order.ord_continuousMathlib.Order.OrdContinuous

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov, Johannes Hölzl
 -/
-import Mathbin.Order.ConditionallyCompleteLattice.Basic
-import Mathbin.Order.RelIso.Basic
+import Order.ConditionallyCompleteLattice.Basic
+import Order.RelIso.Basic
 
 #align_import order.ord_continuous from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov, Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.ord_continuous
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.ConditionallyCompleteLattice.Basic
 import Mathbin.Order.RelIso.Basic
 
+#align_import order.ord_continuous from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Order continuity
 
Diff
@@ -109,9 +109,11 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
 
+#print LeftOrdContinuous.map_sup /-
 theorem map_sup (hf : LeftOrdContinuous f) (x y : α) : f (x ⊔ y) = f x ⊔ f y :=
   (hf isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align left_ord_continuous.map_sup LeftOrdContinuous.map_sup
+-/
 
 #print LeftOrdContinuous.le_iff /-
 theorem le_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y := by
@@ -136,11 +138,13 @@ def toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) : α ↪o β :
 
 variable {f}
 
+#print LeftOrdContinuous.coe_toOrderEmbedding /-
 @[simp]
 theorem coe_toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) :
     ⇑(hf.toOrderEmbedding f h) = f :=
   rfl
 #align left_ord_continuous.coe_to_order_embedding LeftOrdContinuous.coe_toOrderEmbedding
+-/
 
 end SemilatticeSup
 
@@ -148,17 +152,23 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
+#print LeftOrdContinuous.map_sSup' /-
 theorem map_sSup' (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = sSup (f '' s) :=
   (hf <| isLUB_sSup s).sSup_eq.symm
 #align left_ord_continuous.map_Sup' LeftOrdContinuous.map_sSup'
+-/
 
+#print LeftOrdContinuous.map_sSup /-
 theorem map_sSup (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = ⨆ x ∈ s, f x := by
   rw [hf.map_Sup', sSup_image]
 #align left_ord_continuous.map_Sup LeftOrdContinuous.map_sSup
+-/
 
+#print LeftOrdContinuous.map_iSup /-
 theorem map_iSup (hf : LeftOrdContinuous f) (g : ι → α) : f (⨆ i, g i) = ⨆ i, f (g i) := by
   simp only [iSup, hf.map_Sup', ← range_comp]
 #align left_ord_continuous.map_supr LeftOrdContinuous.map_iSup
+-/
 
 end CompleteLattice
 
@@ -166,15 +176,19 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
+#print LeftOrdContinuous.map_csSup /-
 theorem map_csSup (hf : LeftOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddAbove s) :
     f (sSup s) = sSup (f '' s) :=
   ((hf <| isLUB_csSup sne sbdd).csSup_eq <| sne.image f).symm
 #align left_ord_continuous.map_cSup LeftOrdContinuous.map_csSup
+-/
 
+#print LeftOrdContinuous.map_ciSup /-
 theorem map_ciSup (hf : LeftOrdContinuous f) {g : ι → α} (hg : BddAbove (range g)) :
     f (⨆ i, g i) = ⨆ i, f (g i) := by
   simp only [iSup, hf.map_cSup (range_nonempty _) hg, ← range_comp]
 #align left_ord_continuous.map_csupr LeftOrdContinuous.map_ciSup
+-/
 
 end ConditionallyCompleteLattice
 
@@ -232,9 +246,11 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] [SemilatticeInf β] {f : α → β}
 
+#print RightOrdContinuous.map_inf /-
 theorem map_inf (hf : RightOrdContinuous f) (x y : α) : f (x ⊓ y) = f x ⊓ f y :=
   hf.OrderDual.map_sup x y
 #align right_ord_continuous.map_inf RightOrdContinuous.map_inf
+-/
 
 #print RightOrdContinuous.le_iff /-
 theorem le_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y :=
@@ -259,11 +275,13 @@ def toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) : α ↪o β
 
 variable {f}
 
+#print RightOrdContinuous.coe_toOrderEmbedding /-
 @[simp]
 theorem coe_toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) :
     ⇑(hf.toOrderEmbedding f h) = f :=
   rfl
 #align right_ord_continuous.coe_to_order_embedding RightOrdContinuous.coe_toOrderEmbedding
+-/
 
 end SemilatticeInf
 
@@ -271,17 +289,23 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
+#print RightOrdContinuous.map_sInf' /-
 theorem map_sInf' (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = sInf (f '' s) :=
   hf.OrderDual.map_sSup' s
 #align right_ord_continuous.map_Inf' RightOrdContinuous.map_sInf'
+-/
 
+#print RightOrdContinuous.map_sInf /-
 theorem map_sInf (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = ⨅ x ∈ s, f x :=
   hf.OrderDual.map_sSup s
 #align right_ord_continuous.map_Inf RightOrdContinuous.map_sInf
+-/
 
+#print RightOrdContinuous.map_iInf /-
 theorem map_iInf (hf : RightOrdContinuous f) (g : ι → α) : f (⨅ i, g i) = ⨅ i, f (g i) :=
   hf.OrderDual.map_iSup g
 #align right_ord_continuous.map_infi RightOrdContinuous.map_iInf
+-/
 
 end CompleteLattice
 
@@ -289,15 +313,19 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
+#print RightOrdContinuous.map_csInf /-
 theorem map_csInf (hf : RightOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddBelow s) :
     f (sInf s) = sInf (f '' s) :=
   hf.OrderDual.map_csSup sne sbdd
 #align right_ord_continuous.map_cInf RightOrdContinuous.map_csInf
+-/
 
+#print RightOrdContinuous.map_ciInf /-
 theorem map_ciInf (hf : RightOrdContinuous f) {g : ι → α} (hg : BddBelow (range g)) :
     f (⨅ i, g i) = ⨅ i, f (g i) :=
   hf.OrderDual.map_ciSup hg
 #align right_ord_continuous.map_cinfi RightOrdContinuous.map_ciInf
+-/
 
 end ConditionallyCompleteLattice
 
@@ -309,15 +337,19 @@ section Preorder
 
 variable [Preorder α] [Preorder β] (e : α ≃o β) {s : Set α} {x : α}
 
+#print OrderIso.leftOrdContinuous /-
 protected theorem leftOrdContinuous : LeftOrdContinuous e := fun s x hx =>
   ⟨Monotone.mem_upperBounds_image (fun x y => e.map_rel_iff.2) hx.1, fun y hy =>
     e.rel_symm_apply.1 <|
       (isLUB_le_iff hx).2 fun x' hx' => e.rel_symm_apply.2 <| hy <| mem_image_of_mem _ hx'⟩
 #align order_iso.left_ord_continuous OrderIso.leftOrdContinuous
+-/
 
+#print OrderIso.rightOrdContinuous /-
 protected theorem rightOrdContinuous : RightOrdContinuous e :=
   OrderIso.leftOrdContinuous e.dual
 #align order_iso.right_ord_continuous OrderIso.rightOrdContinuous
+-/
 
 end Preorder
 
Diff
@@ -113,20 +113,26 @@ theorem map_sup (hf : LeftOrdContinuous f) (x y : α) : f (x ⊔ y) = f x ⊔ f
   (hf isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align left_ord_continuous.map_sup LeftOrdContinuous.map_sup
 
+#print LeftOrdContinuous.le_iff /-
 theorem le_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y := by
   simp only [← sup_eq_right, ← hf.map_sup, h.eq_iff]
 #align left_ord_continuous.le_iff LeftOrdContinuous.le_iff
+-/
 
+#print LeftOrdContinuous.lt_iff /-
 theorem lt_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x < f y ↔ x < y := by
   simp only [lt_iff_le_not_le, hf.le_iff h]
 #align left_ord_continuous.lt_iff LeftOrdContinuous.lt_iff
+-/
 
 variable (f)
 
+#print LeftOrdContinuous.toOrderEmbedding /-
 /-- Convert an injective left order continuous function to an order embedding. -/
 def toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, fun x y => hf.le_iff h⟩
 #align left_ord_continuous.to_order_embedding LeftOrdContinuous.toOrderEmbedding
+-/
 
 variable {f}
 
@@ -230,20 +236,26 @@ theorem map_inf (hf : RightOrdContinuous f) (x y : α) : f (x ⊓ y) = f x ⊓ f
   hf.OrderDual.map_sup x y
 #align right_ord_continuous.map_inf RightOrdContinuous.map_inf
 
+#print RightOrdContinuous.le_iff /-
 theorem le_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y :=
   hf.OrderDual.le_iff h
 #align right_ord_continuous.le_iff RightOrdContinuous.le_iff
+-/
 
+#print RightOrdContinuous.lt_iff /-
 theorem lt_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x < f y ↔ x < y :=
   hf.OrderDual.lt_iff h
 #align right_ord_continuous.lt_iff RightOrdContinuous.lt_iff
+-/
 
 variable (f)
 
+#print RightOrdContinuous.toOrderEmbedding /-
 /-- Convert an injective left order continuous function to a `order_embedding`. -/
 def toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, fun x y => hf.le_iff h⟩
 #align right_ord_continuous.to_order_embedding RightOrdContinuous.toOrderEmbedding
+-/
 
 variable {f}
 
Diff
@@ -109,44 +109,20 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
 
-/- warning: left_ord_continuous.map_sup -> LeftOrdContinuous.map_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_sup LeftOrdContinuous.map_supₓ'. -/
 theorem map_sup (hf : LeftOrdContinuous f) (x y : α) : f (x ⊔ y) = f x ⊔ f y :=
   (hf isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align left_ord_continuous.map_sup LeftOrdContinuous.map_sup
 
-/- warning: left_ord_continuous.le_iff -> LeftOrdContinuous.le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.le_iff LeftOrdContinuous.le_iffₓ'. -/
 theorem le_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y := by
   simp only [← sup_eq_right, ← hf.map_sup, h.eq_iff]
 #align left_ord_continuous.le_iff LeftOrdContinuous.le_iff
 
-/- warning: left_ord_continuous.lt_iff -> LeftOrdContinuous.lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.lt_iff LeftOrdContinuous.lt_iffₓ'. -/
 theorem lt_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x < f y ↔ x < y := by
   simp only [lt_iff_le_not_le, hf.le_iff h]
 #align left_ord_continuous.lt_iff LeftOrdContinuous.lt_iff
 
 variable (f)
 
-/- warning: left_ord_continuous.to_order_embedding -> LeftOrdContinuous.toOrderEmbedding is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.to_order_embedding LeftOrdContinuous.toOrderEmbeddingₓ'. -/
 /-- Convert an injective left order continuous function to an order embedding. -/
 def toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, fun x y => hf.le_iff h⟩
@@ -154,12 +130,6 @@ def toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) : α ↪o β :
 
 variable {f}
 
-/- warning: left_ord_continuous.coe_to_order_embedding -> LeftOrdContinuous.coe_toOrderEmbedding is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.coe_to_order_embedding LeftOrdContinuous.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) :
     ⇑(hf.toOrderEmbedding f h) = f :=
@@ -172,32 +142,14 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
-/- warning: left_ord_continuous.map_Sup' -> LeftOrdContinuous.map_sSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_Sup' LeftOrdContinuous.map_sSup'ₓ'. -/
 theorem map_sSup' (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = sSup (f '' s) :=
   (hf <| isLUB_sSup s).sSup_eq.symm
 #align left_ord_continuous.map_Sup' LeftOrdContinuous.map_sSup'
 
-/- warning: left_ord_continuous.map_Sup -> LeftOrdContinuous.map_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iSup.{u2, 0} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iSup.{u2, 0} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_Sup LeftOrdContinuous.map_sSupₓ'. -/
 theorem map_sSup (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = ⨆ x ∈ s, f x := by
   rw [hf.map_Sup', sSup_image]
 #align left_ord_continuous.map_Sup LeftOrdContinuous.map_sSup
 
-/- warning: left_ord_continuous.map_supr -> LeftOrdContinuous.map_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_supr LeftOrdContinuous.map_iSupₓ'. -/
 theorem map_iSup (hf : LeftOrdContinuous f) (g : ι → α) : f (⨆ i, g i) = ⨆ i, f (g i) := by
   simp only [iSup, hf.map_Sup', ← range_comp]
 #align left_ord_continuous.map_supr LeftOrdContinuous.map_iSup
@@ -208,23 +160,11 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
-/- warning: left_ord_continuous.map_cSup -> LeftOrdContinuous.map_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_cSup LeftOrdContinuous.map_csSupₓ'. -/
 theorem map_csSup (hf : LeftOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddAbove s) :
     f (sSup s) = sSup (f '' s) :=
   ((hf <| isLUB_csSup sne sbdd).csSup_eq <| sne.image f).symm
 #align left_ord_continuous.map_cSup LeftOrdContinuous.map_csSup
 
-/- warning: left_ord_continuous.map_csupr -> LeftOrdContinuous.map_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_csupr LeftOrdContinuous.map_ciSupₓ'. -/
 theorem map_ciSup (hf : LeftOrdContinuous f) {g : ι → α} (hg : BddAbove (range g)) :
     f (⨆ i, g i) = ⨆ i, f (g i) := by
   simp only [iSup, hf.map_cSup (range_nonempty _) hg, ← range_comp]
@@ -286,44 +226,20 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] [SemilatticeInf β] {f : α → β}
 
-/- warning: right_ord_continuous.map_inf -> RightOrdContinuous.map_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_inf RightOrdContinuous.map_infₓ'. -/
 theorem map_inf (hf : RightOrdContinuous f) (x y : α) : f (x ⊓ y) = f x ⊓ f y :=
   hf.OrderDual.map_sup x y
 #align right_ord_continuous.map_inf RightOrdContinuous.map_inf
 
-/- warning: right_ord_continuous.le_iff -> RightOrdContinuous.le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.le_iff RightOrdContinuous.le_iffₓ'. -/
 theorem le_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y :=
   hf.OrderDual.le_iff h
 #align right_ord_continuous.le_iff RightOrdContinuous.le_iff
 
-/- warning: right_ord_continuous.lt_iff -> RightOrdContinuous.lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.lt_iff RightOrdContinuous.lt_iffₓ'. -/
 theorem lt_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x < f y ↔ x < y :=
   hf.OrderDual.lt_iff h
 #align right_ord_continuous.lt_iff RightOrdContinuous.lt_iff
 
 variable (f)
 
-/- warning: right_ord_continuous.to_order_embedding -> RightOrdContinuous.toOrderEmbedding is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.to_order_embedding RightOrdContinuous.toOrderEmbeddingₓ'. -/
 /-- Convert an injective left order continuous function to a `order_embedding`. -/
 def toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, fun x y => hf.le_iff h⟩
@@ -331,12 +247,6 @@ def toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) : α ↪o β
 
 variable {f}
 
-/- warning: right_ord_continuous.coe_to_order_embedding -> RightOrdContinuous.coe_toOrderEmbedding is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.coe_to_order_embedding RightOrdContinuous.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) :
     ⇑(hf.toOrderEmbedding f h) = f :=
@@ -349,32 +259,14 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
-/- warning: right_ord_continuous.map_Inf' -> RightOrdContinuous.map_sInf' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_Inf' RightOrdContinuous.map_sInf'ₓ'. -/
 theorem map_sInf' (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = sInf (f '' s) :=
   hf.OrderDual.map_sSup' s
 #align right_ord_continuous.map_Inf' RightOrdContinuous.map_sInf'
 
-/- warning: right_ord_continuous.map_Inf -> RightOrdContinuous.map_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iInf.{u2, 0} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iInf.{u2, 0} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_Inf RightOrdContinuous.map_sInfₓ'. -/
 theorem map_sInf (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = ⨅ x ∈ s, f x :=
   hf.OrderDual.map_sSup s
 #align right_ord_continuous.map_Inf RightOrdContinuous.map_sInf
 
-/- warning: right_ord_continuous.map_infi -> RightOrdContinuous.map_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_infi RightOrdContinuous.map_iInfₓ'. -/
 theorem map_iInf (hf : RightOrdContinuous f) (g : ι → α) : f (⨅ i, g i) = ⨅ i, f (g i) :=
   hf.OrderDual.map_iSup g
 #align right_ord_continuous.map_infi RightOrdContinuous.map_iInf
@@ -385,23 +277,11 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
-/- warning: right_ord_continuous.map_cInf -> RightOrdContinuous.map_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_cInf RightOrdContinuous.map_csInfₓ'. -/
 theorem map_csInf (hf : RightOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddBelow s) :
     f (sInf s) = sInf (f '' s) :=
   hf.OrderDual.map_csSup sne sbdd
 #align right_ord_continuous.map_cInf RightOrdContinuous.map_csInf
 
-/- warning: right_ord_continuous.map_cinfi -> RightOrdContinuous.map_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_cinfi RightOrdContinuous.map_ciInfₓ'. -/
 theorem map_ciInf (hf : RightOrdContinuous f) {g : ι → α} (hg : BddBelow (range g)) :
     f (⨅ i, g i) = ⨅ i, f (g i) :=
   hf.OrderDual.map_ciSup hg
@@ -417,24 +297,12 @@ section Preorder
 
 variable [Preorder α] [Preorder β] (e : α ≃o β) {s : Set α} {x : α}
 
-/- warning: order_iso.left_ord_continuous -> OrderIso.leftOrdContinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.left_ord_continuous OrderIso.leftOrdContinuousₓ'. -/
 protected theorem leftOrdContinuous : LeftOrdContinuous e := fun s x hx =>
   ⟨Monotone.mem_upperBounds_image (fun x y => e.map_rel_iff.2) hx.1, fun y hy =>
     e.rel_symm_apply.1 <|
       (isLUB_le_iff hx).2 fun x' hx' => e.rel_symm_apply.2 <| hy <| mem_image_of_mem _ hx'⟩
 #align order_iso.left_ord_continuous OrderIso.leftOrdContinuous
 
-/- warning: order_iso.right_ord_continuous -> OrderIso.rightOrdContinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
-Case conversion may be inaccurate. Consider using '#align order_iso.right_ord_continuous OrderIso.rightOrdContinuousₓ'. -/
 protected theorem rightOrdContinuous : RightOrdContinuous e :=
   OrderIso.leftOrdContinuous e.dual
 #align order_iso.right_ord_continuous OrderIso.rightOrdContinuous
Diff
@@ -158,7 +158,7 @@ variable {f}
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 Case conversion may be inaccurate. Consider using '#align left_ord_continuous.coe_to_order_embedding LeftOrdContinuous.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) :
@@ -335,7 +335,7 @@ variable {f}
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 Case conversion may be inaccurate. Consider using '#align right_ord_continuous.coe_to_order_embedding RightOrdContinuous.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) :
@@ -421,7 +421,7 @@ variable [Preorder α] [Preorder β] (e : α ≃o β) {s : Set α} {x : α}
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.left_ord_continuous OrderIso.leftOrdContinuousₓ'. -/
 protected theorem leftOrdContinuous : LeftOrdContinuous e := fun s x hx =>
   ⟨Monotone.mem_upperBounds_image (fun x y => e.map_rel_iff.2) hx.1, fun y hy =>
@@ -433,7 +433,7 @@ protected theorem leftOrdContinuous : LeftOrdContinuous e := fun s x hx =>
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.right_ord_continuous OrderIso.rightOrdContinuousₓ'. -/
 protected theorem rightOrdContinuous : RightOrdContinuous e :=
   OrderIso.leftOrdContinuous e.dual
Diff
@@ -119,32 +119,44 @@ theorem map_sup (hf : LeftOrdContinuous f) (x y : α) : f (x ⊔ y) = f x ⊔ f
   (hf isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align left_ord_continuous.map_sup LeftOrdContinuous.map_sup
 
-#print LeftOrdContinuous.le_iff /-
+/- warning: left_ord_continuous.le_iff -> LeftOrdContinuous.le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.le_iff LeftOrdContinuous.le_iffₓ'. -/
 theorem le_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y := by
   simp only [← sup_eq_right, ← hf.map_sup, h.eq_iff]
 #align left_ord_continuous.le_iff LeftOrdContinuous.le_iff
--/
 
-#print LeftOrdContinuous.lt_iff /-
+/- warning: left_ord_continuous.lt_iff -> LeftOrdContinuous.lt_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.lt_iff LeftOrdContinuous.lt_iffₓ'. -/
 theorem lt_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x < f y ↔ x < y := by
   simp only [lt_iff_le_not_le, hf.le_iff h]
 #align left_ord_continuous.lt_iff LeftOrdContinuous.lt_iff
--/
 
 variable (f)
 
-#print LeftOrdContinuous.toOrderEmbedding /-
+/- warning: left_ord_continuous.to_order_embedding -> LeftOrdContinuous.toOrderEmbedding is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] (f : α -> β), (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.to_order_embedding LeftOrdContinuous.toOrderEmbeddingₓ'. -/
 /-- Convert an injective left order continuous function to an order embedding. -/
 def toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, fun x y => hf.le_iff h⟩
 #align left_ord_continuous.to_order_embedding LeftOrdContinuous.toOrderEmbedding
--/
 
 variable {f}
 
 /- warning: left_ord_continuous.coe_to_order_embedding -> LeftOrdContinuous.coe_toOrderEmbedding is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 Case conversion may be inaccurate. Consider using '#align left_ord_continuous.coe_to_order_embedding LeftOrdContinuous.coe_toOrderEmbeddingₓ'. -/
@@ -284,32 +296,44 @@ theorem map_inf (hf : RightOrdContinuous f) (x y : α) : f (x ⊓ y) = f x ⊓ f
   hf.OrderDual.map_sup x y
 #align right_ord_continuous.map_inf RightOrdContinuous.map_inf
 
-#print RightOrdContinuous.le_iff /-
+/- warning: right_ord_continuous.le_iff -> RightOrdContinuous.le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.le_iff RightOrdContinuous.le_iffₓ'. -/
 theorem le_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y :=
   hf.OrderDual.le_iff h
 #align right_ord_continuous.le_iff RightOrdContinuous.le_iff
--/
 
-#print RightOrdContinuous.lt_iff /-
+/- warning: right_ord_continuous.lt_iff -> RightOrdContinuous.lt_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (forall {x : α} {y : α}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) (f x) (f y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x y))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.lt_iff RightOrdContinuous.lt_iffₓ'. -/
 theorem lt_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x < f y ↔ x < y :=
   hf.OrderDual.lt_iff h
 #align right_ord_continuous.lt_iff RightOrdContinuous.lt_iff
--/
 
 variable (f)
 
-#print RightOrdContinuous.toOrderEmbedding /-
+/- warning: right_ord_continuous.to_order_embedding -> RightOrdContinuous.toOrderEmbedding is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] (f : α -> β), (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (Function.Injective.{succ u1, succ u2} α β f) -> (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.to_order_embedding RightOrdContinuous.toOrderEmbeddingₓ'. -/
 /-- Convert an injective left order continuous function to a `order_embedding`. -/
 def toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, fun x y => hf.le_iff h⟩
 #align right_ord_continuous.to_order_embedding RightOrdContinuous.toOrderEmbedding
--/
 
 variable {f}
 
 /- warning: right_ord_continuous.coe_to_order_embedding -> RightOrdContinuous.coe_toOrderEmbedding is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 Case conversion may be inaccurate. Consider using '#align right_ord_continuous.coe_to_order_embedding RightOrdContinuous.coe_toOrderEmbeddingₓ'. -/
@@ -395,7 +419,7 @@ variable [Preorder α] [Preorder β] (e : α ≃o β) {s : Set α} {x : α}
 
 /- warning: order_iso.left_ord_continuous -> OrderIso.leftOrdContinuous is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.left_ord_continuous OrderIso.leftOrdContinuousₓ'. -/
@@ -407,7 +431,7 @@ protected theorem leftOrdContinuous : LeftOrdContinuous e := fun s x hx =>
 
 /- warning: order_iso.right_ord_continuous -> OrderIso.rightOrdContinuous is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.right_ord_continuous OrderIso.rightOrdContinuousₓ'. -/
Diff
@@ -160,35 +160,35 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
-/- warning: left_ord_continuous.map_Sup' -> LeftOrdContinuous.map_supₛ' is a dubious translation:
+/- warning: left_ord_continuous.map_Sup' -> LeftOrdContinuous.map_sSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_Sup' LeftOrdContinuous.map_supₛ'ₓ'. -/
-theorem map_supₛ' (hf : LeftOrdContinuous f) (s : Set α) : f (supₛ s) = supₛ (f '' s) :=
-  (hf <| isLUB_supₛ s).supₛ_eq.symm
-#align left_ord_continuous.map_Sup' LeftOrdContinuous.map_supₛ'
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_Sup' LeftOrdContinuous.map_sSup'ₓ'. -/
+theorem map_sSup' (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = sSup (f '' s) :=
+  (hf <| isLUB_sSup s).sSup_eq.symm
+#align left_ord_continuous.map_Sup' LeftOrdContinuous.map_sSup'
 
-/- warning: left_ord_continuous.map_Sup -> LeftOrdContinuous.map_supₛ is a dubious translation:
+/- warning: left_ord_continuous.map_Sup -> LeftOrdContinuous.map_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => supᵢ.{u2, 0} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iSup.{u2, 0} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => supᵢ.{u2, 0} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_Sup LeftOrdContinuous.map_supₛₓ'. -/
-theorem map_supₛ (hf : LeftOrdContinuous f) (s : Set α) : f (supₛ s) = ⨆ x ∈ s, f x := by
-  rw [hf.map_Sup', supₛ_image]
-#align left_ord_continuous.map_Sup LeftOrdContinuous.map_supₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iSup.{u2, 0} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => f x))))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_Sup LeftOrdContinuous.map_sSupₓ'. -/
+theorem map_sSup (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = ⨆ x ∈ s, f x := by
+  rw [hf.map_Sup', sSup_image]
+#align left_ord_continuous.map_Sup LeftOrdContinuous.map_sSup
 
-/- warning: left_ord_continuous.map_supr -> LeftOrdContinuous.map_supᵢ is a dubious translation:
+/- warning: left_ord_continuous.map_supr -> LeftOrdContinuous.map_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (supᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (supᵢ.{u2, u3} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_supr LeftOrdContinuous.map_supᵢₓ'. -/
-theorem map_supᵢ (hf : LeftOrdContinuous f) (g : ι → α) : f (⨆ i, g i) = ⨆ i, f (g i) := by
-  simp only [supᵢ, hf.map_Sup', ← range_comp]
-#align left_ord_continuous.map_supr LeftOrdContinuous.map_supᵢ
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toSupSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_supr LeftOrdContinuous.map_iSupₓ'. -/
+theorem map_iSup (hf : LeftOrdContinuous f) (g : ι → α) : f (⨆ i, g i) = ⨆ i, f (g i) := by
+  simp only [iSup, hf.map_Sup', ← range_comp]
+#align left_ord_continuous.map_supr LeftOrdContinuous.map_iSup
 
 end CompleteLattice
 
@@ -196,27 +196,27 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
-/- warning: left_ord_continuous.map_cSup -> LeftOrdContinuous.map_csupₛ is a dubious translation:
+/- warning: left_ord_continuous.map_cSup -> LeftOrdContinuous.map_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_cSup LeftOrdContinuous.map_csupₛₓ'. -/
-theorem map_csupₛ (hf : LeftOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddAbove s) :
-    f (supₛ s) = supₛ (f '' s) :=
-  ((hf <| isLUB_csupₛ sne sbdd).csupₛ_eq <| sne.image f).symm
-#align left_ord_continuous.map_cSup LeftOrdContinuous.map_csupₛ
-
-/- warning: left_ord_continuous.map_csupr -> LeftOrdContinuous.map_csupᵢ is a dubious translation:
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_cSup LeftOrdContinuous.map_csSupₓ'. -/
+theorem map_csSup (hf : LeftOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddAbove s) :
+    f (sSup s) = sSup (f '' s) :=
+  ((hf <| isLUB_csSup sne sbdd).csSup_eq <| sne.image f).symm
+#align left_ord_continuous.map_cSup LeftOrdContinuous.map_csSup
+
+/- warning: left_ord_continuous.map_csupr -> LeftOrdContinuous.map_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => g i))) (supᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => g i))) (supᵢ.{u2, u3} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
-Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_csupr LeftOrdContinuous.map_csupᵢₓ'. -/
-theorem map_csupᵢ (hf : LeftOrdContinuous f) {g : ι → α} (hg : BddAbove (range g)) :
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iSup.{u1, u3} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_csupr LeftOrdContinuous.map_ciSupₓ'. -/
+theorem map_ciSup (hf : LeftOrdContinuous f) {g : ι → α} (hg : BddAbove (range g)) :
     f (⨆ i, g i) = ⨆ i, f (g i) := by
-  simp only [supᵢ, hf.map_cSup (range_nonempty _) hg, ← range_comp]
-#align left_ord_continuous.map_csupr LeftOrdContinuous.map_csupᵢ
+  simp only [iSup, hf.map_cSup (range_nonempty _) hg, ← range_comp]
+#align left_ord_continuous.map_csupr LeftOrdContinuous.map_ciSup
 
 end ConditionallyCompleteLattice
 
@@ -325,35 +325,35 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
-/- warning: right_ord_continuous.map_Inf' -> RightOrdContinuous.map_infₛ' is a dubious translation:
+/- warning: right_ord_continuous.map_Inf' -> RightOrdContinuous.map_sInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_Inf' RightOrdContinuous.map_infₛ'ₓ'. -/
-theorem map_infₛ' (hf : RightOrdContinuous f) (s : Set α) : f (infₛ s) = infₛ (f '' s) :=
-  hf.OrderDual.map_supₛ' s
-#align right_ord_continuous.map_Inf' RightOrdContinuous.map_infₛ'
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Set.image.{u1, u2} α β f s)))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_Inf' RightOrdContinuous.map_sInf'ₓ'. -/
+theorem map_sInf' (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = sInf (f '' s) :=
+  hf.OrderDual.map_sSup' s
+#align right_ord_continuous.map_Inf' RightOrdContinuous.map_sInf'
 
-/- warning: right_ord_continuous.map_Inf -> RightOrdContinuous.map_infₛ is a dubious translation:
+/- warning: right_ord_continuous.map_Inf -> RightOrdContinuous.map_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => infᵢ.{u2, 0} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iInf.{u2, 0} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => infᵢ.{u2, 0} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_Inf RightOrdContinuous.map_infₛₓ'. -/
-theorem map_infₛ (hf : RightOrdContinuous f) (s : Set α) : f (infₛ s) = ⨅ x ∈ s, f x :=
-  hf.OrderDual.map_supₛ s
-#align right_ord_continuous.map_Inf RightOrdContinuous.map_infₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) α (fun (x : α) => iInf.{u2, 0} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => f x))))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_Inf RightOrdContinuous.map_sInfₓ'. -/
+theorem map_sInf (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = ⨅ x ∈ s, f x :=
+  hf.OrderDual.map_sSup s
+#align right_ord_continuous.map_Inf RightOrdContinuous.map_sInf
 
-/- warning: right_ord_continuous.map_infi -> RightOrdContinuous.map_infᵢ is a dubious translation:
+/- warning: right_ord_continuous.map_infi -> RightOrdContinuous.map_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (infᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (infᵢ.{u2, u3} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_infi RightOrdContinuous.map_infᵢₓ'. -/
-theorem map_infᵢ (hf : RightOrdContinuous f) (g : ι → α) : f (⨅ i, g i) = ⨅ i, f (g i) :=
-  hf.OrderDual.map_supᵢ g
-#align right_ord_continuous.map_infi RightOrdContinuous.map_infᵢ
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (g : ι -> α), Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toInfSet.{u2} β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2)) ι (fun (i : ι) => f (g i))))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_infi RightOrdContinuous.map_iInfₓ'. -/
+theorem map_iInf (hf : RightOrdContinuous f) (g : ι → α) : f (⨅ i, g i) = ⨅ i, f (g i) :=
+  hf.OrderDual.map_iSup g
+#align right_ord_continuous.map_infi RightOrdContinuous.map_iInf
 
 end CompleteLattice
 
@@ -361,27 +361,27 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
-/- warning: right_ord_continuous.map_cInf -> RightOrdContinuous.map_cinfₛ is a dubious translation:
+/- warning: right_ord_continuous.map_cInf -> RightOrdContinuous.map_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_cInf RightOrdContinuous.map_cinfₛₓ'. -/
-theorem map_cinfₛ (hf : RightOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddBelow s) :
-    f (infₛ s) = infₛ (f '' s) :=
-  hf.OrderDual.map_csupₛ sne sbdd
-#align right_ord_continuous.map_cInf RightOrdContinuous.map_cinfₛ
-
-/- warning: right_ord_continuous.map_cinfi -> RightOrdContinuous.map_cinfᵢ is a dubious translation:
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_cInf RightOrdContinuous.map_csInfₓ'. -/
+theorem map_csInf (hf : RightOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddBelow s) :
+    f (sInf s) = sInf (f '' s) :=
+  hf.OrderDual.map_csSup sne sbdd
+#align right_ord_continuous.map_cInf RightOrdContinuous.map_csInf
+
+/- warning: right_ord_continuous.map_cinfi -> RightOrdContinuous.map_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => g i))) (infᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => g i))) (infᵢ.{u2, u3} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
-Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_cinfi RightOrdContinuous.map_cinfᵢₓ'. -/
-theorem map_cinfᵢ (hf : RightOrdContinuous f) {g : ι → α} (hg : BddBelow (range g)) :
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι g)) -> (Eq.{succ u2} β (f (iInf.{u1, u3} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => g i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f (g i)))))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_cinfi RightOrdContinuous.map_ciInfₓ'. -/
+theorem map_ciInf (hf : RightOrdContinuous f) {g : ι → α} (hg : BddBelow (range g)) :
     f (⨅ i, g i) = ⨅ i, f (g i) :=
-  hf.OrderDual.map_csupᵢ hg
-#align right_ord_continuous.map_cinfi RightOrdContinuous.map_cinfᵢ
+  hf.OrderDual.map_ciSup hg
+#align right_ord_continuous.map_cinfi RightOrdContinuous.map_ciInf
 
 end ConditionallyCompleteLattice
 
Diff
@@ -146,7 +146,7 @@ variable {f}
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h))) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β} (hf : LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (LeftOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 Case conversion may be inaccurate. Consider using '#align left_ord_continuous.coe_to_order_embedding LeftOrdContinuous.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (hf : LeftOrdContinuous f) (h : Injective f) :
@@ -311,7 +311,7 @@ variable {f}
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (α -> β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h))) f
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β} (hf : RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) (h : Function.Injective.{succ u1, succ u2} α β f), Eq.{max (succ u1) (succ u2)} (forall (ᾰ : α), (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) ᾰ) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)))) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (RightOrdContinuous.toOrderEmbedding.{u1, u2} α β _inst_1 _inst_2 f hf h)) f
 Case conversion may be inaccurate. Consider using '#align right_ord_continuous.coe_to_order_embedding RightOrdContinuous.coe_toOrderEmbeddingₓ'. -/
 @[simp]
 theorem coe_toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) :
@@ -397,7 +397,7 @@ variable [Preorder α] [Preorder β] (e : α ≃o β) {s : Set α} {x : α}
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), LeftOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.left_ord_continuous OrderIso.leftOrdContinuousₓ'. -/
 protected theorem leftOrdContinuous : LeftOrdContinuous e := fun s x hx =>
   ⟨Monotone.mem_upperBounds_image (fun x y => e.map_rel_iff.2) hx.1, fun y hy =>
@@ -409,7 +409,7 @@ protected theorem leftOrdContinuous : LeftOrdContinuous e := fun s x hx =>
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), RightOrdContinuous.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e)
 Case conversion may be inaccurate. Consider using '#align order_iso.right_ord_continuous OrderIso.rightOrdContinuousₓ'. -/
 protected theorem rightOrdContinuous : RightOrdContinuous e :=
   OrderIso.leftOrdContinuous e.dual
Diff
@@ -109,11 +109,15 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] [SemilatticeSup β] {f : α → β}
 
-#print LeftOrdContinuous.map_sup /-
+/- warning: left_ord_continuous.map_sup -> LeftOrdContinuous.map_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : α -> β}, (LeftOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) x y)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align left_ord_continuous.map_sup LeftOrdContinuous.map_supₓ'. -/
 theorem map_sup (hf : LeftOrdContinuous f) (x y : α) : f (x ⊔ y) = f x ⊔ f y :=
   (hf isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align left_ord_continuous.map_sup LeftOrdContinuous.map_sup
--/
 
 #print LeftOrdContinuous.le_iff /-
 theorem le_iff (hf : LeftOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y := by
@@ -270,11 +274,15 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] [SemilatticeInf β] {f : α → β}
 
-#print RightOrdContinuous.map_inf /-
+/- warning: right_ord_continuous.map_inf -> RightOrdContinuous.map_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (f x) (f y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {f : α -> β}, (RightOrdContinuous.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) f) -> (forall (x : α) (y : α), Eq.{succ u2} β (f (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) x y)) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (f x) (f y)))
+Case conversion may be inaccurate. Consider using '#align right_ord_continuous.map_inf RightOrdContinuous.map_infₓ'. -/
 theorem map_inf (hf : RightOrdContinuous f) (x y : α) : f (x ⊓ y) = f x ⊓ f y :=
   hf.OrderDual.map_sup x y
 #align right_ord_continuous.map_inf RightOrdContinuous.map_inf
--/
 
 #print RightOrdContinuous.le_iff /-
 theorem le_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x ≤ f y ↔ x ≤ y :=

Changes in mathlib4

mathlib3
mathlib4
chore: replace PORTING NOTE by Porting note (#11908)
Diff
@@ -77,7 +77,7 @@ theorem comp (hg : LeftOrdContinuous g) (hf : LeftOrdContinuous f) : LeftOrdCont
   fun s x h => by simpa only [image_image] using hg (hf h)
 #align left_ord_continuous.comp LeftOrdContinuous.comp
 
--- PORTING NOTE: how to do this in non-tactic mode?
+-- Porting note: how to do this in non-tactic mode?
 protected theorem iterate {f : α → α} (hf : LeftOrdContinuous f) (n : ℕ) :
     LeftOrdContinuous f^[n] := by
   induction n with
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -58,7 +58,7 @@ protected theorem id : LeftOrdContinuous (id : α → α) := fun s x h => by
 
 variable {α}
 
--- porting note: not sure what is the correct name for this
+-- Porting note: not sure what is the correct name for this
 protected theorem order_dual : LeftOrdContinuous f → RightOrdContinuous (toDual ∘ f ∘ ofDual) :=
   id
 #align left_ord_continuous.order_dual LeftOrdContinuous.order_dual
style: cleanup by putting by on the same line as := (#8407)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -79,10 +79,10 @@ theorem comp (hg : LeftOrdContinuous g) (hf : LeftOrdContinuous f) : LeftOrdCont
 
 -- PORTING NOTE: how to do this in non-tactic mode?
 protected theorem iterate {f : α → α} (hf : LeftOrdContinuous f) (n : ℕ) :
-    LeftOrdContinuous f^[n] :=
-by induction n with
-| zero => exact LeftOrdContinuous.id α
-| succ n ihn => exact ihn.comp hf
+    LeftOrdContinuous f^[n] := by
+  induction n with
+  | zero => exact LeftOrdContinuous.id α
+  | succ n ihn => exact ihn.comp hf
 #align left_ord_continuous.iterate LeftOrdContinuous.iterate
 
 end Preorder
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov, Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.ord_continuous
-! leanprover-community/mathlib commit 207cfac9fcd06138865b5d04f7091e46d9320432
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.ConditionallyCompleteLattice.Basic
 import Mathlib.Order.RelIso.Basic
 
+#align_import order.ord_continuous from "leanprover-community/mathlib"@"207cfac9fcd06138865b5d04f7091e46d9320432"
+
 /-!
 # Order continuity
 
fix precedence of Nat.iterate (#5589)
Diff
@@ -82,7 +82,7 @@ theorem comp (hg : LeftOrdContinuous g) (hf : LeftOrdContinuous f) : LeftOrdCont
 
 -- PORTING NOTE: how to do this in non-tactic mode?
 protected theorem iterate {f : α → α} (hf : LeftOrdContinuous f) (n : ℕ) :
-    LeftOrdContinuous (f^[n]) :=
+    LeftOrdContinuous f^[n] :=
 by induction n with
 | zero => exact LeftOrdContinuous.id α
 | succ n ihn => exact ihn.comp hf
@@ -191,7 +191,7 @@ theorem comp (hg : RightOrdContinuous g) (hf : RightOrdContinuous f) : RightOrdC
 #align right_ord_continuous.comp RightOrdContinuous.comp
 
 protected theorem iterate {f : α → α} (hf : RightOrdContinuous f) (n : ℕ) :
-    RightOrdContinuous (f^[n]) :=
+    RightOrdContinuous f^[n] :=
   hf.orderDual.iterate n
 #align right_ord_continuous.iterate RightOrdContinuous.iterate
 
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -215,7 +215,7 @@ theorem lt_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x < f y 
 
 variable (f)
 
-/-- Convert an injective left order continuous function to a `OrderEmbedding`. -/
+/-- Convert an injective left order continuous function to an `OrderEmbedding`. -/
 def toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, hf.le_iff h⟩
 #align right_ord_continuous.to_order_embedding RightOrdContinuous.toOrderEmbedding
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -36,14 +36,14 @@ open Function OrderDual Set
 
 
 /-- A function `f` between preorders is left order continuous if it preserves all suprema.  We
-define it using `is_lub` instead of `Sup` so that the proof works both for complete lattices and
+define it using `IsLUB` instead of `sSup` so that the proof works both for complete lattices and
 conditionally complete lattices. -/
 def LeftOrdContinuous [Preorder α] [Preorder β] (f : α → β) :=
   ∀ ⦃s : Set α⦄ ⦃x⦄, IsLUB s x → IsLUB (f '' s) (f x)
 #align left_ord_continuous LeftOrdContinuous
 
 /-- A function `f` between preorders is right order continuous if it preserves all infima.  We
-define it using `is_glb` instead of `Inf` so that the proof works both for complete lattices and
+define it using `IsGLB` instead of `sInf` so that the proof works both for complete lattices and
 conditionally complete lattices. -/
 def RightOrdContinuous [Preorder α] [Preorder β] (f : α → β) :=
   ∀ ⦃s : Set α⦄ ⦃x⦄, IsGLB s x → IsGLB (f '' s) (f x)
@@ -215,7 +215,7 @@ theorem lt_iff (hf : RightOrdContinuous f) (h : Injective f) {x y} : f x < f y 
 
 variable (f)
 
-/-- Convert an injective left order continuous function to a `order_embedding`. -/
+/-- Convert an injective left order continuous function to a `OrderEmbedding`. -/
 def toOrderEmbedding (hf : RightOrdContinuous f) (h : Injective f) : α ↪o β :=
   ⟨⟨f, h⟩, hf.le_iff h⟩
 #align right_ord_continuous.to_order_embedding RightOrdContinuous.toOrderEmbedding
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -19,7 +19,7 @@ to least upper bounds. The order dual notion is called *right order continuity*.
 
 For monotone functions `ℝ → ℝ` these notions correspond to the usual left and right continuity.
 
-We prove some basic lemmas (`map_sup`, `map_supₛ` etc) and prove that a `RelIso` is both left
+We prove some basic lemmas (`map_sup`, `map_sSup` etc) and prove that a `RelIso` is both left
 and right order continuous.
 -/
 
@@ -127,18 +127,18 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
-theorem map_supₛ' (hf : LeftOrdContinuous f) (s : Set α) : f (supₛ s) = supₛ (f '' s) :=
-  (hf <| isLUB_supₛ s).supₛ_eq.symm
-#align left_ord_continuous.map_Sup' LeftOrdContinuous.map_supₛ'
+theorem map_sSup' (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = sSup (f '' s) :=
+  (hf <| isLUB_sSup s).sSup_eq.symm
+#align left_ord_continuous.map_Sup' LeftOrdContinuous.map_sSup'
 
-theorem map_supₛ (hf : LeftOrdContinuous f) (s : Set α) : f (supₛ s) = ⨆ x ∈ s, f x := by
-  rw [hf.map_supₛ', supₛ_image]
-#align left_ord_continuous.map_Sup LeftOrdContinuous.map_supₛ
+theorem map_sSup (hf : LeftOrdContinuous f) (s : Set α) : f (sSup s) = ⨆ x ∈ s, f x := by
+  rw [hf.map_sSup', sSup_image]
+#align left_ord_continuous.map_Sup LeftOrdContinuous.map_sSup
 
-theorem map_supᵢ (hf : LeftOrdContinuous f) (g : ι → α) : f (⨆ i, g i) = ⨆ i, f (g i) := by
-  simp only [supᵢ, hf.map_supₛ', ← range_comp]
+theorem map_iSup (hf : LeftOrdContinuous f) (g : ι → α) : f (⨆ i, g i) = ⨆ i, f (g i) := by
+  simp only [iSup, hf.map_sSup', ← range_comp]
   rfl
-#align left_ord_continuous.map_supr LeftOrdContinuous.map_supᵢ
+#align left_ord_continuous.map_supr LeftOrdContinuous.map_iSup
 
 end CompleteLattice
 
@@ -146,16 +146,16 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
-theorem map_csupₛ (hf : LeftOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddAbove s) :
-    f (supₛ s) = supₛ (f '' s) :=
-  ((hf <| isLUB_csupₛ sne sbdd).csupₛ_eq <| sne.image f).symm
-#align left_ord_continuous.map_cSup LeftOrdContinuous.map_csupₛ
+theorem map_csSup (hf : LeftOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddAbove s) :
+    f (sSup s) = sSup (f '' s) :=
+  ((hf <| isLUB_csSup sne sbdd).csSup_eq <| sne.image f).symm
+#align left_ord_continuous.map_cSup LeftOrdContinuous.map_csSup
 
-theorem map_csupᵢ (hf : LeftOrdContinuous f) {g : ι → α} (hg : BddAbove (range g)) :
+theorem map_ciSup (hf : LeftOrdContinuous f) {g : ι → α} (hg : BddAbove (range g)) :
     f (⨆ i, g i) = ⨆ i, f (g i) := by
-  simp only [supᵢ, hf.map_csupₛ (range_nonempty _) hg, ← range_comp]
+  simp only [iSup, hf.map_csSup (range_nonempty _) hg, ← range_comp]
   rfl
-#align left_ord_continuous.map_csupr LeftOrdContinuous.map_csupᵢ
+#align left_ord_continuous.map_csupr LeftOrdContinuous.map_ciSup
 
 end ConditionallyCompleteLattice
 
@@ -234,17 +234,17 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {f : α → β}
 
-theorem map_infₛ' (hf : RightOrdContinuous f) (s : Set α) : f (infₛ s) = infₛ (f '' s) :=
-  hf.orderDual.map_supₛ' s
-#align right_ord_continuous.map_Inf' RightOrdContinuous.map_infₛ'
+theorem map_sInf' (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = sInf (f '' s) :=
+  hf.orderDual.map_sSup' s
+#align right_ord_continuous.map_Inf' RightOrdContinuous.map_sInf'
 
-theorem map_infₛ (hf : RightOrdContinuous f) (s : Set α) : f (infₛ s) = ⨅ x ∈ s, f x :=
-  hf.orderDual.map_supₛ s
-#align right_ord_continuous.map_Inf RightOrdContinuous.map_infₛ
+theorem map_sInf (hf : RightOrdContinuous f) (s : Set α) : f (sInf s) = ⨅ x ∈ s, f x :=
+  hf.orderDual.map_sSup s
+#align right_ord_continuous.map_Inf RightOrdContinuous.map_sInf
 
-theorem map_infᵢ (hf : RightOrdContinuous f) (g : ι → α) : f (⨅ i, g i) = ⨅ i, f (g i) :=
-  hf.orderDual.map_supᵢ g
-#align right_ord_continuous.map_infi RightOrdContinuous.map_infᵢ
+theorem map_iInf (hf : RightOrdContinuous f) (g : ι → α) : f (⨅ i, g i) = ⨅ i, f (g i) :=
+  hf.orderDual.map_iSup g
+#align right_ord_continuous.map_infi RightOrdContinuous.map_iInf
 
 end CompleteLattice
 
@@ -252,15 +252,15 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {f : α → β}
 
-theorem map_cinfₛ (hf : RightOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddBelow s) :
-    f (infₛ s) = infₛ (f '' s) :=
-  hf.orderDual.map_csupₛ sne sbdd
-#align right_ord_continuous.map_cInf RightOrdContinuous.map_cinfₛ
+theorem map_csInf (hf : RightOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddBelow s) :
+    f (sInf s) = sInf (f '' s) :=
+  hf.orderDual.map_csSup sne sbdd
+#align right_ord_continuous.map_cInf RightOrdContinuous.map_csInf
 
-theorem map_cinfᵢ (hf : RightOrdContinuous f) {g : ι → α} (hg : BddBelow (range g)) :
+theorem map_ciInf (hf : RightOrdContinuous f) {g : ι → α} (hg : BddBelow (range g)) :
     f (⨅ i, g i) = ⨅ i, f (g i) :=
-  hf.orderDual.map_csupᵢ hg
-#align right_ord_continuous.map_cinfi RightOrdContinuous.map_cinfᵢ
+  hf.orderDual.map_ciSup hg
+#align right_ord_continuous.map_cinfi RightOrdContinuous.map_ciInf
 
 end ConditionallyCompleteLattice
 
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -86,7 +86,6 @@ protected theorem iterate {f : α → α} (hf : LeftOrdContinuous f) (n : ℕ) :
 by induction n with
 | zero => exact LeftOrdContinuous.id α
 | succ n ihn => exact ihn.comp hf
-
 #align left_ord_continuous.iterate LeftOrdContinuous.iterate
 
 end Preorder
chore: tidy various files (#1311)
Diff
@@ -19,7 +19,7 @@ to least upper bounds. The order dual notion is called *right order continuity*.
 
 For monotone functions `ℝ → ℝ` these notions correspond to the usual left and right continuity.
 
-We prove some basic lemmas (`map_sup`, `map_Sup` etc) and prove that an `rel_iso` is both left
+We prove some basic lemmas (`map_sup`, `map_supₛ` etc) and prove that a `RelIso` is both left
 and right order continuous.
 -/
 
@@ -66,14 +66,14 @@ protected theorem order_dual : LeftOrdContinuous f → RightOrdContinuous (toDua
   id
 #align left_ord_continuous.order_dual LeftOrdContinuous.order_dual
 
-theorem map_is_greatest (hf : LeftOrdContinuous f) {s : Set α} {x : α} (h : IsGreatest s x) :
+theorem map_isGreatest (hf : LeftOrdContinuous f) {s : Set α} {x : α} (h : IsGreatest s x) :
     IsGreatest (f '' s) (f x) :=
   ⟨mem_image_of_mem f h.1, (hf h.isLUB).1⟩
-#align left_ord_continuous.map_is_greatest LeftOrdContinuous.map_is_greatest
+#align left_ord_continuous.map_is_greatest LeftOrdContinuous.map_isGreatest
 
 theorem mono (hf : LeftOrdContinuous f) : Monotone f := fun a₁ a₂ h =>
   have : IsGreatest {a₁, a₂} a₂ := ⟨Or.inr rfl, by simp [*]⟩
-  (hf.map_is_greatest this).2 <| mem_image_of_mem _ (Or.inl rfl)
+  (hf.map_isGreatest this).2 <| mem_image_of_mem _ (Or.inl rfl)
 #align left_ord_continuous.mono LeftOrdContinuous.mono
 
 theorem comp (hg : LeftOrdContinuous g) (hf : LeftOrdContinuous f) : LeftOrdContinuous (g ∘ f) :=
@@ -178,10 +178,10 @@ protected theorem orderDual : RightOrdContinuous f → LeftOrdContinuous (toDual
   id
 #align right_ord_continuous.order_dual RightOrdContinuous.orderDual
 
-theorem map_is_least (hf : RightOrdContinuous f) {s : Set α} {x : α} (h : IsLeast s x) :
+theorem map_isLeast (hf : RightOrdContinuous f) {s : Set α} {x : α} (h : IsLeast s x) :
     IsLeast (f '' s) (f x) :=
-  hf.orderDual.map_is_greatest h
-#align right_ord_continuous.map_is_least RightOrdContinuous.map_is_least
+  hf.orderDual.map_isGreatest h
+#align right_ord_continuous.map_is_least RightOrdContinuous.map_isLeast
 
 theorem mono (hf : RightOrdContinuous f) : Monotone f :=
   hf.orderDual.mono.dual
chore: tidy various files (#1247)

Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Diff
@@ -149,7 +149,7 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [No
 
 theorem map_csupₛ (hf : LeftOrdContinuous f) {s : Set α} (sne : s.Nonempty) (sbdd : BddAbove s) :
     f (supₛ s) = supₛ (f '' s) :=
-  ((hf <| is_lub_csupₛ sne sbdd).csupₛ_eq <| sne.image f).symm
+  ((hf <| isLUB_csupₛ sne sbdd).csupₛ_eq <| sne.image f).symm
 #align left_ord_continuous.map_cSup LeftOrdContinuous.map_csupₛ
 
 theorem map_csupᵢ (hf : LeftOrdContinuous f) {g : ι → α} (hg : BddAbove (range g)) :
feat: port Order.OrdContinuous (#1241)

A few of the fixes I did to get stuff compiling didn't seem correct. Otherwise fine.

Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Dependencies 61

62 files ported (100.0%)
35290 lines ported (100.0%)

All dependencies are ported!