ alias covby_sup_of_inf_covby_left ← Covby.sup_of_inf_left
 alias covby_sup_of_inf_covby_right ← Covby.sup_of_inf_right
 
 -- See note [lower instance priority]
-instance (priority := 100) IsUpperModularLattice.to_is_weak_upper_modular_lattice :
+instance (priority := 100) IsUpperModularLattice.to_isWeakUpperModularLattice :
     IsWeakUpperModularLattice α :=
   ⟨fun _ => Covby.sup_of_inf_right⟩
 #align
   is_upper_modular_lattice.to_is_weak_upper_modular_lattice
-  IsUpperModularLattice.to_is_weak_upper_modular_lattice
+  IsUpperModularLattice.to_isWeakUpperModularLattice
 
 instance : IsLowerModularLattice (OrderDual α) :=
   ⟨fun h => h.ofDual.sup_of_inf_left.toDual⟩
@@ -186,12 +186,12 @@ alias inf_covby_of_covby_sup_left ← Covby.inf_of_sup_left
 alias inf_covby_of_covby_sup_right ← Covby.inf_of_sup_right
 
 -- See note [lower instance priority]
-instance (priority := 100) IsLowerModularLattice.to_is_weak_lower_modular_lattice :
+instance (priority := 100) IsLowerModularLattice.to_isWeakLowerModularLattice :
     IsWeakLowerModularLattice α :=
   ⟨fun _ => Covby.inf_of_sup_right⟩
 #align
   is_lower_modular_lattice.to_is_weak_lower_modular_lattice
-  IsLowerModularLattice.to_is_weak_lower_modular_lattice
+  IsLowerModularLattice.to_isWeakLowerModularLattice
 
 instance : IsUpperModularLattice (OrderDual α) :=
   ⟨fun h => h.ofDual.inf_of_sup_left.toDual⟩
@@ -341,20 +341,20 @@ def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b) where
 #align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSup
 
 -- See note [lower instance priority]
-instance (priority := 100) IsModularLattice.toIsLowerModularLattice : IsLowerModularLattice α :=
+instance (priority := 100) IsModularLattice.to_isLowerModularLattice : IsLowerModularLattice α :=
   ⟨fun {a b} => by
     simp_rw [covby_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← isEmpty_coe_sort, right_lt_sup,
       inf_lt_left, (infIooOrderIsoIooSup b a).symm.toEquiv.isEmpty_congr]
     exact id⟩
-#align is_modular_lattice.to_is_lower_modular_lattice IsModularLattice.toIsLowerModularLattice
+#align is_modular_lattice.to_is_lower_modular_lattice IsModularLattice.to_isLowerModularLattice
 
 -- See note [lower instance priority]
-instance (priority := 100) IsModularLattice.toIsUpperModularLattice : IsUpperModularLattice α :=
+instance (priority := 100) IsModularLattice.to_isUpperModularLattice : IsUpperModularLattice α :=
   ⟨fun {a b} => by
     simp_rw [covby_iff_Ioo_eq, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left,
       (infIooOrderIsoIooSup a b).toEquiv.isEmpty_congr]
     exact id⟩
-#align is_modular_lattice.to_is_upper_modular_lattice IsModularLattice.toIsUpperModularLattice
+#align is_modular_lattice.to_is_upper_modular_lattice IsModularLattice.to_isUpperModularLattice
 
 end IsModularLattice
 
chore: tidy various files (#1311)
Diff
@@ -284,11 +284,7 @@ theorem wellFounded_gt_exact_sequence {β γ : Type _} [Preorder β] [PartialOrd
 
 /-- The diamond isomorphism between the intervals `[a ⊓ b, a]` and `[b, a ⊔ b]` -/
 @[simps]
-def infIccOrderIsoIccSup (a b : α) :
-    Set.Icc (a ⊓ b) a ≃o
-      Set.Icc b
-        (a ⊔
-          b) where
+def infIccOrderIsoIccSup (a b : α) : Set.Icc (a ⊓ b) a ≃o Set.Icc b (a ⊔ b) where
   toFun x := ⟨x ⊔ b, ⟨le_sup_right, sup_le_sup_right x.prop.2 b⟩⟩
   invFun x := ⟨a ⊓ x, ⟨inf_le_inf_left a x.prop.1, inf_le_left⟩⟩
   left_inv x :=
@@ -320,11 +316,7 @@ theorem sup_strictMonoOn_Icc_inf {a b : α} : StrictMonoOn (fun c => c ⊔ b) (I
 
 /-- The diamond isomorphism between the intervals `]a ⊓ b, a[` and `}b, a ⊔ b[`. -/
 @[simps]
-def infIooOrderIsoIooSup (a b : α) :
-    Ioo (a ⊓ b) a ≃o
-      Ioo b
-        (a ⊔
-          b) where
+def infIooOrderIsoIooSup (a b : α) : Ioo (a ⊓ b) a ≃o Ioo b (a ⊔ b) where
   toFun c :=
     ⟨c ⊔ b,
       le_sup_right.trans_lt <|
@@ -349,20 +341,20 @@ def infIooOrderIsoIooSup (a b : α) :
 #align inf_Ioo_order_iso_Ioo_sup infIooOrderIsoIooSup
 
 -- See note [lower instance priority]
-instance (priority := 100) IsModularLattice.to_is_lower_modular_lattice : IsLowerModularLattice α :=
-  ⟨@fun a b => by
+instance (priority := 100) IsModularLattice.toIsLowerModularLattice : IsLowerModularLattice α :=
+  ⟨fun {a b} => by
     simp_rw [covby_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← isEmpty_coe_sort, right_lt_sup,
       inf_lt_left, (infIooOrderIsoIooSup b a).symm.toEquiv.isEmpty_congr]
     exact id⟩
-#align is_modular_lattice.to_is_lower_modular_lattice IsModularLattice.to_is_lower_modular_lattice
+#align is_modular_lattice.to_is_lower_modular_lattice IsModularLattice.toIsLowerModularLattice
 
 -- See note [lower instance priority]
-instance (priority := 100) IsModularLattice.to_is_upper_modular_lattice : IsUpperModularLattice α :=
-  ⟨@fun a b => by
+instance (priority := 100) IsModularLattice.toIsUpperModularLattice : IsUpperModularLattice α :=
+  ⟨fun {a b} => by
     simp_rw [covby_iff_Ioo_eq, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left,
       (infIooOrderIsoIooSup a b).toEquiv.isEmpty_congr]
     exact id⟩
-#align is_modular_lattice.to_is_upper_modular_lattice IsModularLattice.to_is_upper_modular_lattice
+#align is_modular_lattice.to_is_upper_modular_lattice IsModularLattice.toIsUpperModularLattice
 
 end IsModularLattice
 
chore: various naming fixes (#1258)
Diff
@@ -371,12 +371,12 @@ namespace IsCompl
 variable [Lattice α] [BoundedOrder α] [IsModularLattice α]
 
 /-- The diamond isomorphism between the intervals `set.Iic a` and `set.Ici b`. -/
-def iicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
+def IicOrderIsoIci {a b : α} (h : IsCompl a b) : Set.Iic a ≃o Set.Ici b :=
   (OrderIso.setCongr (Set.Iic a) (Set.Icc (a ⊓ b) a)
         (h.inf_eq_bot.symm ▸ Set.Icc_bot.symm)).trans <|
     (infIccOrderIsoIccSup a b).trans
       (OrderIso.setCongr (Set.Icc b (a ⊔ b)) (Set.Ici b) (h.sup_eq_top.symm ▸ Set.Icc_top))
-#align is_compl.Iic_order_iso_Ici IsCompl.iicOrderIsoIci
+#align is_compl.Iic_order_iso_Ici IsCompl.IicOrderIsoIci
 
 end IsCompl
 
feat: port Order.ModularLattice (#1234)

Dependencies 67

68 files ported (100.0%)
35921 lines ported (100.0%)

All dependencies are ported!