order.sup_indepMathlib.Order.SupIndep

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(order/sup_indep): More lemmas (#11932)

A few more lemmas about finset.sup_indep and set.pairwise_disjoint.

Diff
@@ -3,6 +3,7 @@ Copyright (c) 2021 Aaron Anderson, Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
 -/
+import data.finset.sigma
 import data.finset.pairwise
 import data.finset.powerset
 import data.fintype.basic
@@ -77,12 +78,45 @@ end
 lemma sup_indep.pairwise_disjoint (hs : s.sup_indep f) : (s : set ι).pairwise_disjoint f :=
 λ a ha b hb hab, sup_singleton.subst $ hs (singleton_subset_iff.2 hb) ha $ not_mem_singleton.2 hab
 
+lemma sup_indep.le_sup_iff (hs : s.sup_indep f) (hts : t ⊆ s) (hi : i ∈ s) (hf : ∀ i, f i ≠ ⊥) :
+  f i ≤ t.sup f ↔ i ∈ t :=
+begin
+  refine ⟨λ h, _, le_sup⟩,
+  by_contra hit,
+  exact hf i (disjoint_self.1 $ (hs hts hi hit).mono_right h),
+end
+
 /-- The RHS looks like the definition of `complete_lattice.independent`. -/
 lemma sup_indep_iff_disjoint_erase [decidable_eq ι] :
   s.sup_indep f ↔ ∀ i ∈ s, disjoint (f i) ((s.erase i).sup f) :=
 ⟨λ hs i hi, hs (erase_subset _ _) hi (not_mem_erase _ _), λ hs t ht i hi hit,
   (hs i hi).mono_right (sup_mono $ λ j hj, mem_erase.2 ⟨ne_of_mem_of_not_mem hj hit, ht hj⟩)⟩
 
+lemma sup_indep.image [decidable_eq ι] {s : finset ι'} {g : ι' → ι} (hs : s.sup_indep (f ∘ g)) :
+  (s.image g).sup_indep f :=
+begin
+  intros t ht i hi hit,
+  rw mem_image at hi,
+  obtain ⟨i, hi, rfl⟩ := hi,
+  haveI : decidable_eq ι' := classical.dec_eq _,
+  suffices hts : t ⊆ (s.erase i).image g,
+  { refine (sup_indep_iff_disjoint_erase.1 hs i hi).mono_right ((sup_mono hts).trans _),
+    rw sup_image },
+  rintro j hjt,
+  obtain ⟨j, hj, rfl⟩ := mem_image.1 (ht hjt),
+  exact mem_image_of_mem _ (mem_erase.2 ⟨ne_of_apply_ne g (ne_of_mem_of_not_mem hjt hit), hj⟩),
+end
+
+lemma sup_indep_map {s : finset ι'} {g : ι' ↪ ι} : (s.map g).sup_indep f ↔ s.sup_indep (f ∘ g) :=
+begin
+  refine ⟨λ hs t ht i hi hit, _, λ hs, _⟩,
+  { rw ←sup_map,
+    exact hs (map_subset_map.2 ht) ((mem_map' _).2 hi) (by rwa mem_map') },
+  { classical,
+    rw map_eq_image,
+    exact hs.image }
+end
+
 @[simp] lemma sup_indep_pair [decidable_eq ι] {i j : ι} (hij : i ≠ j) :
   ({i, j} : finset ι).sup_indep f ↔ disjoint (f i) (f j) :=
 ⟨λ h, h.pairwise_disjoint (by simp) (by simp) hij, λ h, begin
@@ -117,7 +151,7 @@ begin
   exact sup_indep_pair this,
 end
 
-lemma sup_indep.attach (hs : s.sup_indep f) : s.attach.sup_indep (f ∘ subtype.val) :=
+lemma sup_indep.attach (hs : s.sup_indep f) : s.attach.sup_indep (λ a, f a) :=
 begin
   intros t ht i _ hi,
   classical,
@@ -128,6 +162,18 @@ begin
   rwa subtype.ext hji at hj,
 end
 
+@[simp] lemma sup_indep_attach : s.attach.sup_indep (λ a, f a) ↔ s.sup_indep f :=
+begin
+  refine ⟨λ h t ht i his hit, _, sup_indep.attach⟩,
+  classical,
+  convert h (filter_subset (λ i, (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩)
+    (λ hi, hit $ by simpa using hi) using 1,
+  refine eq_of_forall_ge_iff _,
+  simp only [finset.sup_le_iff, mem_filter, mem_attach, true_and, function.comp_app, subtype.forall,
+    subtype.coe_mk],
+  exact λ a, forall_congr (λ j, ⟨λ h _, h, λ h hj, h (ht hj) hj⟩),
+end
+
 end lattice
 
 section distrib_lattice
@@ -156,6 +202,58 @@ lemma sup_indep.bUnion [decidable_eq ι] {s : finset ι'} {g : ι' → finset ι
   (s.bUnion g).sup_indep f :=
 by { rw ←sup_eq_bUnion, exact hs.sup hg }
 
+/-- Bind operation for `sup_indep`. -/
+lemma sup_indep.sigma {β : ι → Type*} {s : finset ι} {g : Π i, finset (β i)} {f : sigma β → α}
+  (hs : s.sup_indep $ λ i, (g i).sup $ λ b, f ⟨i, b⟩)
+  (hg : ∀ i ∈ s, (g i).sup_indep $ λ b, f ⟨i, b⟩) :
+  (s.sigma g).sup_indep f :=
+begin
+  rintro t ht ⟨i, b⟩ hi hit,
+  rw finset.disjoint_sup_right,
+  rintro ⟨j, c⟩ hj,
+  have hbc := (ne_of_mem_of_not_mem hj hit).symm,
+  replace hj := ht hj,
+  rw mem_sigma at hi hj,
+  obtain rfl | hij := eq_or_ne i j,
+  { exact (hg _ hj.1).pairwise_disjoint hi.2 hj.2 (sigma_mk_injective.ne_iff.1 hbc) },
+  { refine (hs.pairwise_disjoint hi.1 hj.1 hij).mono _ _,
+    { convert le_sup hi.2 },
+    { convert le_sup hj.2 } }
+end
+
+lemma sup_indep.product {s : finset ι} {t : finset ι'} {f : ι × ι' → α}
+  (hs : s.sup_indep $ λ i, t.sup $ λ i', f (i, i'))
+  (ht : t.sup_indep $ λ i', s.sup $ λ i, f (i, i')) :
+  (s.product t).sup_indep f :=
+begin
+  rintro u hu ⟨i, i'⟩ hi hiu,
+  rw finset.disjoint_sup_right,
+  rintro ⟨j, j'⟩ hj,
+  have hij := (ne_of_mem_of_not_mem hj hiu).symm,
+  replace hj := hu hj,
+  rw mem_product at hi hj,
+  obtain rfl | hij := eq_or_ne i j,
+  { refine (ht.pairwise_disjoint hi.2 hj.2 $ (prod.mk.inj_left _).ne_iff.1 hij).mono _ _,
+    { convert le_sup hi.1 },
+    { convert le_sup hj.1 } },
+  { refine (hs.pairwise_disjoint hi.1 hj.1 hij).mono _ _,
+    { convert le_sup hi.2 },
+    { convert le_sup hj.2 } }
+end
+
+lemma sup_indep_product_iff {s : finset ι} {t : finset ι'} {f : ι × ι' → α} :
+  (s.product t).sup_indep f ↔
+    s.sup_indep (λ i, t.sup $ λ i', f (i, i')) ∧ t.sup_indep (λ i', s.sup $ λ i, f (i, i')) :=
+begin
+  refine ⟨_, λ h, h.1.product h.2⟩,
+  simp_rw sup_indep_iff_pairwise_disjoint,
+  refine (λ h, ⟨λ i hi j hj hij, _, λ i hi j hj hij, _⟩);
+    simp_rw [function.on_fun, finset.disjoint_sup_left, finset.disjoint_sup_right];
+      intros i' hi' j' hj',
+  { exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne prod.fst hij) },
+  { exact h (mk_mem_product hi' hi) (mk_mem_product hj' hj) (ne_of_apply_ne prod.snd hij) }
+end
+
 end distrib_lattice
 end finset
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

chore(data/finset/lattice): Protect a few more lemmas (#18497)

finset.disjoint_sup_left/finset.disjoint_sup_right conflict with disjoint_sup_left/disjoint_sup_right when finset is open, so we protect them.

Diff
@@ -135,7 +135,7 @@ variables [distrib_lattice α] [order_bot α] {s : finset ι} {f : ι → α}
 
 lemma sup_indep_iff_pairwise_disjoint : s.sup_indep f ↔ (s : set ι).pairwise_disjoint f :=
 ⟨sup_indep.pairwise_disjoint, λ hs t ht i hi hit,
-  disjoint_sup_right.2 $ λ j hj, hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
+  finset.disjoint_sup_right.2 $ λ j hj, hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
 
 alias sup_indep_iff_pairwise_disjoint ↔ sup_indep.pairwise_disjoint
   _root_.set.pairwise_disjoint.sup_indep

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -381,7 +381,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
 #align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.Independent /-
 /-- An independent indexed family of elements in a complete lattice is one in which every element
   is disjoint from the `supr` of the rest.
@@ -411,7 +411,7 @@ theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
 
 variable {t : ι → α} (ht : Independent t)
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.independent_def /-
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
@@ -424,7 +424,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.independent_def'' /-
 theorem independent_def'' :
     Independent t ↔ ∀ i, Disjoint (t i) (sSup {a | ∃ (j : _) (_ : j ≠ i), t j = a}) := by
Diff
@@ -120,7 +120,7 @@ theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
 theorem SupIndep.image [DecidableEq ι] {s : Finset ι'} {g : ι' → ι} (hs : s.SupIndep (f ∘ g)) :
     (s.image g).SupIndep f := by
   intro t ht i hi hit
-  rw [mem_image] at hi 
+  rw [mem_image] at hi
   obtain ⟨i, hi, rfl⟩ := hi
   haveI : DecidableEq ι' := Classical.decEq _
   suffices hts : t ⊆ (s.erase i).image g
@@ -153,7 +153,7 @@ theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
     by
     rw [sup_indep_iff_disjoint_erase]
     intro k hk
-    rw [Finset.mem_insert, Finset.mem_singleton] at hk 
+    rw [Finset.mem_insert, Finset.mem_singleton] at hk
     obtain rfl | rfl := hk
     · convert h using 1
       rw [Finset.erase_insert, Finset.sup_singleton]
@@ -193,9 +193,9 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep fun a => f a :=
   classical
   rw [← Finset.sup_image]
   refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
-  rw [mem_image] at hi' 
+  rw [mem_image] at hi'
   obtain ⟨j, hj, hji⟩ := hi'
-  rwa [Subtype.ext hji] at hj 
+  rwa [Subtype.ext hji] at hj
 #align finset.sup_indep.attach Finset.SupIndep.attach
 -/
 
@@ -265,7 +265,7 @@ theorem SupIndep.sigma {β : ι → Type _} {s : Finset ι} {g : ∀ i, Finset (
   rintro ⟨j, c⟩ hj
   have hbc := (ne_of_mem_of_not_mem hj hit).symm
   replace hj := ht hj
-  rw [mem_sigma] at hi hj 
+  rw [mem_sigma] at hi hj
   obtain rfl | hij := eq_or_ne i j
   · exact (hg _ hj.1).PairwiseDisjoint hi.2 hj.2 (sigma_mk_injective.ne_iff.1 hbc)
   · refine' (hs.pairwise_disjoint hi.1 hj.1 hij).mono _ _
@@ -284,7 +284,7 @@ theorem SupIndep.product {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α}
   rintro ⟨j, j'⟩ hj
   have hij := (ne_of_mem_of_not_mem hj hiu).symm
   replace hj := hu hj
-  rw [mem_product] at hi hj 
+  rw [mem_product] at hi hj
   obtain rfl | hij := eq_or_ne i j
   · refine' (ht.pairwise_disjoint hi.2 hj.2 <| (Prod.mk.inj_left _).ne_iff.1 hij).mono _ _
     · convert le_sup hi.1
@@ -376,7 +376,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
     Disjoint x (sSup y) :=
   by
   have := (hs.mono <| insert_subset.mpr ⟨hx, hy⟩) (mem_insert x _)
-  rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this 
+  rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this
   exact this
 #align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
 -/
@@ -485,7 +485,7 @@ theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht
 theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <| range t :=
   by
   rw [set_independent_iff]
-  rw [← coe_comp_range_factorization t] at ht 
+  rw [← coe_comp_range_factorization t] at ht
   exact ht.comp' surjective_onto_range
 #align complete_lattice.independent.set_independent_range CompleteLattice.Independent.setIndependent_range
 -/
@@ -499,7 +499,7 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
   suffices t j ≤ ⨆ (k) (hk : k ≠ i), t k
     by
     replace ht := (ht i).mono_right this
-    rwa [h, disjoint_self] at ht 
+    rwa [h, disjoint_self] at ht
   replace contra : j ≠ i; · exact Ne.symm contra
   exact le_iSup₂ j contra
 #align complete_lattice.independent.injective CompleteLattice.Independent.injective
Diff
@@ -138,7 +138,10 @@ theorem supIndep_map {s : Finset ι'} {g : ι' ↪ ι} : (s.map g).SupIndep f 
   refine' ⟨fun hs t ht i hi hit => _, fun hs => _⟩
   · rw [← sup_map]
     exact hs (map_subset_map.2 ht) ((mem_map' _).2 hi) (by rwa [mem_map'])
-  · classical
+  ·
+    classical
+    rw [map_eq_image]
+    exact hs.image
 #align finset.sup_indep_map Finset.supIndep_map
 -/
 
@@ -188,6 +191,11 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep fun a => f a :=
   by
   intro t ht i _ hi
   classical
+  rw [← Finset.sup_image]
+  refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
+  rw [mem_image] at hi' 
+  obtain ⟨j, hj, hji⟩ := hi'
+  rwa [Subtype.ext hji] at hj 
 #align finset.sup_indep.attach Finset.SupIndep.attach
 -/
 
@@ -197,6 +205,14 @@ theorem supIndep_attach : (s.attach.SupIndep fun a => f a) ↔ s.SupIndep f :=
   by
   refine' ⟨fun h t ht i his hit => _, sup_indep.attach⟩
   classical
+  convert
+    h (filter_subset (fun i => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩) fun hi =>
+      hit <| by simpa using hi using
+    1
+  refine' eq_of_forall_ge_iff _
+  simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply,
+    Subtype.forall, Subtype.coe_mk]
+  exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩
 #align finset.sup_indep_attach Finset.supIndep_attach
 -/
 
@@ -536,7 +552,15 @@ end CompleteLattice
 
 #print CompleteLattice.independent_iff_supIndep /-
 theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finset ι} {f : ι → α} :
-    CompleteLattice.Independent (f ∘ (coe : s → ι)) ↔ s.SupIndep f := by classical
+    CompleteLattice.Independent (f ∘ (coe : s → ι)) ↔ s.SupIndep f := by
+  classical
+  rw [Finset.supIndep_iff_disjoint_erase]
+  refine' subtype.forall.trans (forall₂_congr fun a b => _)
+  rw [Finset.sup_eq_iSup]
+  congr 2
+  refine' supr_subtype.trans _
+  congr 1 with x
+  simp [iSup_and, @iSup_comm _ (x ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 -/
 
@@ -548,7 +572,9 @@ alias ⟨CompleteLattice.Independent.supIndep, Finset.SupIndep.independent⟩ :=
 #print CompleteLattice.independent_iff_supIndep_univ /-
 /-- A variant of `complete_lattice.independent_iff_sup_indep` for `fintype`s. -/
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
-    CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by classical
+    CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
+  classical simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent,
+    Finset.sup_eq_iSup]
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 -/
 
Diff
@@ -138,10 +138,7 @@ theorem supIndep_map {s : Finset ι'} {g : ι' ↪ ι} : (s.map g).SupIndep f 
   refine' ⟨fun hs t ht i hi hit => _, fun hs => _⟩
   · rw [← sup_map]
     exact hs (map_subset_map.2 ht) ((mem_map' _).2 hi) (by rwa [mem_map'])
-  ·
-    classical
-    rw [map_eq_image]
-    exact hs.image
+  · classical
 #align finset.sup_indep_map Finset.supIndep_map
 -/
 
@@ -191,11 +188,6 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep fun a => f a :=
   by
   intro t ht i _ hi
   classical
-  rw [← Finset.sup_image]
-  refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
-  rw [mem_image] at hi' 
-  obtain ⟨j, hj, hji⟩ := hi'
-  rwa [Subtype.ext hji] at hj 
 #align finset.sup_indep.attach Finset.SupIndep.attach
 -/
 
@@ -205,14 +197,6 @@ theorem supIndep_attach : (s.attach.SupIndep fun a => f a) ↔ s.SupIndep f :=
   by
   refine' ⟨fun h t ht i his hit => _, sup_indep.attach⟩
   classical
-  convert
-    h (filter_subset (fun i => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩) fun hi =>
-      hit <| by simpa using hi using
-    1
-  refine' eq_of_forall_ge_iff _
-  simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply,
-    Subtype.forall, Subtype.coe_mk]
-  exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩
 #align finset.sup_indep_attach Finset.supIndep_attach
 -/
 
@@ -552,15 +536,7 @@ end CompleteLattice
 
 #print CompleteLattice.independent_iff_supIndep /-
 theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finset ι} {f : ι → α} :
-    CompleteLattice.Independent (f ∘ (coe : s → ι)) ↔ s.SupIndep f := by
-  classical
-  rw [Finset.supIndep_iff_disjoint_erase]
-  refine' subtype.forall.trans (forall₂_congr fun a b => _)
-  rw [Finset.sup_eq_iSup]
-  congr 2
-  refine' supr_subtype.trans _
-  congr 1 with x
-  simp [iSup_and, @iSup_comm _ (x ∈ s)]
+    CompleteLattice.Independent (f ∘ (coe : s → ι)) ↔ s.SupIndep f := by classical
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 -/
 
@@ -572,9 +548,7 @@ alias ⟨CompleteLattice.Independent.supIndep, Finset.SupIndep.independent⟩ :=
 #print CompleteLattice.independent_iff_supIndep_univ /-
 /-- A variant of `complete_lattice.independent_iff_sup_indep` for `fintype`s. -/
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
-    CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
-  classical simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent,
-    Finset.sup_eq_iSup]
+    CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by classical
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 -/
 
Diff
@@ -494,7 +494,7 @@ theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <
 theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ ⊥) : Injective t :=
   by
   intro i j h
-  by_contra' contra
+  by_contra! contra
   apply h_ne_bot j
   suffices t j ≤ ⨆ (k) (hk : k ≠ i), t k
     by
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2021 Aaron Anderson, Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
 -/
-import Mathbin.Data.Finset.Sigma
-import Mathbin.Data.Finset.Pairwise
-import Mathbin.Data.Finset.Powerset
-import Mathbin.Data.Fintype.Basic
+import Data.Finset.Sigma
+import Data.Finset.Pairwise
+import Data.Finset.Powerset
+import Data.Fintype.Basic
 
 #align_import order.sup_indep from "leanprover-community/mathlib"@"c4c2ed622f43768eff32608d4a0f8a6cec1c047d"
 
@@ -381,7 +381,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
 #align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.Independent /-
 /-- An independent indexed family of elements in a complete lattice is one in which every element
   is disjoint from the `supr` of the rest.
@@ -411,7 +411,7 @@ theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
 
 variable {t : ι → α} (ht : Independent t)
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.independent_def /-
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
@@ -424,7 +424,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.independent_def'' /-
 theorem independent_def'' :
     Independent t ↔ ∀ i, Disjoint (t i) (sSup {a | ∃ (j : _) (_ : j ≠ i), t j = a}) := by
Diff
@@ -229,8 +229,8 @@ theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDi
 #align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjoint
 -/
 
-alias sup_indep_iff_pairwise_disjoint ↔ sup_indep.pairwise_disjoint
-  _root_.set.pairwise_disjoint.sup_indep
+alias ⟨sup_indep.pairwise_disjoint, _root_.set.pairwise_disjoint.sup_indep⟩ :=
+  sup_indep_iff_pairwise_disjoint
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 #align set.pairwise_disjoint.sup_indep Set.PairwiseDisjoint.supIndep
 
@@ -564,8 +564,8 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 -/
 
-alias CompleteLattice.independent_iff_supIndep ↔ CompleteLattice.Independent.supIndep
-  Finset.SupIndep.independent
+alias ⟨CompleteLattice.Independent.supIndep, Finset.SupIndep.independent⟩ :=
+  CompleteLattice.independent_iff_supIndep
 #align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndep
 #align finset.sup_indep.independent Finset.SupIndep.independent
 
@@ -578,8 +578,8 @@ theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fint
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 -/
 
-alias CompleteLattice.independent_iff_supIndep_univ ↔ CompleteLattice.Independent.sup_indep_univ
-  Finset.SupIndep.independent_of_univ
+alias ⟨CompleteLattice.Independent.sup_indep_univ, Finset.SupIndep.independent_of_univ⟩ :=
+  CompleteLattice.independent_iff_supIndep_univ
 #align complete_lattice.independent.sup_indep_univ CompleteLattice.Independent.sup_indep_univ
 #align finset.sup_indep.independent_of_univ Finset.SupIndep.independent_of_univ
 
@@ -597,7 +597,7 @@ theorem setIndependent_iff_pairwiseDisjoint {s : Set α} :
 #align complete_lattice.set_independent_iff_pairwise_disjoint CompleteLattice.setIndependent_iff_pairwiseDisjoint
 -/
 
-alias set_independent_iff_pairwise_disjoint ↔ _ _root_.set.pairwise_disjoint.set_independent
+alias ⟨_, _root_.set.pairwise_disjoint.set_independent⟩ := set_independent_iff_pairwise_disjoint
 #align set.pairwise_disjoint.set_independent Set.PairwiseDisjoint.setIndependent
 
 #print CompleteLattice.independent_iff_pairwiseDisjoint /-
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2021 Aaron Anderson, Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
-
-! This file was ported from Lean 3 source module order.sup_indep
-! leanprover-community/mathlib commit c4c2ed622f43768eff32608d4a0f8a6cec1c047d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Finset.Sigma
 import Mathbin.Data.Finset.Pairwise
 import Mathbin.Data.Finset.Powerset
 import Mathbin.Data.Fintype.Basic
 
+#align_import order.sup_indep from "leanprover-community/mathlib"@"c4c2ed622f43768eff32608d4a0f8a6cec1c047d"
+
 /-!
 # Supremum independence
 
@@ -384,7 +381,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
 #align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.Independent /-
 /-- An independent indexed family of elements in a complete lattice is one in which every element
   is disjoint from the `supr` of the rest.
@@ -414,7 +411,7 @@ theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
 
 variable {t : ι → α} (ht : Independent t)
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.independent_def /-
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
@@ -427,7 +424,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.independent_def'' /-
 theorem independent_def'' :
     Independent t ↔ ∀ i, Disjoint (t i) (sSup {a | ∃ (j : _) (_ : j ≠ i), t j = a}) := by
Diff
@@ -101,12 +101,14 @@ theorem SupIndep.pairwiseDisjoint (hs : s.SupIndep f) : (s : Set ι).PairwiseDis
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 -/
 
+#print Finset.SupIndep.le_sup_iff /-
 theorem SupIndep.le_sup_iff (hs : s.SupIndep f) (hts : t ⊆ s) (hi : i ∈ s) (hf : ∀ i, f i ≠ ⊥) :
     f i ≤ t.sup f ↔ i ∈ t := by
   refine' ⟨fun h => _, le_sup⟩
   by_contra hit
   exact hf i (disjoint_self.1 <| (hs hts hi hit).mono_right h)
 #align finset.sup_indep.le_sup_iff Finset.SupIndep.le_sup_iff
+-/
 
 #print Finset.supIndep_iff_disjoint_erase /-
 /-- The RHS looks like the definition of `complete_lattice.independent`. -/
@@ -117,6 +119,7 @@ theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
 #align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_erase
 -/
 
+#print Finset.SupIndep.image /-
 theorem SupIndep.image [DecidableEq ι] {s : Finset ι'} {g : ι' → ι} (hs : s.SupIndep (f ∘ g)) :
     (s.image g).SupIndep f := by
   intro t ht i hi hit
@@ -130,7 +133,9 @@ theorem SupIndep.image [DecidableEq ι] {s : Finset ι'} {g : ι' → ι} (hs :
   obtain ⟨j, hj, rfl⟩ := mem_image.1 (ht hjt)
   exact mem_image_of_mem _ (mem_erase.2 ⟨ne_of_apply_ne g (ne_of_mem_of_not_mem hjt hit), hj⟩)
 #align finset.sup_indep.image Finset.SupIndep.image
+-/
 
+#print Finset.supIndep_map /-
 theorem supIndep_map {s : Finset ι'} {g : ι' ↪ ι} : (s.map g).SupIndep f ↔ s.SupIndep (f ∘ g) :=
   by
   refine' ⟨fun hs t ht i hi hit => _, fun hs => _⟩
@@ -141,6 +146,7 @@ theorem supIndep_map {s : Finset ι'} {g : ι' ↪ ι} : (s.map g).SupIndep f 
     rw [map_eq_image]
     exact hs.image
 #align finset.sup_indep_map Finset.supIndep_map
+-/
 
 #print Finset.supIndep_pair /-
 @[simp]
@@ -196,6 +202,7 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep fun a => f a :=
 #align finset.sup_indep.attach Finset.SupIndep.attach
 -/
 
+#print Finset.supIndep_attach /-
 @[simp]
 theorem supIndep_attach : (s.attach.SupIndep fun a => f a) ↔ s.SupIndep f :=
   by
@@ -210,6 +217,7 @@ theorem supIndep_attach : (s.attach.SupIndep fun a => f a) ↔ s.SupIndep f :=
     Subtype.forall, Subtype.coe_mk]
   exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩
 #align finset.sup_indep_attach Finset.supIndep_attach
+-/
 
 end Lattice
 
@@ -249,6 +257,7 @@ theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset 
 #align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 -/
 
+#print Finset.SupIndep.sigma /-
 /-- Bind operation for `sup_indep`. -/
 theorem SupIndep.sigma {β : ι → Type _} {s : Finset ι} {g : ∀ i, Finset (β i)} {f : Sigma β → α}
     (hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩)
@@ -266,7 +275,9 @@ theorem SupIndep.sigma {β : ι → Type _} {s : Finset ι} {g : ∀ i, Finset (
     · convert le_sup hi.2
     · convert le_sup hj.2
 #align finset.sup_indep.sigma Finset.SupIndep.sigma
+-/
 
+#print Finset.SupIndep.product /-
 theorem SupIndep.product {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α}
     (hs : s.SupIndep fun i => t.sup fun i' => f (i, i'))
     (ht : t.SupIndep fun i' => s.sup fun i => f (i, i')) : (s.product t).SupIndep f :=
@@ -285,7 +296,9 @@ theorem SupIndep.product {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α}
     · convert le_sup hi.2
     · convert le_sup hj.2
 #align finset.sup_indep.product Finset.SupIndep.product
+-/
 
+#print Finset.supIndep_product_iff /-
 theorem supIndep_product_iff {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α} :
     (s.product t).SupIndep f ↔
       (s.SupIndep fun i => t.sup fun i' => f (i, i')) ∧
@@ -299,6 +312,7 @@ theorem supIndep_product_iff {s : Finset ι} {t : Finset ι'} {f : ι × ι' →
   · exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne Prod.fst hij)
   · exact h (mk_mem_product hi' hi) (mk_mem_product hj' hj) (ne_of_apply_ne Prod.snd hij)
 #align finset.sup_indep_product_iff Finset.supIndep_product_iff
+-/
 
 end DistribLattice
 
Diff
@@ -4,10 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
 
 ! This file was ported from Lean 3 source module order.sup_indep
-! leanprover-community/mathlib commit 1c857a1f6798cb054be942199463c2cf904cb937
+! leanprover-community/mathlib commit c4c2ed622f43768eff32608d4a0f8a6cec1c047d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
+import Mathbin.Data.Finset.Sigma
 import Mathbin.Data.Finset.Pairwise
 import Mathbin.Data.Finset.Powerset
 import Mathbin.Data.Fintype.Basic
@@ -100,6 +101,13 @@ theorem SupIndep.pairwiseDisjoint (hs : s.SupIndep f) : (s : Set ι).PairwiseDis
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 -/
 
+theorem SupIndep.le_sup_iff (hs : s.SupIndep f) (hts : t ⊆ s) (hi : i ∈ s) (hf : ∀ i, f i ≠ ⊥) :
+    f i ≤ t.sup f ↔ i ∈ t := by
+  refine' ⟨fun h => _, le_sup⟩
+  by_contra hit
+  exact hf i (disjoint_self.1 <| (hs hts hi hit).mono_right h)
+#align finset.sup_indep.le_sup_iff Finset.SupIndep.le_sup_iff
+
 #print Finset.supIndep_iff_disjoint_erase /-
 /-- The RHS looks like the definition of `complete_lattice.independent`. -/
 theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
@@ -109,6 +117,31 @@ theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
 #align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_erase
 -/
 
+theorem SupIndep.image [DecidableEq ι] {s : Finset ι'} {g : ι' → ι} (hs : s.SupIndep (f ∘ g)) :
+    (s.image g).SupIndep f := by
+  intro t ht i hi hit
+  rw [mem_image] at hi 
+  obtain ⟨i, hi, rfl⟩ := hi
+  haveI : DecidableEq ι' := Classical.decEq _
+  suffices hts : t ⊆ (s.erase i).image g
+  · refine' (sup_indep_iff_disjoint_erase.1 hs i hi).mono_right ((sup_mono hts).trans _)
+    rw [sup_image]
+  rintro j hjt
+  obtain ⟨j, hj, rfl⟩ := mem_image.1 (ht hjt)
+  exact mem_image_of_mem _ (mem_erase.2 ⟨ne_of_apply_ne g (ne_of_mem_of_not_mem hjt hit), hj⟩)
+#align finset.sup_indep.image Finset.SupIndep.image
+
+theorem supIndep_map {s : Finset ι'} {g : ι' ↪ ι} : (s.map g).SupIndep f ↔ s.SupIndep (f ∘ g) :=
+  by
+  refine' ⟨fun hs t ht i hi hit => _, fun hs => _⟩
+  · rw [← sup_map]
+    exact hs (map_subset_map.2 ht) ((mem_map' _).2 hi) (by rwa [mem_map'])
+  ·
+    classical
+    rw [map_eq_image]
+    exact hs.image
+#align finset.sup_indep_map Finset.supIndep_map
+
 #print Finset.supIndep_pair /-
 @[simp]
 theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
@@ -151,7 +184,7 @@ theorem supIndep_univ_fin_two (f : Fin 2 → α) :
 -/
 
 #print Finset.SupIndep.attach /-
-theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.val) :=
+theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep fun a => f a :=
   by
   intro t ht i _ hi
   classical
@@ -163,6 +196,21 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.v
 #align finset.sup_indep.attach Finset.SupIndep.attach
 -/
 
+@[simp]
+theorem supIndep_attach : (s.attach.SupIndep fun a => f a) ↔ s.SupIndep f :=
+  by
+  refine' ⟨fun h t ht i his hit => _, sup_indep.attach⟩
+  classical
+  convert
+    h (filter_subset (fun i => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩) fun hi =>
+      hit <| by simpa using hi using
+    1
+  refine' eq_of_forall_ge_iff _
+  simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply,
+    Subtype.forall, Subtype.coe_mk]
+  exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩
+#align finset.sup_indep_attach Finset.supIndep_attach
+
 end Lattice
 
 section DistribLattice
@@ -201,6 +249,57 @@ theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset 
 #align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 -/
 
+/-- Bind operation for `sup_indep`. -/
+theorem SupIndep.sigma {β : ι → Type _} {s : Finset ι} {g : ∀ i, Finset (β i)} {f : Sigma β → α}
+    (hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩)
+    (hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩) : (s.Sigma g).SupIndep f :=
+  by
+  rintro t ht ⟨i, b⟩ hi hit
+  rw [Finset.disjoint_sup_right]
+  rintro ⟨j, c⟩ hj
+  have hbc := (ne_of_mem_of_not_mem hj hit).symm
+  replace hj := ht hj
+  rw [mem_sigma] at hi hj 
+  obtain rfl | hij := eq_or_ne i j
+  · exact (hg _ hj.1).PairwiseDisjoint hi.2 hj.2 (sigma_mk_injective.ne_iff.1 hbc)
+  · refine' (hs.pairwise_disjoint hi.1 hj.1 hij).mono _ _
+    · convert le_sup hi.2
+    · convert le_sup hj.2
+#align finset.sup_indep.sigma Finset.SupIndep.sigma
+
+theorem SupIndep.product {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α}
+    (hs : s.SupIndep fun i => t.sup fun i' => f (i, i'))
+    (ht : t.SupIndep fun i' => s.sup fun i => f (i, i')) : (s.product t).SupIndep f :=
+  by
+  rintro u hu ⟨i, i'⟩ hi hiu
+  rw [Finset.disjoint_sup_right]
+  rintro ⟨j, j'⟩ hj
+  have hij := (ne_of_mem_of_not_mem hj hiu).symm
+  replace hj := hu hj
+  rw [mem_product] at hi hj 
+  obtain rfl | hij := eq_or_ne i j
+  · refine' (ht.pairwise_disjoint hi.2 hj.2 <| (Prod.mk.inj_left _).ne_iff.1 hij).mono _ _
+    · convert le_sup hi.1
+    · convert le_sup hj.1
+  · refine' (hs.pairwise_disjoint hi.1 hj.1 hij).mono _ _
+    · convert le_sup hi.2
+    · convert le_sup hj.2
+#align finset.sup_indep.product Finset.SupIndep.product
+
+theorem supIndep_product_iff {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α} :
+    (s.product t).SupIndep f ↔
+      (s.SupIndep fun i => t.sup fun i' => f (i, i')) ∧
+        t.SupIndep fun i' => s.sup fun i => f (i, i') :=
+  by
+  refine' ⟨_, fun h => h.1.product h.2⟩
+  simp_rw [sup_indep_iff_pairwise_disjoint]
+  refine' fun h => ⟨fun i hi j hj hij => _, fun i hi j hj hij => _⟩ <;>
+      simp_rw [Function.onFun, Finset.disjoint_sup_left, Finset.disjoint_sup_right] <;>
+    intro i' hi' j' hj'
+  · exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne Prod.fst hij)
+  · exact h (mk_mem_product hi' hi) (mk_mem_product hj' hj) (ne_of_apply_ne Prod.snd hij)
+#align finset.sup_indep_product_iff Finset.supIndep_product_iff
+
 end DistribLattice
 
 end Finset
Diff
@@ -74,23 +74,31 @@ instance [DecidableEq ι] [DecidableEq α] : Decidable (SupIndep s f) :=
   apply @Finset.decidableDforallFinset _ _ _ _
   exact fun i hi => @Implies.decidable _ _ _ (decidable_of_iff' (_ = ⊥) disjoint_iff)
 
+#print Finset.SupIndep.subset /-
 theorem SupIndep.subset (ht : t.SupIndep f) (h : s ⊆ t) : s.SupIndep f := fun u hu i hi =>
   ht (hu.trans h) (h hi)
 #align finset.sup_indep.subset Finset.SupIndep.subset
+-/
 
+#print Finset.supIndep_empty /-
 theorem supIndep_empty (f : ι → α) : (∅ : Finset ι).SupIndep f := fun _ _ a ha => ha.elim
 #align finset.sup_indep_empty Finset.supIndep_empty
+-/
 
+#print Finset.supIndep_singleton /-
 theorem supIndep_singleton (i : ι) (f : ι → α) : ({i} : Finset ι).SupIndep f := fun s hs j hji hj =>
   by
   rw [eq_empty_of_ssubset_singleton ⟨hs, fun h => hj (h hji)⟩, sup_empty]
   exact disjoint_bot_right
 #align finset.sup_indep_singleton Finset.supIndep_singleton
+-/
 
+#print Finset.SupIndep.pairwiseDisjoint /-
 theorem SupIndep.pairwiseDisjoint (hs : s.SupIndep f) : (s : Set ι).PairwiseDisjoint f :=
   fun a ha b hb hab =>
   sup_singleton.subst <| hs (singleton_subset_iff.2 hb) ha <| not_mem_singleton.2 hab
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
+-/
 
 #print Finset.supIndep_iff_disjoint_erase /-
 /-- The RHS looks like the definition of `complete_lattice.independent`. -/
@@ -133,13 +141,16 @@ theorem supIndep_univ_bool (f : Bool → α) :
 #align finset.sup_indep_univ_bool Finset.supIndep_univ_bool
 -/
 
+#print Finset.supIndep_univ_fin_two /-
 @[simp]
 theorem supIndep_univ_fin_two (f : Fin 2 → α) :
     (Finset.univ : Finset (Fin 2)).SupIndep f ↔ Disjoint (f 0) (f 1) :=
   haveI : (0 : Fin 2) ≠ 1 := by simp
   sup_indep_pair this
 #align finset.sup_indep_univ_fin_two Finset.supIndep_univ_fin_two
+-/
 
+#print Finset.SupIndep.attach /-
 theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.val) :=
   by
   intro t ht i _ hi
@@ -150,6 +161,7 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.v
   obtain ⟨j, hj, hji⟩ := hi'
   rwa [Subtype.ext hji] at hj 
 #align finset.sup_indep.attach Finset.SupIndep.attach
+-/
 
 end Lattice
 
@@ -157,16 +169,19 @@ section DistribLattice
 
 variable [DistribLattice α] [OrderBot α] {s : Finset ι} {f : ι → α}
 
+#print Finset.supIndep_iff_pairwiseDisjoint /-
 theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDisjoint f :=
   ⟨SupIndep.pairwiseDisjoint, fun hs t ht i hi hit =>
     Finset.disjoint_sup_right.2 fun j hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
 #align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjoint
+-/
 
 alias sup_indep_iff_pairwise_disjoint ↔ sup_indep.pairwise_disjoint
   _root_.set.pairwise_disjoint.sup_indep
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 #align set.pairwise_disjoint.sup_indep Set.PairwiseDisjoint.supIndep
 
+#print Finset.SupIndep.sup /-
 /-- Bind operation for `sup_indep`. -/
 theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
@@ -176,12 +191,15 @@ theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {
   rw [sup_eq_bUnion, coe_bUnion]
   exact hs.bUnion_finset hg
 #align finset.sup_indep.sup Finset.SupIndep.sup
+-/
 
+#print Finset.SupIndep.biUnion /-
 /-- Bind operation for `sup_indep`. -/
 theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
     (s.biUnion g).SupIndep f := by rw [← sup_eq_bUnion]; exact hs.sup hg
 #align finset.sup_indep.bUnion Finset.SupIndep.biUnion
+-/
 
 end DistribLattice
 
@@ -241,8 +259,7 @@ theorem setIndependent_pair {a b : α} (hab : a ≠ b) :
 #align complete_lattice.set_independent_pair CompleteLattice.setIndependent_pair
 -/
 
-include hs
-
+#print CompleteLattice.SetIndependent.disjoint_sSup /-
 /-- If the elements of a set are independent, then any element is disjoint from the `Sup` of some
 subset of the rest. -/
 theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
@@ -252,8 +269,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
   rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this 
   exact this
 #align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
-
-omit hs
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.Independent /-
@@ -286,19 +302,25 @@ theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
 variable {t : ι → α} (ht : Independent t)
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
+#print CompleteLattice.independent_def /-
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
 #align complete_lattice.independent_def CompleteLattice.independent_def
+-/
 
+#print CompleteLattice.independent_def' /-
 theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {j | j ≠ i})) := by
   simp_rw [sSup_image]; rfl
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
+#print CompleteLattice.independent_def'' /-
 theorem independent_def'' :
     Independent t ↔ ∀ i, Disjoint (t i) (sSup {a | ∃ (j : _) (_ : j ≠ i), t j = a}) := by
   rw [independent_def']; tidy
 #align complete_lattice.independent_def'' CompleteLattice.independent_def''
+-/
 
 #print CompleteLattice.independent_empty /-
 @[simp]
@@ -327,6 +349,7 @@ theorem Independent.mono {s t : ι → α} (hs : Independent s) (hst : t ≤ s)
 #align complete_lattice.independent.mono CompleteLattice.Independent.mono
 -/
 
+#print CompleteLattice.Independent.comp /-
 /-- Composing an independent indexed family with an injective function on the index results in
 another indepedendent indexed family. -/
 theorem Independent.comp {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent t)
@@ -336,7 +359,9 @@ theorem Independent.comp {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht
     refine' (iSup_mono fun i => _).trans (iSup_comp_le _ f)
     exact iSup_const_mono hf.ne
 #align complete_lattice.independent.comp CompleteLattice.Independent.comp
+-/
 
+#print CompleteLattice.Independent.comp' /-
 theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent <| t ∘ f)
     (hf : Surjective f) : Independent t := by
   intro i
@@ -344,6 +369,7 @@ theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht
   rw [← hf.supr_comp]
   exact (ht i').mono_right (biSup_mono fun j' hij => mt (congr_arg f) hij)
 #align complete_lattice.independent.comp' CompleteLattice.Independent.comp'
+-/
 
 #print CompleteLattice.Independent.setIndependent_range /-
 theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <| range t :=
@@ -354,6 +380,7 @@ theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <
 #align complete_lattice.independent.set_independent_range CompleteLattice.Independent.setIndependent_range
 -/
 
+#print CompleteLattice.Independent.injective /-
 theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ ⊥) : Injective t :=
   by
   intro i j h
@@ -366,6 +393,7 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
   replace contra : j ≠ i; · exact Ne.symm contra
   exact le_iSup₂ j contra
 #align complete_lattice.independent.injective CompleteLattice.Independent.injective
+-/
 
 #print CompleteLattice.independent_pair /-
 theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k = j) :
@@ -381,13 +409,16 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 #align complete_lattice.independent_pair CompleteLattice.independent_pair
 -/
 
+#print CompleteLattice.Independent.map_orderIso /-
 /-- Composing an indepedent indexed family with an order isomorphism on the elements results in
 another indepedendent indexed family. -/
 theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice α] [CompleteLattice β]
     (f : α ≃o β) {a : ι → α} (ha : Independent a) : Independent (f ∘ a) := fun i =>
   ((ha i).map_orderIso f).mono_right (f.Monotone.le_map_iSup₂ _)
 #align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIso
+-/
 
+#print CompleteLattice.independent_map_orderIso_iff /-
 @[simp]
 theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLattice α]
     [CompleteLattice β] (f : α ≃o β) {a : ι → α} : Independent (f ∘ a) ↔ Independent a :=
@@ -396,16 +427,20 @@ theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLat
     hf ▸ h.map_orderIso f.symm,
     fun h => h.map_orderIso f⟩
 #align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iff
+-/
 
+#print CompleteLattice.Independent.disjoint_biSup /-
 /-- If the elements of a set are independent, then any element is disjoint from the `supr` of some
 subset of the rest. -/
 theorem Independent.disjoint_biSup {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
     (ht : Independent t) {x : ι} {y : Set ι} (hx : x ∉ y) : Disjoint (t x) (⨆ i ∈ y, t i) :=
   Disjoint.mono_right (biSup_mono fun i hi => (ne_of_mem_of_not_mem hi hx : _)) (ht x)
 #align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSup
+-/
 
 end CompleteLattice
 
+#print CompleteLattice.independent_iff_supIndep /-
 theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finset ι} {f : ι → α} :
     CompleteLattice.Independent (f ∘ (coe : s → ι)) ↔ s.SupIndep f := by
   classical
@@ -417,18 +452,21 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
   congr 1 with x
   simp [iSup_and, @iSup_comm _ (x ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
+-/
 
 alias CompleteLattice.independent_iff_supIndep ↔ CompleteLattice.Independent.supIndep
   Finset.SupIndep.independent
 #align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndep
 #align finset.sup_indep.independent Finset.SupIndep.independent
 
+#print CompleteLattice.independent_iff_supIndep_univ /-
 /-- A variant of `complete_lattice.independent_iff_sup_indep` for `fintype`s. -/
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
     CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
   classical simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent,
     Finset.sup_eq_iSup]
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
+-/
 
 alias CompleteLattice.independent_iff_supIndep_univ ↔ CompleteLattice.Independent.sup_indep_univ
   Finset.SupIndep.independent_of_univ
Diff
@@ -255,7 +255,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
 
 omit hs
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.Independent /-
 /-- An independent indexed family of elements in a complete lattice is one in which every element
   is disjoint from the `supr` of the rest.
@@ -285,7 +285,7 @@ theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
 
 variable {t : ι → α} (ht : Independent t)
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
 #align complete_lattice.independent_def CompleteLattice.independent_def
@@ -294,7 +294,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
   simp_rw [sSup_image]; rfl
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def'' :
     Independent t ↔ ∀ i, Disjoint (t i) (sSup {a | ∃ (j : _) (_ : j ≠ i), t j = a}) := by
   rw [independent_def']; tidy
Diff
@@ -144,11 +144,11 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.v
   by
   intro t ht i _ hi
   classical
-    rw [← Finset.sup_image]
-    refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
-    rw [mem_image] at hi' 
-    obtain ⟨j, hj, hji⟩ := hi'
-    rwa [Subtype.ext hji] at hj 
+  rw [← Finset.sup_image]
+  refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
+  rw [mem_image] at hi' 
+  obtain ⟨j, hj, hji⟩ := hi'
+  rwa [Subtype.ext hji] at hj 
 #align finset.sup_indep.attach Finset.SupIndep.attach
 
 end Lattice
@@ -162,8 +162,8 @@ theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDi
     Finset.disjoint_sup_right.2 fun j hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
 #align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjoint
 
-alias sup_indep_iff_pairwise_disjoint ↔
-  sup_indep.pairwise_disjoint _root_.set.pairwise_disjoint.sup_indep
+alias sup_indep_iff_pairwise_disjoint ↔ sup_indep.pairwise_disjoint
+  _root_.set.pairwise_disjoint.sup_indep
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 #align set.pairwise_disjoint.sup_indep Set.PairwiseDisjoint.supIndep
 
@@ -290,13 +290,13 @@ theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j)
   Iff.rfl
 #align complete_lattice.independent_def CompleteLattice.independent_def
 
-theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' { j | j ≠ i })) := by
+theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {j | j ≠ i})) := by
   simp_rw [sSup_image]; rfl
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def'' :
-    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _) (_ : j ≠ i), t j = a }) := by
+    Independent t ↔ ∀ i, Disjoint (t i) (sSup {a | ∃ (j : _) (_ : j ≠ i), t j = a}) := by
   rw [independent_def']; tidy
 #align complete_lattice.independent_def'' CompleteLattice.independent_def''
 
@@ -409,17 +409,17 @@ end CompleteLattice
 theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finset ι} {f : ι → α} :
     CompleteLattice.Independent (f ∘ (coe : s → ι)) ↔ s.SupIndep f := by
   classical
-    rw [Finset.supIndep_iff_disjoint_erase]
-    refine' subtype.forall.trans (forall₂_congr fun a b => _)
-    rw [Finset.sup_eq_iSup]
-    congr 2
-    refine' supr_subtype.trans _
-    congr 1 with x
-    simp [iSup_and, @iSup_comm _ (x ∈ s)]
+  rw [Finset.supIndep_iff_disjoint_erase]
+  refine' subtype.forall.trans (forall₂_congr fun a b => _)
+  rw [Finset.sup_eq_iSup]
+  congr 2
+  refine' supr_subtype.trans _
+  congr 1 with x
+  simp [iSup_and, @iSup_comm _ (x ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 
-alias CompleteLattice.independent_iff_supIndep ↔
-  CompleteLattice.Independent.supIndep Finset.SupIndep.independent
+alias CompleteLattice.independent_iff_supIndep ↔ CompleteLattice.Independent.supIndep
+  Finset.SupIndep.independent
 #align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndep
 #align finset.sup_indep.independent Finset.SupIndep.independent
 
@@ -427,11 +427,11 @@ alias CompleteLattice.independent_iff_supIndep ↔
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
     CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
   classical simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent,
-      Finset.sup_eq_iSup]
+    Finset.sup_eq_iSup]
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 
-alias CompleteLattice.independent_iff_supIndep_univ ↔
-  CompleteLattice.Independent.sup_indep_univ Finset.SupIndep.independent_of_univ
+alias CompleteLattice.independent_iff_supIndep_univ ↔ CompleteLattice.Independent.sup_indep_univ
+  Finset.SupIndep.independent_of_univ
 #align complete_lattice.independent.sup_indep_univ CompleteLattice.Independent.sup_indep_univ
 #align finset.sup_indep.independent_of_univ Finset.SupIndep.independent_of_univ
 
Diff
@@ -109,7 +109,7 @@ theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
     by
     rw [sup_indep_iff_disjoint_erase]
     intro k hk
-    rw [Finset.mem_insert, Finset.mem_singleton] at hk
+    rw [Finset.mem_insert, Finset.mem_singleton] at hk 
     obtain rfl | rfl := hk
     · convert h using 1
       rw [Finset.erase_insert, Finset.sup_singleton]
@@ -146,9 +146,9 @@ theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.v
   classical
     rw [← Finset.sup_image]
     refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
-    rw [mem_image] at hi'
+    rw [mem_image] at hi' 
     obtain ⟨j, hj, hji⟩ := hi'
-    rwa [Subtype.ext hji] at hj
+    rwa [Subtype.ext hji] at hj 
 #align finset.sup_indep.attach Finset.SupIndep.attach
 
 end Lattice
@@ -172,7 +172,7 @@ theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
     (s.sup g).SupIndep f :=
   by
-  simp_rw [sup_indep_iff_pairwise_disjoint] at hs hg⊢
+  simp_rw [sup_indep_iff_pairwise_disjoint] at hs hg ⊢
   rw [sup_eq_bUnion, coe_bUnion]
   exact hs.bUnion_finset hg
 #align finset.sup_indep.sup Finset.SupIndep.sup
@@ -249,7 +249,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
     Disjoint x (sSup y) :=
   by
   have := (hs.mono <| insert_subset.mpr ⟨hx, hy⟩) (mem_insert x _)
-  rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this
+  rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this 
   exact this
 #align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
 
@@ -296,7 +296,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def'' :
-    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _)(_ : j ≠ i), t j = a }) := by
+    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _) (_ : j ≠ i), t j = a }) := by
   rw [independent_def']; tidy
 #align complete_lattice.independent_def'' CompleteLattice.independent_def''
 
@@ -349,7 +349,7 @@ theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht
 theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <| range t :=
   by
   rw [set_independent_iff]
-  rw [← coe_comp_range_factorization t] at ht
+  rw [← coe_comp_range_factorization t] at ht 
   exact ht.comp' surjective_onto_range
 #align complete_lattice.independent.set_independent_range CompleteLattice.Independent.setIndependent_range
 -/
@@ -362,7 +362,7 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
   suffices t j ≤ ⨆ (k) (hk : k ≠ i), t k
     by
     replace ht := (ht i).mono_right this
-    rwa [h, disjoint_self] at ht
+    rwa [h, disjoint_self] at ht 
   replace contra : j ≠ i; · exact Ne.symm contra
   exact le_iSup₂ j contra
 #align complete_lattice.independent.injective CompleteLattice.Independent.injective
Diff
@@ -57,11 +57,13 @@ section Lattice
 
 variable [Lattice α] [OrderBot α]
 
+#print Finset.SupIndep /-
 /-- Supremum independence of finite sets. We avoid the "obvious" definition using `s.erase i`
 because `erase` would require decidable equality on `ι`. -/
 def SupIndep (s : Finset ι) (f : ι → α) : Prop :=
   ∀ ⦃t⦄, t ⊆ s → ∀ ⦃i⦄, i ∈ s → i ∉ t → Disjoint (f i) (t.sup f)
 #align finset.sup_indep Finset.SupIndep
+-/
 
 variable {s t : Finset ι} {f : ι → α} {i : ι}
 
@@ -90,13 +92,16 @@ theorem SupIndep.pairwiseDisjoint (hs : s.SupIndep f) : (s : Set ι).PairwiseDis
   sup_singleton.subst <| hs (singleton_subset_iff.2 hb) ha <| not_mem_singleton.2 hab
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 
+#print Finset.supIndep_iff_disjoint_erase /-
 /-- The RHS looks like the definition of `complete_lattice.independent`. -/
 theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
     s.SupIndep f ↔ ∀ i ∈ s, Disjoint (f i) ((s.eraseₓ i).sup f) :=
   ⟨fun hs i hi => hs (erase_subset _ _) hi (not_mem_erase _ _), fun hs t ht i hi hit =>
     (hs i hi).mono_right (sup_mono fun j hj => mem_erase.2 ⟨ne_of_mem_of_not_mem hj hit, ht hj⟩)⟩
 #align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_erase
+-/
 
+#print Finset.supIndep_pair /-
 @[simp]
 theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
     ({i, j} : Finset ι).SupIndep f ↔ Disjoint (f i) (f j) :=
@@ -118,12 +123,15 @@ theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
         exact hij
       rw [this, Finset.sup_singleton]⟩
 #align finset.sup_indep_pair Finset.supIndep_pair
+-/
 
+#print Finset.supIndep_univ_bool /-
 theorem supIndep_univ_bool (f : Bool → α) :
     (Finset.univ : Finset Bool).SupIndep f ↔ Disjoint (f false) (f true) :=
   haveI : tt ≠ ff := by simp only [Ne.def, not_false_iff]
   (sup_indep_pair this).trans disjoint_comm
 #align finset.sup_indep_univ_bool Finset.supIndep_univ_bool
+-/
 
 @[simp]
 theorem supIndep_univ_fin_two (f : Fin 2 → α) :
@@ -313,9 +321,11 @@ theorem Independent.pairwiseDisjoint : Pairwise (Disjoint on t) := fun x y h =>
 #align complete_lattice.independent.pairwise_disjoint CompleteLattice.Independent.pairwiseDisjoint
 -/
 
+#print CompleteLattice.Independent.mono /-
 theorem Independent.mono {s t : ι → α} (hs : Independent s) (hst : t ≤ s) : Independent t :=
   fun i => (hs i).mono (hst i) <| iSup₂_mono fun j _ => hst j
 #align complete_lattice.independent.mono CompleteLattice.Independent.mono
+-/
 
 /-- Composing an independent indexed family with an injective function on the index results in
 another indepedendent indexed family. -/
Diff
@@ -57,12 +57,6 @@ section Lattice
 
 variable [Lattice α] [OrderBot α]
 
-/- warning: finset.sup_indep -> Finset.SupIndep is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], (Finset.{u2} ι) -> (ι -> α) -> Prop
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], (Finset.{u2} ι) -> (ι -> α) -> Prop
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep Finset.SupIndepₓ'. -/
 /-- Supremum independence of finite sets. We avoid the "obvious" definition using `s.erase i`
 because `erase` would require decidable equality on `ι`. -/
 def SupIndep (s : Finset ι) (f : ι → α) : Prop :=
@@ -78,54 +72,24 @@ instance [DecidableEq ι] [DecidableEq α] : Decidable (SupIndep s f) :=
   apply @Finset.decidableDforallFinset _ _ _ _
   exact fun i hi => @Implies.decidable _ _ _ (decidable_of_iff' (_ = ⊥) disjoint_iff)
 
-/- warning: finset.sup_indep.subset -> Finset.SupIndep.subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {t : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 t f) -> (HasSubset.Subset.{u2} (Finset.{u2} ι) (Finset.hasSubset.{u2} ι) s t) -> (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {t : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 t f) -> (HasSubset.Subset.{u1} (Finset.{u1} ι) (Finset.instHasSubsetFinset.{u1} ι) s t) -> (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.subset Finset.SupIndep.subsetₓ'. -/
 theorem SupIndep.subset (ht : t.SupIndep f) (h : s ⊆ t) : s.SupIndep f := fun u hu i hi =>
   ht (hu.trans h) (h hi)
 #align finset.sup_indep.subset Finset.SupIndep.subset
 
-/- warning: finset.sup_indep_empty -> Finset.supIndep_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : ι -> α), Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u2} (Finset.{u2} ι) (Finset.hasEmptyc.{u2} ι)) f
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] (f : ι -> α), Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u1} (Finset.{u1} ι) (Finset.instEmptyCollectionFinset.{u1} ι)) f
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep_empty Finset.supIndep_emptyₓ'. -/
 theorem supIndep_empty (f : ι → α) : (∅ : Finset ι).SupIndep f := fun _ _ a ha => ha.elim
 #align finset.sup_indep_empty Finset.supIndep_empty
 
-/- warning: finset.sup_indep_singleton -> Finset.supIndep_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (i : ι) (f : ι -> α), Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (Singleton.singleton.{u2, u2} ι (Finset.{u2} ι) (Finset.hasSingleton.{u2} ι) i) f
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] (i : ι) (f : ι -> α), Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 (Singleton.singleton.{u1, u1} ι (Finset.{u1} ι) (Finset.instSingletonFinset.{u1} ι) i) f
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep_singleton Finset.supIndep_singletonₓ'. -/
 theorem supIndep_singleton (i : ι) (f : ι → α) : ({i} : Finset ι).SupIndep f := fun s hs j hji hj =>
   by
   rw [eq_empty_of_ssubset_singleton ⟨hs, fun h => hj (h hji)⟩, sup_empty]
   exact disjoint_bot_right
 #align finset.sup_indep_singleton Finset.supIndep_singleton
 
-/- warning: finset.sup_indep.pairwise_disjoint -> Finset.SupIndep.pairwiseDisjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 (Finset.toSet.{u1} ι s) f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjointₓ'. -/
 theorem SupIndep.pairwiseDisjoint (hs : s.SupIndep f) : (s : Set ι).PairwiseDisjoint f :=
   fun a ha b hb hab =>
   sup_singleton.subst <| hs (singleton_subset_iff.2 hb) ha <| not_mem_singleton.2 hab
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 
-/- warning: finset.sup_indep_iff_disjoint_erase -> Finset.supIndep_iff_disjoint_erase is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι], Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α _inst_1) _inst_2 (Finset.erase.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b) s i) f)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι], Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α _inst_1) _inst_2 (Finset.erase.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b) s i) f)))
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_eraseₓ'. -/
 /-- The RHS looks like the definition of `complete_lattice.independent`. -/
 theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
     s.SupIndep f ↔ ∀ i ∈ s, Disjoint (f i) ((s.eraseₓ i).sup f) :=
@@ -133,12 +97,6 @@ theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
     (hs i hi).mono_right (sup_mono fun j hj => mem_erase.2 ⟨ne_of_mem_of_not_mem hj hit, ht hj⟩)⟩
 #align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_erase
 
-/- warning: finset.sup_indep_pair -> Finset.supIndep_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι] {i : ι} {j : ι}, (Ne.{succ u2} ι i j) -> (Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (Insert.insert.{u2, u2} ι (Finset.{u2} ι) (Finset.hasInsert.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b)) i (Singleton.singleton.{u2, u2} ι (Finset.{u2} ι) (Finset.hasSingleton.{u2} ι) j)) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (f j)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι] {i : ι} {j : ι}, (Ne.{succ u2} ι i j) -> (Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (Insert.insert.{u2, u2} ι (Finset.{u2} ι) (Finset.instInsertFinset.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b)) i (Singleton.singleton.{u2, u2} ι (Finset.{u2} ι) (Finset.instSingletonFinset.{u2} ι) j)) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (f j)))
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep_pair Finset.supIndep_pairₓ'. -/
 @[simp]
 theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
     ({i, j} : Finset ι).SupIndep f ↔ Disjoint (f i) (f j) :=
@@ -161,24 +119,12 @@ theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
       rw [this, Finset.sup_singleton]⟩
 #align finset.sup_indep_pair Finset.supIndep_pair
 
-/- warning: finset.sup_indep_univ_bool -> Finset.supIndep_univ_bool is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : Bool -> α), Iff (Finset.SupIndep.{u1, 0} α Bool _inst_1 _inst_2 (Finset.univ.{0} Bool Bool.fintype) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f Bool.false) (f Bool.true))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : Bool -> α), Iff (Finset.SupIndep.{u1, 0} α Bool _inst_1 _inst_2 (Finset.univ.{0} Bool Bool.fintype) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f Bool.false) (f Bool.true))
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep_univ_bool Finset.supIndep_univ_boolₓ'. -/
 theorem supIndep_univ_bool (f : Bool → α) :
     (Finset.univ : Finset Bool).SupIndep f ↔ Disjoint (f false) (f true) :=
   haveI : tt ≠ ff := by simp only [Ne.def, not_false_iff]
   (sup_indep_pair this).trans disjoint_comm
 #align finset.sup_indep_univ_bool Finset.supIndep_univ_bool
 
-/- warning: finset.sup_indep_univ_fin_two -> Finset.supIndep_univ_fin_two is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> α), Iff (Finset.SupIndep.{u1, 0} α (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) _inst_1 _inst_2 (Finset.univ.{0} (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (Fin.fintype (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f (OfNat.ofNat.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)) (ZeroLEOneClass.NeZero.two.{0} Nat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} Nat (NonAssocSemiring.toAddCommMonoidWithOne.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring))) (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)) (OrderedSemiring.zeroLEOneClass.{0} Nat Nat.orderedSemiring) (NeZero.one.{0} Nat (NonAssocSemiring.toMulZeroOneClass.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring)) Nat.nontrivial) (OrderedAddCommMonoid.to_covariantClass_left.{0} Nat (OrderedSemiring.toOrderedAddCommMonoid.{0} Nat Nat.orderedSemiring)))))))) (f (OfNat.ofNat.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 1 (OfNat.mk.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 1 (One.one.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (Fin.hasOneOfNeZero (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)) (ZeroLEOneClass.NeZero.two.{0} Nat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} Nat (NonAssocSemiring.toAddCommMonoidWithOne.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring))) (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)) (OrderedSemiring.zeroLEOneClass.{0} Nat Nat.orderedSemiring) (NeZero.one.{0} Nat (NonAssocSemiring.toMulZeroOneClass.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring)) Nat.nontrivial) (OrderedAddCommMonoid.to_covariantClass_left.{0} Nat (OrderedSemiring.toOrderedAddCommMonoid.{0} Nat Nat.orderedSemiring)))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> α), Iff (Finset.SupIndep.{u1, 0} α (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) _inst_1 _inst_2 (Finset.univ.{0} (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (Fin.fintype (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f (OfNat.ofNat.{0} (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (Fin.instOfNatFin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) 0 (NeZero.succ (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (f (OfNat.ofNat.{0} (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 1 (Fin.instOfNatFin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) 1 (NeZero.succ (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep_univ_fin_two Finset.supIndep_univ_fin_twoₓ'. -/
 @[simp]
 theorem supIndep_univ_fin_two (f : Fin 2 → α) :
     (Finset.univ : Finset (Fin 2)).SupIndep f ↔ Disjoint (f 0) (f 1) :=
@@ -186,12 +132,6 @@ theorem supIndep_univ_fin_two (f : Fin 2 → α) :
   sup_indep_pair this
 #align finset.sup_indep_univ_fin_two Finset.supIndep_univ_fin_two
 
-/- warning: finset.sup_indep.attach -> Finset.SupIndep.attach is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Finset.SupIndep.{u1, u2} α (Subtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)) _inst_1 _inst_2 (Finset.attach.{u2} ι s) (Function.comp.{succ u2, succ u2, succ u1} (Subtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)) ι α f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f) -> (Finset.SupIndep.{u2, u1} α (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) _inst_1 _inst_2 (Finset.attach.{u1} ι s) (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s))))
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.attach Finset.SupIndep.attachₓ'. -/
 theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.val) :=
   by
   intro t ht i _ hi
@@ -209,40 +149,16 @@ section DistribLattice
 
 variable [DistribLattice α] [OrderBot α] {s : Finset ι} {f : ι → α}
 
-/- warning: finset.sup_indep_iff_pairwise_disjoint -> Finset.supIndep_iff_pairwiseDisjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {s : Finset.{u2} ι} {f : ι -> α}, Iff (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s f) (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : DistribLattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1)))))] {s : Finset.{u1} ι} {f : ι -> α}, Iff (Finset.SupIndep.{u2, u1} α ι (DistribLattice.toLattice.{u2} α _inst_1) _inst_2 s f) (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1))) _inst_2 (Finset.toSet.{u1} ι s) f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjointₓ'. -/
 theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDisjoint f :=
   ⟨SupIndep.pairwiseDisjoint, fun hs t ht i hi hit =>
     Finset.disjoint_sup_right.2 fun j hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
 #align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjoint
 
-/- warning: finset.sup_indep.pairwise_disjoint -> Finset.SupIndep.pairwiseDisjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 (Finset.toSet.{u1} ι s) f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjointₓ'. -/
-/- warning: set.pairwise_disjoint.sup_indep -> Set.PairwiseDisjoint.supIndep is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {s : Finset.{u2} ι} {f : ι -> α}, (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : DistribLattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1)))))] {s : Finset.{u1} ι} {f : ι -> α}, (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1))) _inst_2 (Finset.toSet.{u1} ι s) f) -> (Finset.SupIndep.{u2, u1} α ι (DistribLattice.toLattice.{u2} α _inst_1) _inst_2 s f)
-Case conversion may be inaccurate. Consider using '#align set.pairwise_disjoint.sup_indep Set.PairwiseDisjoint.supIndepₓ'. -/
 alias sup_indep_iff_pairwise_disjoint ↔
   sup_indep.pairwise_disjoint _root_.set.pairwise_disjoint.sup_indep
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 #align set.pairwise_disjoint.sup_indep Set.PairwiseDisjoint.supIndep
 
-/- warning: finset.sup_indep.sup -> Finset.SupIndep.sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.sup.{u2, u3} (Finset.{u2} ι) ι' (Lattice.toSemilatticeSup.{u2} (Finset.{u2} ι) (Finset.lattice.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b))) (Finset.orderBot.{u2} ι) s g) f)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u3}} {ι' : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u3} ι] {s : Finset.{u2} ι'} {g : ι' -> (Finset.{u3} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u3} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.mem.{u2, u2} ι' (Finset.{u2} ι') (Finset.instMembershipFinset.{u2} ι') i' s) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.sup.{u3, u2} (Finset.{u3} ι) ι' (Lattice.toSemilatticeSup.{u3} (Finset.{u3} ι) (Finset.instLatticeFinset.{u3} ι (fun (a : ι) (b : ι) => _inst_3 a b))) (Finset.instOrderBotFinsetToLEToPreorderPartialOrder.{u3} ι) s g) f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.sup Finset.SupIndep.supₓ'. -/
 /-- Bind operation for `sup_indep`. -/
 theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
@@ -253,12 +169,6 @@ theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {
   exact hs.bUnion_finset hg
 #align finset.sup_indep.sup Finset.SupIndep.sup
 
-/- warning: finset.sup_indep.bUnion -> Finset.SupIndep.biUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.biUnion.{u3, u2} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u3}} {ι' : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u3} ι] {s : Finset.{u2} ι'} {g : ι' -> (Finset.{u3} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u3} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.mem.{u2, u2} ι' (Finset.{u2} ι') (Finset.instMembershipFinset.{u2} ι') i' s) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.biUnion.{u2, u3} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.bUnion Finset.SupIndep.biUnionₓ'. -/
 /-- Bind operation for `sup_indep`. -/
 theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
@@ -325,12 +235,6 @@ theorem setIndependent_pair {a b : α} (hab : a ≠ b) :
 
 include hs
 
-/- warning: complete_lattice.set_independent.disjoint_Sup -> CompleteLattice.SetIndependent.disjoint_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) y s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) y s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) y)))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSupₓ'. -/
 /-- If the elements of a set are independent, then any element is disjoint from the `Sup` of some
 subset of the rest. -/
 theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
@@ -373,33 +277,15 @@ theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
 
 variable {t : ι → α} (ht : Independent t)
 
-/- warning: complete_lattice.independent_def -> CompleteLattice.independent_def is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (j : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def CompleteLattice.independent_defₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
 #align complete_lattice.independent_def CompleteLattice.independent_def
 
-/- warning: complete_lattice.independent_def' -> CompleteLattice.independent_def' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def' CompleteLattice.independent_def'ₓ'. -/
 theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' { j | j ≠ i })) := by
   simp_rw [sSup_image]; rfl
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
-/- warning: complete_lattice.independent_def'' -> CompleteLattice.independent_def'' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def'' CompleteLattice.independent_def''ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def'' :
     Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _)(_ : j ≠ i), t j = a }) := by
@@ -427,22 +313,10 @@ theorem Independent.pairwiseDisjoint : Pairwise (Disjoint on t) := fun x y h =>
 #align complete_lattice.independent.pairwise_disjoint CompleteLattice.Independent.pairwiseDisjoint
 -/
 
-/- warning: complete_lattice.independent.mono -> CompleteLattice.Independent.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 s) -> (LE.le.{max u2 u1} (ι -> α) (Pi.hasLe.{u2, u1} ι (fun (ᾰ : ι) => α) (fun (i : ι) => Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) t s) -> (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 s) -> (LE.le.{max u1 u2} (ι -> α) (Pi.hasLe.{u2, u1} ι (fun (ᾰ : ι) => α) (fun (i : ι) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) t s) -> (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t)
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.mono CompleteLattice.Independent.monoₓ'. -/
 theorem Independent.mono {s t : ι → α} (hs : Independent s) (hst : t ≤ s) : Independent t :=
   fun i => (hs i).mono (hst i) <| iSup₂_mono fun j _ => hst j
 #align complete_lattice.independent.mono CompleteLattice.Independent.mono
 
-/- warning: complete_lattice.independent.comp -> CompleteLattice.Independent.comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Sort.{u2}} {ι' : Sort.{u3}} {t : ι -> α} {f : ι' -> ι}, (CompleteLattice.Independent.{u2, u1} ι α _inst_1 t) -> (Function.Injective.{u3, u2} ι' ι f) -> (CompleteLattice.Independent.{u3, u1} ι' α _inst_1 (Function.comp.{u3, u2, succ u1} ι' ι α t f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Sort.{u3}} {ι' : Sort.{u2}} {t : ι -> α} {f : ι' -> ι}, (CompleteLattice.Independent.{u3, u1} ι α _inst_1 t) -> (Function.Injective.{u2, u3} ι' ι f) -> (CompleteLattice.Independent.{u2, u1} ι' α _inst_1 (Function.comp.{u2, u3, succ u1} ι' ι α t f))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.comp CompleteLattice.Independent.compₓ'. -/
 /-- Composing an independent indexed family with an injective function on the index results in
 another indepedendent indexed family. -/
 theorem Independent.comp {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent t)
@@ -453,12 +327,6 @@ theorem Independent.comp {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht
     exact iSup_const_mono hf.ne
 #align complete_lattice.independent.comp CompleteLattice.Independent.comp
 
-/- warning: complete_lattice.independent.comp' -> CompleteLattice.Independent.comp' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Sort.{u2}} {ι' : Sort.{u3}} {t : ι -> α} {f : ι' -> ι}, (CompleteLattice.Independent.{u3, u1} ι' α _inst_1 (Function.comp.{u3, u2, succ u1} ι' ι α t f)) -> (Function.Surjective.{u3, u2} ι' ι f) -> (CompleteLattice.Independent.{u2, u1} ι α _inst_1 t)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Sort.{u3}} {ι' : Sort.{u2}} {t : ι -> α} {f : ι' -> ι}, (CompleteLattice.Independent.{u2, u1} ι' α _inst_1 (Function.comp.{u2, u3, succ u1} ι' ι α t f)) -> (Function.Surjective.{u2, u3} ι' ι f) -> (CompleteLattice.Independent.{u3, u1} ι α _inst_1 t)
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.comp' CompleteLattice.Independent.comp'ₓ'. -/
 theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent <| t ∘ f)
     (hf : Surjective f) : Independent t := by
   intro i
@@ -476,12 +344,6 @@ theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <
 #align complete_lattice.independent.set_independent_range CompleteLattice.Independent.setIndependent_range
 -/
 
-/- warning: complete_lattice.independent.injective -> CompleteLattice.Independent.injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) -> (forall (i : ι), Ne.{succ u1} α (t i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) -> (Function.Injective.{succ u2, succ u1} ι α t)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) -> (forall (i : ι), Ne.{succ u1} α (t i) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) -> (Function.Injective.{succ u2, succ u1} ι α t)
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.injective CompleteLattice.Independent.injectiveₓ'. -/
 theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ ⊥) : Injective t :=
   by
   intro i j h
@@ -509,9 +371,6 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 #align complete_lattice.independent_pair CompleteLattice.independent_pair
 -/
 
-/- warning: complete_lattice.independent.map_order_iso -> CompleteLattice.Independent.map_orderIso is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIsoₓ'. -/
 /-- Composing an indepedent indexed family with an order isomorphism on the elements results in
 another indepedendent indexed family. -/
 theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice α] [CompleteLattice β]
@@ -519,9 +378,6 @@ theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice
   ((ha i).map_orderIso f).mono_right (f.Monotone.le_map_iSup₂ _)
 #align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIso
 
-/- warning: complete_lattice.independent_map_order_iso_iff -> CompleteLattice.independent_map_orderIso_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iffₓ'. -/
 @[simp]
 theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLattice α]
     [CompleteLattice β] (f : α ≃o β) {a : ι → α} : Independent (f ∘ a) ↔ Independent a :=
@@ -531,12 +387,6 @@ theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLat
     fun h => h.map_orderIso f⟩
 #align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iff
 
-/- warning: complete_lattice.independent.disjoint_bsupr -> CompleteLattice.Independent.disjoint_biSup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} [_inst_2 : CompleteLattice.{u2} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u1} ι}, (Not (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) x y)) -> (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u2} α _inst_2)) (t x) (iSup.{u2, succ u1} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) => t i)))))
-but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} [_inst_2 : CompleteLattice.{u1} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u2} ι}, (Not (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_2)) (t x) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_2) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_2) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) => t i)))))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSupₓ'. -/
 /-- If the elements of a set are independent, then any element is disjoint from the `supr` of some
 subset of the rest. -/
 theorem Independent.disjoint_biSup {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
@@ -546,12 +396,6 @@ theorem Independent.disjoint_biSup {ι : Type _} {α : Type _} [CompleteLattice
 
 end CompleteLattice
 
-/- warning: complete_lattice.independent_iff_sup_indep -> CompleteLattice.independent_iff_supIndep is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)))))))) (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : Finset.{u1} ι} {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u1, u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) α _inst_1 (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)))) (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) s f)
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndepₓ'. -/
 theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finset ι} {f : ι → α} :
     CompleteLattice.Independent (f ∘ (coe : s → ι)) ↔ s.SupIndep f := by
   classical
@@ -564,29 +408,11 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
     simp [iSup_and, @iSup_comm _ (x ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 
-/- warning: complete_lattice.independent.sup_indep -> CompleteLattice.Independent.supIndep is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)))))))) -> (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : Finset.{u1} ι} {f : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) α _inst_1 (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)))) -> (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) s f)
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndepₓ'. -/
-/- warning: finset.sup_indep.independent -> Finset.SupIndep.independent is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f) -> (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) s f) -> (CompleteLattice.Independent.{succ u1, u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) α _inst_1 (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s))))
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.independent Finset.SupIndep.independentₓ'. -/
 alias CompleteLattice.independent_iff_supIndep ↔
   CompleteLattice.Independent.supIndep Finset.SupIndep.independent
 #align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndep
 #align finset.sup_indep.independent Finset.SupIndep.independent
 
-/- warning: complete_lattice.independent_iff_sup_indep_univ -> CompleteLattice.independent_iff_supIndep_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f) (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Fintype.{u1} ι] {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u1, u2} ι α _inst_1 f) (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) (Finset.univ.{u1} ι _inst_2) f)
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univₓ'. -/
 /-- A variant of `complete_lattice.independent_iff_sup_indep` for `fintype`s. -/
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
     CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
@@ -594,18 +420,6 @@ theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fint
       Finset.sup_eq_iSup]
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 
-/- warning: complete_lattice.independent.sup_indep_univ -> CompleteLattice.Independent.sup_indep_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f) -> (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Fintype.{u1} ι] {f : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} ι α _inst_1 f) -> (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) (Finset.univ.{u1} ι _inst_2) f)
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.sup_indep_univ CompleteLattice.Independent.sup_indep_univₓ'. -/
-/- warning: finset.sup_indep.independent_of_univ -> Finset.SupIndep.independent_of_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f) -> (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Fintype.{u1} ι] {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) (Finset.univ.{u1} ι _inst_2) f) -> (CompleteLattice.Independent.{succ u1, u2} ι α _inst_1 f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.independent_of_univ Finset.SupIndep.independent_of_univₓ'. -/
 alias CompleteLattice.independent_iff_supIndep_univ ↔
   CompleteLattice.Independent.sup_indep_univ Finset.SupIndep.independent_of_univ
 #align complete_lattice.independent.sup_indep_univ CompleteLattice.Independent.sup_indep_univ
Diff
@@ -262,9 +262,7 @@ Case conversion may be inaccurate. Consider using '#align finset.sup_indep.bUnio
 /-- Bind operation for `sup_indep`. -/
 theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
-    (s.biUnion g).SupIndep f := by
-  rw [← sup_eq_bUnion]
-  exact hs.sup hg
+    (s.biUnion g).SupIndep f := by rw [← sup_eq_bUnion]; exact hs.sup hg
 #align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 
 end DistribLattice
@@ -392,10 +390,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def' CompleteLattice.independent_def'ₓ'. -/
-theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' { j | j ≠ i })) :=
-  by
-  simp_rw [sSup_image]
-  rfl
+theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' { j | j ≠ i })) := by
+  simp_rw [sSup_image]; rfl
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
 /- warning: complete_lattice.independent_def'' -> CompleteLattice.independent_def'' is a dubious translation:
@@ -406,10 +402,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def'' CompleteLattice.independent_def''ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def'' :
-    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _)(_ : j ≠ i), t j = a }) :=
-  by
-  rw [independent_def']
-  tidy
+    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _)(_ : j ≠ i), t j = a }) := by
+  rw [independent_def']; tidy
 #align complete_lattice.independent_def'' CompleteLattice.independent_def''
 
 #print CompleteLattice.independent_empty /-
@@ -497,8 +491,7 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
     by
     replace ht := (ht i).mono_right this
     rwa [h, disjoint_self] at ht
-  replace contra : j ≠ i
-  · exact Ne.symm contra
+  replace contra : j ≠ i; · exact Ne.symm contra
   exact le_iSup₂ j contra
 #align complete_lattice.independent.injective CompleteLattice.Independent.injective
 
Diff
@@ -517,10 +517,7 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 -/
 
 /- warning: complete_lattice.independent.map_order_iso -> CompleteLattice.Independent.map_orderIso is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a))
-but is expected to have type
-  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f) a))
+<too large>
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIsoₓ'. -/
 /-- Composing an indepedent indexed family with an order isomorphism on the elements results in
 another indepedendent indexed family. -/
@@ -530,10 +527,7 @@ theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice
 #align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIso
 
 /- warning: complete_lattice.independent_map_order_iso_iff -> CompleteLattice.independent_map_orderIso_iff is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a)) (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a)
-but is expected to have type
-  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f) a)) (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a)
+<too large>
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iffₓ'. -/
 @[simp]
 theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLattice α]
Diff
@@ -520,7 +520,7 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 lean 3 declaration is
   forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a))
 but is expected to have type
-  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) a))
+  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f) a))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIsoₓ'. -/
 /-- Composing an indepedent indexed family with an order isomorphism on the elements results in
 another indepedendent indexed family. -/
@@ -533,7 +533,7 @@ theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice
 lean 3 declaration is
   forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a)) (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a)
 but is expected to have type
-  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) a)) (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a)
+  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f) a)) (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a)
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iffₓ'. -/
 @[simp]
 theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLattice α]
Diff
@@ -57,13 +57,17 @@ section Lattice
 
 variable [Lattice α] [OrderBot α]
 
-#print Finset.SupIndep /-
+/- warning: finset.sup_indep -> Finset.SupIndep is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], (Finset.{u2} ι) -> (ι -> α) -> Prop
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], (Finset.{u2} ι) -> (ι -> α) -> Prop
+Case conversion may be inaccurate. Consider using '#align finset.sup_indep Finset.SupIndepₓ'. -/
 /-- Supremum independence of finite sets. We avoid the "obvious" definition using `s.erase i`
 because `erase` would require decidable equality on `ι`. -/
 def SupIndep (s : Finset ι) (f : ι → α) : Prop :=
   ∀ ⦃t⦄, t ⊆ s → ∀ ⦃i⦄, i ∈ s → i ∉ t → Disjoint (f i) (t.sup f)
 #align finset.sup_indep Finset.SupIndep
--/
 
 variable {s t : Finset ι} {f : ι → α} {i : ι}
 
@@ -76,7 +80,7 @@ instance [DecidableEq ι] [DecidableEq α] : Decidable (SupIndep s f) :=
 
 /- warning: finset.sup_indep.subset -> Finset.SupIndep.subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {t : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 t f) -> (HasSubset.Subset.{u2} (Finset.{u2} ι) (Finset.hasSubset.{u2} ι) s t) -> (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {t : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 t f) -> (HasSubset.Subset.{u2} (Finset.{u2} ι) (Finset.hasSubset.{u2} ι) s t) -> (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {t : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 t f) -> (HasSubset.Subset.{u1} (Finset.{u1} ι) (Finset.instHasSubsetFinset.{u1} ι) s t) -> (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f)
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.subset Finset.SupIndep.subsetₓ'. -/
@@ -86,7 +90,7 @@ theorem SupIndep.subset (ht : t.SupIndep f) (h : s ⊆ t) : s.SupIndep f := fun
 
 /- warning: finset.sup_indep_empty -> Finset.supIndep_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : ι -> α), Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u2} (Finset.{u2} ι) (Finset.hasEmptyc.{u2} ι)) f
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : ι -> α), Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u2} (Finset.{u2} ι) (Finset.hasEmptyc.{u2} ι)) f
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] (f : ι -> α), Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u1} (Finset.{u1} ι) (Finset.instEmptyCollectionFinset.{u1} ι)) f
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep_empty Finset.supIndep_emptyₓ'. -/
@@ -95,7 +99,7 @@ theorem supIndep_empty (f : ι → α) : (∅ : Finset ι).SupIndep f := fun _ _
 
 /- warning: finset.sup_indep_singleton -> Finset.supIndep_singleton is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (i : ι) (f : ι -> α), Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (Singleton.singleton.{u2, u2} ι (Finset.{u2} ι) (Finset.hasSingleton.{u2} ι) i) f
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (i : ι) (f : ι -> α), Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (Singleton.singleton.{u2, u2} ι (Finset.{u2} ι) (Finset.hasSingleton.{u2} ι) i) f
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] (i : ι) (f : ι -> α), Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 (Singleton.singleton.{u1, u1} ι (Finset.{u1} ι) (Finset.instSingletonFinset.{u1} ι) i) f
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep_singleton Finset.supIndep_singletonₓ'. -/
@@ -107,7 +111,7 @@ theorem supIndep_singleton (i : ι) (f : ι → α) : ({i} : Finset ι).SupIndep
 
 /- warning: finset.sup_indep.pairwise_disjoint -> Finset.SupIndep.pairwiseDisjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 (Finset.toSet.{u1} ι s) f)
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjointₓ'. -/
@@ -116,16 +120,25 @@ theorem SupIndep.pairwiseDisjoint (hs : s.SupIndep f) : (s : Set ι).PairwiseDis
   sup_singleton.subst <| hs (singleton_subset_iff.2 hb) ha <| not_mem_singleton.2 hab
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 
-#print Finset.supIndep_iff_disjoint_erase /-
+/- warning: finset.sup_indep_iff_disjoint_erase -> Finset.supIndep_iff_disjoint_erase is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι], Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α _inst_1) _inst_2 (Finset.erase.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b) s i) f)))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι], Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α _inst_1) _inst_2 (Finset.erase.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b) s i) f)))
+Case conversion may be inaccurate. Consider using '#align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_eraseₓ'. -/
 /-- The RHS looks like the definition of `complete_lattice.independent`. -/
 theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
     s.SupIndep f ↔ ∀ i ∈ s, Disjoint (f i) ((s.eraseₓ i).sup f) :=
   ⟨fun hs i hi => hs (erase_subset _ _) hi (not_mem_erase _ _), fun hs t ht i hi hit =>
     (hs i hi).mono_right (sup_mono fun j hj => mem_erase.2 ⟨ne_of_mem_of_not_mem hj hit, ht hj⟩)⟩
 #align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_erase
--/
 
-#print Finset.supIndep_pair /-
+/- warning: finset.sup_indep_pair -> Finset.supIndep_pair is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι] {i : ι} {j : ι}, (Ne.{succ u2} ι i j) -> (Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (Insert.insert.{u2, u2} ι (Finset.{u2} ι) (Finset.hasInsert.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b)) i (Singleton.singleton.{u2, u2} ι (Finset.{u2} ι) (Finset.hasSingleton.{u2} ι) j)) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (f j)))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {f : ι -> α} [_inst_3 : DecidableEq.{succ u2} ι] {i : ι} {j : ι}, (Ne.{succ u2} ι i j) -> (Iff (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 (Insert.insert.{u2, u2} ι (Finset.{u2} ι) (Finset.instInsertFinset.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b)) i (Singleton.singleton.{u2, u2} ι (Finset.{u2} ι) (Finset.instSingletonFinset.{u2} ι) j)) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f i) (f j)))
+Case conversion may be inaccurate. Consider using '#align finset.sup_indep_pair Finset.supIndep_pairₓ'. -/
 @[simp]
 theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
     ({i, j} : Finset ι).SupIndep f ↔ Disjoint (f i) (f j) :=
@@ -147,19 +160,22 @@ theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
         exact hij
       rw [this, Finset.sup_singleton]⟩
 #align finset.sup_indep_pair Finset.supIndep_pair
--/
 
-#print Finset.supIndep_univ_bool /-
+/- warning: finset.sup_indep_univ_bool -> Finset.supIndep_univ_bool is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : Bool -> α), Iff (Finset.SupIndep.{u1, 0} α Bool _inst_1 _inst_2 (Finset.univ.{0} Bool Bool.fintype) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f Bool.false) (f Bool.true))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : Bool -> α), Iff (Finset.SupIndep.{u1, 0} α Bool _inst_1 _inst_2 (Finset.univ.{0} Bool Bool.fintype) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f Bool.false) (f Bool.true))
+Case conversion may be inaccurate. Consider using '#align finset.sup_indep_univ_bool Finset.supIndep_univ_boolₓ'. -/
 theorem supIndep_univ_bool (f : Bool → α) :
     (Finset.univ : Finset Bool).SupIndep f ↔ Disjoint (f false) (f true) :=
   haveI : tt ≠ ff := by simp only [Ne.def, not_false_iff]
   (sup_indep_pair this).trans disjoint_comm
 #align finset.sup_indep_univ_bool Finset.supIndep_univ_bool
--/
 
 /- warning: finset.sup_indep_univ_fin_two -> Finset.supIndep_univ_fin_two is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> α), Iff (Finset.SupIndep.{u1, 0} α (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) _inst_1 _inst_2 (Finset.univ.{0} (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (Fin.fintype (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f (OfNat.ofNat.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)) (ZeroLEOneClass.NeZero.two.{0} Nat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} Nat (NonAssocSemiring.toAddCommMonoidWithOne.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring))) (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)) (OrderedSemiring.zeroLEOneClass.{0} Nat Nat.orderedSemiring) (NeZero.one.{0} Nat (NonAssocSemiring.toMulZeroOneClass.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring)) Nat.nontrivial) (OrderedAddCommMonoid.to_covariantClass_left.{0} Nat (OrderedSemiring.toOrderedAddCommMonoid.{0} Nat Nat.orderedSemiring)))))))) (f (OfNat.ofNat.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 1 (OfNat.mk.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 1 (One.one.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (Fin.hasOneOfNeZero (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)) (ZeroLEOneClass.NeZero.two.{0} Nat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} Nat (NonAssocSemiring.toAddCommMonoidWithOne.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring))) (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)) (OrderedSemiring.zeroLEOneClass.{0} Nat Nat.orderedSemiring) (NeZero.one.{0} Nat (NonAssocSemiring.toMulZeroOneClass.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring)) Nat.nontrivial) (OrderedAddCommMonoid.to_covariantClass_left.{0} Nat (OrderedSemiring.toOrderedAddCommMonoid.{0} Nat Nat.orderedSemiring)))))))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> α), Iff (Finset.SupIndep.{u1, 0} α (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) _inst_1 _inst_2 (Finset.univ.{0} (Fin (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (Fin.fintype (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f (OfNat.ofNat.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)) (ZeroLEOneClass.NeZero.two.{0} Nat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} Nat (NonAssocSemiring.toAddCommMonoidWithOne.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring))) (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)) (OrderedSemiring.zeroLEOneClass.{0} Nat Nat.orderedSemiring) (NeZero.one.{0} Nat (NonAssocSemiring.toMulZeroOneClass.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring)) Nat.nontrivial) (OrderedAddCommMonoid.to_covariantClass_left.{0} Nat (OrderedSemiring.toOrderedAddCommMonoid.{0} Nat Nat.orderedSemiring)))))))) (f (OfNat.ofNat.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 1 (OfNat.mk.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) 1 (One.one.{0} (Fin (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (Fin.hasOneOfNeZero (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)) (ZeroLEOneClass.NeZero.two.{0} Nat (AddCommMonoidWithOne.toAddMonoidWithOne.{0} Nat (NonAssocSemiring.toAddCommMonoidWithOne.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring))) (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)) (OrderedSemiring.zeroLEOneClass.{0} Nat Nat.orderedSemiring) (NeZero.one.{0} Nat (NonAssocSemiring.toMulZeroOneClass.{0} Nat (Semiring.toNonAssocSemiring.{0} Nat Nat.semiring)) Nat.nontrivial) (OrderedAddCommMonoid.to_covariantClass_left.{0} Nat (OrderedSemiring.toOrderedAddCommMonoid.{0} Nat Nat.orderedSemiring)))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] (f : (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> α), Iff (Finset.SupIndep.{u1, 0} α (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) _inst_1 _inst_2 (Finset.univ.{0} (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (Fin.fintype (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) f) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (f (OfNat.ofNat.{0} (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (Fin.instOfNatFin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) 0 (NeZero.succ (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (f (OfNat.ofNat.{0} (Fin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 1 (Fin.instOfNatFin (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) 1 (NeZero.succ (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep_univ_fin_two Finset.supIndep_univ_fin_twoₓ'. -/
@@ -172,7 +188,7 @@ theorem supIndep_univ_fin_two (f : Fin 2 → α) :
 
 /- warning: finset.sup_indep.attach -> Finset.SupIndep.attach is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Finset.SupIndep.{u1, u2} α (Subtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)) _inst_1 _inst_2 (Finset.attach.{u2} ι s) (Function.comp.{succ u2, succ u2, succ u1} (Subtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)) ι α f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Finset.SupIndep.{u1, u2} α (Subtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)) _inst_1 _inst_2 (Finset.attach.{u2} ι s) (Function.comp.{succ u2, succ u2, succ u1} (Subtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)) ι α f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f) -> (Finset.SupIndep.{u2, u1} α (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) _inst_1 _inst_2 (Finset.attach.{u1} ι s) (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s))))
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.attach Finset.SupIndep.attachₓ'. -/
@@ -195,7 +211,7 @@ variable [DistribLattice α] [OrderBot α] {s : Finset ι} {f : ι → α}
 
 /- warning: finset.sup_indep_iff_pairwise_disjoint -> Finset.supIndep_iff_pairwiseDisjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {s : Finset.{u2} ι} {f : ι -> α}, Iff (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s f) (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {s : Finset.{u2} ι} {f : ι -> α}, Iff (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s f) (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : DistribLattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1)))))] {s : Finset.{u1} ι} {f : ι -> α}, Iff (Finset.SupIndep.{u2, u1} α ι (DistribLattice.toLattice.{u2} α _inst_1) _inst_2 s f) (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1))) _inst_2 (Finset.toSet.{u1} ι s) f)
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjointₓ'. -/
@@ -206,13 +222,13 @@ theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDi
 
 /- warning: finset.sup_indep.pairwise_disjoint -> Finset.SupIndep.pairwiseDisjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : Lattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : Lattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1))))] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι _inst_1 _inst_2 s f) -> (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α _inst_1)) _inst_2 (Finset.toSet.{u1} ι s) f)
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjointₓ'. -/
 /- warning: set.pairwise_disjoint.sup_indep -> Set.PairwiseDisjoint.supIndep is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {s : Finset.{u2} ι} {f : ι -> α}, (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {s : Finset.{u2} ι} {f : ι -> α}, (Set.PairwiseDisjoint.{u1, u2} α ι (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : DistribLattice.{u2} α] [_inst_2 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1)))))] {s : Finset.{u1} ι} {f : ι -> α}, (Set.PairwiseDisjoint.{u2, u1} α ι (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α _inst_1))) _inst_2 (Finset.toSet.{u1} ι s) f) -> (Finset.SupIndep.{u2, u1} α ι (DistribLattice.toLattice.{u2} α _inst_1) _inst_2 s f)
 Case conversion may be inaccurate. Consider using '#align set.pairwise_disjoint.sup_indep Set.PairwiseDisjoint.supIndepₓ'. -/
@@ -223,7 +239,7 @@ alias sup_indep_iff_pairwise_disjoint ↔
 
 /- warning: finset.sup_indep.sup -> Finset.SupIndep.sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.sup.{u2, u3} (Finset.{u2} ι) ι' (Lattice.toSemilatticeSup.{u2} (Finset.{u2} ι) (Finset.lattice.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b))) (Finset.orderBot.{u2} ι) s g) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.sup.{u2, u3} (Finset.{u2} ι) ι' (Lattice.toSemilatticeSup.{u2} (Finset.{u2} ι) (Finset.lattice.{u2} ι (fun (a : ι) (b : ι) => _inst_3 a b))) (Finset.orderBot.{u2} ι) s g) f)
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u3}} {ι' : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u3} ι] {s : Finset.{u2} ι'} {g : ι' -> (Finset.{u3} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u3} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.mem.{u2, u2} ι' (Finset.{u2} ι') (Finset.instMembershipFinset.{u2} ι') i' s) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.sup.{u3, u2} (Finset.{u3} ι) ι' (Lattice.toSemilatticeSup.{u3} (Finset.{u3} ι) (Finset.instLatticeFinset.{u3} ι (fun (a : ι) (b : ι) => _inst_3 a b))) (Finset.instOrderBotFinsetToLEToPreorderPartialOrder.{u3} ι) s g) f)
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.sup Finset.SupIndep.supₓ'. -/
@@ -239,7 +255,7 @@ theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {
 
 /- warning: finset.sup_indep.bUnion -> Finset.SupIndep.biUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.biUnion.{u3, u2} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.biUnion.{u3, u2} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u3}} {ι' : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u3} ι] {s : Finset.{u2} ι'} {g : ι' -> (Finset.{u3} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u3} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.mem.{u2, u2} ι' (Finset.{u2} ι') (Finset.instMembershipFinset.{u2} ι') i' s) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.biUnion.{u2, u3} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.bUnion Finset.SupIndep.biUnionₓ'. -/
@@ -313,7 +329,7 @@ include hs
 
 /- warning: complete_lattice.set_independent.disjoint_Sup -> CompleteLattice.SetIndependent.disjoint_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) y s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) y)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) y s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) y)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) y s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) y)))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSupₓ'. -/
@@ -361,7 +377,7 @@ variable {t : ι → α} (ht : Independent t)
 
 /- warning: complete_lattice.independent_def -> CompleteLattice.independent_def is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (j : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def CompleteLattice.independent_defₓ'. -/
@@ -372,7 +388,7 @@ theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j)
 
 /- warning: complete_lattice.independent_def' -> CompleteLattice.independent_def' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def' CompleteLattice.independent_def'ₓ'. -/
@@ -384,7 +400,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
 
 /- warning: complete_lattice.independent_def'' -> CompleteLattice.independent_def'' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def'' CompleteLattice.independent_def''ₓ'. -/
@@ -417,11 +433,15 @@ theorem Independent.pairwiseDisjoint : Pairwise (Disjoint on t) := fun x y h =>
 #align complete_lattice.independent.pairwise_disjoint CompleteLattice.Independent.pairwiseDisjoint
 -/
 
-#print CompleteLattice.Independent.mono /-
+/- warning: complete_lattice.independent.mono -> CompleteLattice.Independent.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 s) -> (LE.le.{max u2 u1} (ι -> α) (Pi.hasLe.{u2, u1} ι (fun (ᾰ : ι) => α) (fun (i : ι) => Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) t s) -> (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t)
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 s) -> (LE.le.{max u1 u2} (ι -> α) (Pi.hasLe.{u2, u1} ι (fun (ᾰ : ι) => α) (fun (i : ι) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) t s) -> (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t)
+Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.mono CompleteLattice.Independent.monoₓ'. -/
 theorem Independent.mono {s t : ι → α} (hs : Independent s) (hst : t ≤ s) : Independent t :=
   fun i => (hs i).mono (hst i) <| iSup₂_mono fun j _ => hst j
 #align complete_lattice.independent.mono CompleteLattice.Independent.mono
--/
 
 /- warning: complete_lattice.independent.comp -> CompleteLattice.Independent.comp is a dubious translation:
 lean 3 declaration is
@@ -498,7 +518,7 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 
 /- warning: complete_lattice.independent.map_order_iso -> CompleteLattice.Independent.map_orderIso is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a))
+  forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a))
 but is expected to have type
   forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) a))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIsoₓ'. -/
@@ -511,7 +531,7 @@ theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice
 
 /- warning: complete_lattice.independent_map_order_iso_iff -> CompleteLattice.independent_map_orderIso_iff is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a)) (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a)
+  forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toHasLe.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a)) (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a)
 but is expected to have type
   forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) a)) (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a)
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iffₓ'. -/
@@ -526,7 +546,7 @@ theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLat
 
 /- warning: complete_lattice.independent.disjoint_bsupr -> CompleteLattice.Independent.disjoint_biSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} [_inst_2 : CompleteLattice.{u2} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u1} ι}, (Not (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) x y)) -> (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u2} α _inst_2)) (t x) (iSup.{u2, succ u1} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) => t i)))))
+  forall {ι : Type.{u1}} {α : Type.{u2}} [_inst_2 : CompleteLattice.{u2} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u1} ι}, (Not (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) x y)) -> (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u2} α _inst_2)) (t x) (iSup.{u2, succ u1} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) => t i)))))
 but is expected to have type
   forall {ι : Type.{u2}} {α : Type.{u1}} [_inst_2 : CompleteLattice.{u1} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u2} ι}, (Not (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_2)) (t x) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_2) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_2) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) => t i)))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSupₓ'. -/
@@ -541,7 +561,7 @@ end CompleteLattice
 
 /- warning: complete_lattice.independent_iff_sup_indep -> CompleteLattice.independent_iff_supIndep is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)))))))) (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)))))))) (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : Finset.{u1} ι} {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u1, u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) α _inst_1 (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)))) (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) s f)
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndepₓ'. -/
@@ -559,13 +579,13 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
 
 /- warning: complete_lattice.independent.sup_indep -> CompleteLattice.Independent.supIndep is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)))))))) -> (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s)))))))) -> (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : Finset.{u1} ι} {f : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) α _inst_1 (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)))) -> (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) s f)
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndepₓ'. -/
 /- warning: finset.sup_indep.independent -> Finset.SupIndep.independent is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f) -> (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s))))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Finset.{u2} ι} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) s f) -> (CompleteLattice.Independent.{succ u2, u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) α _inst_1 (Function.comp.{succ u2, succ u2, succ u1} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι α f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Finset.{u2} ι) Type.{u2} (Finset.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) x s))))))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : Finset.{u1} ι} {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) s f) -> (CompleteLattice.Independent.{succ u1, u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) α _inst_1 (Function.comp.{succ u1, succ u1, succ u2} (Subtype.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s)) ι α f (Subtype.val.{succ u1} ι (fun (x : ι) => Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) x s))))
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.independent Finset.SupIndep.independentₓ'. -/
@@ -576,7 +596,7 @@ alias CompleteLattice.independent_iff_supIndep ↔
 
 /- warning: complete_lattice.independent_iff_sup_indep_univ -> CompleteLattice.independent_iff_supIndep_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f) (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f) (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Fintype.{u1} ι] {f : ι -> α}, Iff (CompleteLattice.Independent.{succ u1, u2} ι α _inst_1 f) (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) (Finset.univ.{u1} ι _inst_2) f)
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univₓ'. -/
@@ -589,13 +609,13 @@ theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fint
 
 /- warning: complete_lattice.independent.sup_indep_univ -> CompleteLattice.Independent.sup_indep_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f) -> (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f) -> (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Fintype.{u1} ι] {f : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} ι α _inst_1 f) -> (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) (Finset.univ.{u1} ι _inst_2) f)
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.sup_indep_univ CompleteLattice.Independent.sup_indep_univₓ'. -/
 /- warning: finset.sup_indep.independent_of_univ -> Finset.SupIndep.independent_of_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f) -> (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Fintype.{u2} ι] {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι (CompleteLattice.toLattice.{u1} α _inst_1) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (Finset.univ.{u2} ι _inst_2) f) -> (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Fintype.{u1} ι] {f : ι -> α}, (Finset.SupIndep.{u2, u1} α ι (CompleteLattice.toLattice.{u2} α _inst_1) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α _inst_1)) (Finset.univ.{u1} ι _inst_2) f) -> (CompleteLattice.Independent.{succ u1, u2} ι α _inst_1 f)
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep.independent_of_univ Finset.SupIndep.independent_of_univₓ'. -/
Diff
@@ -237,19 +237,19 @@ theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {
   exact hs.bUnion_finset hg
 #align finset.sup_indep.sup Finset.SupIndep.sup
 
-/- warning: finset.sup_indep.bUnion -> Finset.SupIndep.bunionᵢ is a dubious translation:
+/- warning: finset.sup_indep.bUnion -> Finset.SupIndep.biUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.bunionᵢ.{u3, u2} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} {ι' : Type.{u3}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u2} ι] {s : Finset.{u3} ι'} {g : ι' -> (Finset.{u2} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u3} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u2} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.Mem.{u3, u3} ι' (Finset.{u3} ι') (Finset.hasMem.{u3} ι') i' s) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u2} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.biUnion.{u3, u2} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u3}} {ι' : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u3} ι] {s : Finset.{u2} ι'} {g : ι' -> (Finset.{u3} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u3} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.mem.{u2, u2} ι' (Finset.{u2} ι') (Finset.instMembershipFinset.{u2} ι') i' s) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.bunionᵢ.{u2, u3} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
-Case conversion may be inaccurate. Consider using '#align finset.sup_indep.bUnion Finset.SupIndep.bunionᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u3}} {ι' : Type.{u2}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DecidableEq.{succ u3} ι] {s : Finset.{u2} ι'} {g : ι' -> (Finset.{u3} ι)} {f : ι -> α}, (Finset.SupIndep.{u1, u2} α ι' (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 s (fun (i : ι') => Finset.sup.{u1, u3} α ι (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) _inst_2 (g i) f)) -> (forall (i' : ι'), (Membership.mem.{u2, u2} ι' (Finset.{u2} ι') (Finset.instMembershipFinset.{u2} ι') i' s) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (g i') f)) -> (Finset.SupIndep.{u1, u3} α ι (DistribLattice.toLattice.{u1} α _inst_1) _inst_2 (Finset.biUnion.{u2, u3} ι' ι (fun (a : ι) (b : ι) => _inst_3 a b) s g) f)
+Case conversion may be inaccurate. Consider using '#align finset.sup_indep.bUnion Finset.SupIndep.biUnionₓ'. -/
 /-- Bind operation for `sup_indep`. -/
-theorem SupIndep.bunionᵢ [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
+theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
-    (s.bunionᵢ g).SupIndep f := by
+    (s.biUnion g).SupIndep f := by
   rw [← sup_eq_bUnion]
   exact hs.sup hg
-#align finset.sup_indep.bUnion Finset.SupIndep.bunionᵢ
+#align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 
 end DistribLattice
 
@@ -268,7 +268,7 @@ open Set Function
 /-- An independent set of elements in a complete lattice is one in which every element is disjoint
   from the `Sup` of the rest. -/
 def SetIndependent (s : Set α) : Prop :=
-  ∀ ⦃a⦄, a ∈ s → Disjoint a (supₛ (s \ {a}))
+  ∀ ⦃a⦄, a ∈ s → Disjoint a (sSup (s \ {a}))
 #align complete_lattice.set_independent CompleteLattice.SetIndependent
 -/
 
@@ -283,14 +283,14 @@ theorem setIndependent_empty : SetIndependent (∅ : Set α) := fun x hx =>
 
 #print CompleteLattice.SetIndependent.mono /-
 theorem SetIndependent.mono {t : Set α} (hst : t ⊆ s) : SetIndependent t := fun a ha =>
-  (hs (hst ha)).mono_right (supₛ_le_supₛ (diff_subset_diff_left hst))
+  (hs (hst ha)).mono_right (sSup_le_sSup (diff_subset_diff_left hst))
 #align complete_lattice.set_independent.mono CompleteLattice.SetIndependent.mono
 -/
 
 #print CompleteLattice.SetIndependent.pairwiseDisjoint /-
 /-- If the elements of a set are independent, then any pair within that set is disjoint. -/
 theorem SetIndependent.pairwiseDisjoint : s.PairwiseDisjoint id := fun x hx y hy h =>
-  disjoint_supₛ_right (hs hx) ((mem_diff y).mpr ⟨hy, h.symm⟩)
+  disjoint_sSup_right (hs hx) ((mem_diff y).mpr ⟨hy, h.symm⟩)
 #align complete_lattice.set_independent.pairwise_disjoint CompleteLattice.SetIndependent.pairwiseDisjoint
 -/
 
@@ -303,29 +303,29 @@ theorem setIndependent_pair {a b : α} (hab : a ≠ b) :
     exact h.pairwise_disjoint (mem_insert _ _) (mem_insert_of_mem _ (mem_singleton _)) hab
   · rintro h c ((rfl : c = a) | (rfl : c = b))
     · convert h using 1
-      simp [hab, supₛ_singleton]
+      simp [hab, sSup_singleton]
     · convert h.symm using 1
-      simp [hab, supₛ_singleton]
+      simp [hab, sSup_singleton]
 #align complete_lattice.set_independent_pair CompleteLattice.setIndependent_pair
 -/
 
 include hs
 
-/- warning: complete_lattice.set_independent.disjoint_Sup -> CompleteLattice.SetIndependent.disjoint_supₛ is a dubious translation:
+/- warning: complete_lattice.set_independent.disjoint_Sup -> CompleteLattice.SetIndependent.disjoint_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) y s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) y)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) y s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) y)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) y s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) y)))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_supₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (CompleteLattice.SetIndependent.{u1} α _inst_1 s) -> (forall {x : α} {y : Set.{u1} α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) y s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) x (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) y)))
+Case conversion may be inaccurate. Consider using '#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSupₓ'. -/
 /-- If the elements of a set are independent, then any element is disjoint from the `Sup` of some
 subset of the rest. -/
-theorem SetIndependent.disjoint_supₛ {x : α} {y : Set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
-    Disjoint x (supₛ y) :=
+theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
+    Disjoint x (sSup y) :=
   by
   have := (hs.mono <| insert_subset.mpr ⟨hx, hy⟩) (mem_insert x _)
   rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this
   exact this
-#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_supₛ
+#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
 
 omit hs
 
@@ -349,11 +349,11 @@ def Independent {ι : Sort _} {α : Type _} [CompleteLattice α] (t : ι → α)
 theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
     SetIndependent s ↔ Independent (coe : s → α) :=
   by
-  simp_rw [independent, set_independent, SetCoe.forall, supₛ_eq_supᵢ]
+  simp_rw [independent, set_independent, SetCoe.forall, sSup_eq_iSup]
   refine' forall₂_congr fun a ha => _
   congr 2
   convert supr_subtype.symm
-  simp [supᵢ_and]
+  simp [iSup_and]
 #align complete_lattice.set_independent_iff CompleteLattice.setIndependent_iff
 -/
 
@@ -361,9 +361,9 @@ variable {t : ι → α} (ht : Independent t)
 
 /- warning: complete_lattice.independent_def -> CompleteLattice.independent_def is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (j : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (j : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def CompleteLattice.independent_defₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
@@ -372,25 +372,25 @@ theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j)
 
 /- warning: complete_lattice.independent_def' -> CompleteLattice.independent_def' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} ι α t (setOf.{u2} ι (fun (j : ι) => Ne.{succ u2} ι j i)))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def' CompleteLattice.independent_def'ₓ'. -/
-theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (supₛ (t '' { j | j ≠ i })) :=
+theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' { j | j ≠ i })) :=
   by
-  simp_rw [supₛ_image]
+  simp_rw [sSup_image]
   rfl
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
 /- warning: complete_lattice.independent_def'' -> CompleteLattice.independent_def'' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def'' CompleteLattice.independent_def''ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def'' :
-    Independent t ↔ ∀ i, Disjoint (t i) (supₛ { a | ∃ (j : _)(_ : j ≠ i), t j = a }) :=
+    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _)(_ : j ≠ i), t j = a }) :=
   by
   rw [independent_def']
   tidy
@@ -413,13 +413,13 @@ theorem independent_pempty (t : PEmpty → α) : Independent t :=
 #print CompleteLattice.Independent.pairwiseDisjoint /-
 /-- If the elements of a set are independent, then any pair within that set is disjoint. -/
 theorem Independent.pairwiseDisjoint : Pairwise (Disjoint on t) := fun x y h =>
-  disjoint_supₛ_right (ht x) ⟨y, supᵢ_pos h.symm⟩
+  disjoint_sSup_right (ht x) ⟨y, iSup_pos h.symm⟩
 #align complete_lattice.independent.pairwise_disjoint CompleteLattice.Independent.pairwiseDisjoint
 -/
 
 #print CompleteLattice.Independent.mono /-
 theorem Independent.mono {s t : ι → α} (hs : Independent s) (hst : t ≤ s) : Independent t :=
-  fun i => (hs i).mono (hst i) <| supᵢ₂_mono fun j _ => hst j
+  fun i => (hs i).mono (hst i) <| iSup₂_mono fun j _ => hst j
 #align complete_lattice.independent.mono CompleteLattice.Independent.mono
 -/
 
@@ -435,8 +435,8 @@ theorem Independent.comp {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht
     (hf : Injective f) : Independent (t ∘ f) := fun i =>
   (ht (f i)).mono_right <|
     by
-    refine' (supᵢ_mono fun i => _).trans (supᵢ_comp_le _ f)
-    exact supᵢ_const_mono hf.ne
+    refine' (iSup_mono fun i => _).trans (iSup_comp_le _ f)
+    exact iSup_const_mono hf.ne
 #align complete_lattice.independent.comp CompleteLattice.Independent.comp
 
 /- warning: complete_lattice.independent.comp' -> CompleteLattice.Independent.comp' is a dubious translation:
@@ -450,7 +450,7 @@ theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht
   intro i
   obtain ⟨i', rfl⟩ := hf i
   rw [← hf.supr_comp]
-  exact (ht i').mono_right (bsupᵢ_mono fun j' hij => mt (congr_arg f) hij)
+  exact (ht i').mono_right (biSup_mono fun j' hij => mt (congr_arg f) hij)
 #align complete_lattice.independent.comp' CompleteLattice.Independent.comp'
 
 #print CompleteLattice.Independent.setIndependent_range /-
@@ -479,7 +479,7 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
     rwa [h, disjoint_self] at ht
   replace contra : j ≠ i
   · exact Ne.symm contra
-  exact le_supᵢ₂ j contra
+  exact le_iSup₂ j contra
 #align complete_lattice.independent.injective CompleteLattice.Independent.injective
 
 #print CompleteLattice.independent_pair /-
@@ -489,9 +489,9 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
   · exact fun h => h.PairwiseDisjoint hij
   · rintro h k
     obtain rfl | rfl := huniv k
-    · refine' h.mono_right (supᵢ_le fun i => supᵢ_le fun hi => Eq.le _)
+    · refine' h.mono_right (iSup_le fun i => iSup_le fun hi => Eq.le _)
       rw [(huniv i).resolve_left hi]
-    · refine' h.symm.mono_right (supᵢ_le fun j => supᵢ_le fun hj => Eq.le _)
+    · refine' h.symm.mono_right (iSup_le fun j => iSup_le fun hj => Eq.le _)
       rw [(huniv j).resolve_right hj]
 #align complete_lattice.independent_pair CompleteLattice.independent_pair
 -/
@@ -506,7 +506,7 @@ Case conversion may be inaccurate. Consider using '#align complete_lattice.indep
 another indepedendent indexed family. -/
 theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice α] [CompleteLattice β]
     (f : α ≃o β) {a : ι → α} (ha : Independent a) : Independent (f ∘ a) := fun i =>
-  ((ha i).map_orderIso f).mono_right (f.Monotone.le_map_supᵢ₂ _)
+  ((ha i).map_orderIso f).mono_right (f.Monotone.le_map_iSup₂ _)
 #align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIso
 
 /- warning: complete_lattice.independent_map_order_iso_iff -> CompleteLattice.independent_map_orderIso_iff is a dubious translation:
@@ -524,18 +524,18 @@ theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLat
     fun h => h.map_orderIso f⟩
 #align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iff
 
-/- warning: complete_lattice.independent.disjoint_bsupr -> CompleteLattice.Independent.disjoint_bsupᵢ is a dubious translation:
+/- warning: complete_lattice.independent.disjoint_bsupr -> CompleteLattice.Independent.disjoint_biSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} [_inst_2 : CompleteLattice.{u2} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u1} ι}, (Not (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) x y)) -> (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u2} α _inst_2)) (t x) (supᵢ.{u2, succ u1} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) => t i)))))
+  forall {ι : Type.{u1}} {α : Type.{u2}} [_inst_2 : CompleteLattice.{u2} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u1, u2} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u1} ι}, (Not (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) x y)) -> (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u2} α _inst_2)) (t x) (iSup.{u2, succ u1} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteSemilatticeSup.toHasSup.{u2} α (CompleteLattice.toCompleteSemilatticeSup.{u2} α _inst_2)) (Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) (fun (H : Membership.Mem.{u1, u1} ι (Set.{u1} ι) (Set.hasMem.{u1} ι) i y) => t i)))))
 but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} [_inst_2 : CompleteLattice.{u1} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u2} ι}, (Not (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_2)) (t x) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_2) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_2) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) => t i)))))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_bsupᵢₓ'. -/
+  forall {ι : Type.{u2}} {α : Type.{u1}} [_inst_2 : CompleteLattice.{u1} α] {t : ι -> α}, (CompleteLattice.Independent.{succ u2, u1} ι α _inst_2 t) -> (forall {x : ι} {y : Set.{u2} ι}, (Not (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x y)) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_2)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_2)) (t x) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_2) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_2) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i y) => t i)))))
+Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSupₓ'. -/
 /-- If the elements of a set are independent, then any element is disjoint from the `supr` of some
 subset of the rest. -/
-theorem Independent.disjoint_bsupᵢ {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
+theorem Independent.disjoint_biSup {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
     (ht : Independent t) {x : ι} {y : Set ι} (hx : x ∉ y) : Disjoint (t x) (⨆ i ∈ y, t i) :=
-  Disjoint.mono_right (bsupᵢ_mono fun i hi => (ne_of_mem_of_not_mem hi hx : _)) (ht x)
-#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_bsupᵢ
+  Disjoint.mono_right (biSup_mono fun i hi => (ne_of_mem_of_not_mem hi hx : _)) (ht x)
+#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSup
 
 end CompleteLattice
 
@@ -550,11 +550,11 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
   classical
     rw [Finset.supIndep_iff_disjoint_erase]
     refine' subtype.forall.trans (forall₂_congr fun a b => _)
-    rw [Finset.sup_eq_supᵢ]
+    rw [Finset.sup_eq_iSup]
     congr 2
     refine' supr_subtype.trans _
     congr 1 with x
-    simp [supᵢ_and, @supᵢ_comm _ (x ∈ s)]
+    simp [iSup_and, @iSup_comm _ (x ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 
 /- warning: complete_lattice.independent.sup_indep -> CompleteLattice.Independent.supIndep is a dubious translation:
@@ -584,7 +584,7 @@ Case conversion may be inaccurate. Consider using '#align complete_lattice.indep
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
     CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
   classical simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent,
-      Finset.sup_eq_supᵢ]
+      Finset.sup_eq_iSup]
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 
 /- warning: complete_lattice.independent.sup_indep_univ -> CompleteLattice.Independent.sup_indep_univ is a dubious translation:
@@ -614,7 +614,7 @@ variable [Order.Frame α]
 theorem setIndependent_iff_pairwiseDisjoint {s : Set α} :
     SetIndependent s ↔ s.PairwiseDisjoint id :=
   ⟨SetIndependent.pairwiseDisjoint, fun hs i hi =>
-    disjoint_supₛ_iff.2 fun j hj => hs hi hj.1 <| Ne.symm hj.2⟩
+    disjoint_sSup_iff.2 fun j hj => hs hi hj.1 <| Ne.symm hj.2⟩
 #align complete_lattice.set_independent_iff_pairwise_disjoint CompleteLattice.setIndependent_iff_pairwiseDisjoint
 -/
 
@@ -624,7 +624,7 @@ alias set_independent_iff_pairwise_disjoint ↔ _ _root_.set.pairwise_disjoint.s
 #print CompleteLattice.independent_iff_pairwiseDisjoint /-
 theorem independent_iff_pairwiseDisjoint {f : ι → α} : Independent f ↔ Pairwise (Disjoint on f) :=
   ⟨Independent.pairwiseDisjoint, fun hs i =>
-    disjoint_supᵢ_iff.2 fun j => disjoint_supᵢ_iff.2 fun hij => hs hij.symm⟩
+    disjoint_iSup_iff.2 fun j => disjoint_iSup_iff.2 fun hij => hs hij.symm⟩
 #align complete_lattice.independent_iff_pairwise_disjoint CompleteLattice.independent_iff_pairwiseDisjoint
 -/
 
Diff
@@ -500,7 +500,7 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 lean 3 declaration is
   forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a))
 but is expected to have type
-  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f))) a))
+  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a) -> (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) a))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIsoₓ'. -/
 /-- Composing an indepedent indexed family with an order isomorphism on the elements results in
 another indepedendent indexed family. -/
@@ -513,7 +513,7 @@ theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice
 lean 3 declaration is
   forall {ι : Sort.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u1, u3} ι β _inst_3 (Function.comp.{u1, succ u2, succ u3} ι α β (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3))))) (fun (_x : RelIso.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) => α -> β) (RelIso.hasCoeToFun.{u2, u3} α β (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2))))) (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_3)))))) f) a)) (CompleteLattice.Independent.{u1, u2} ι α _inst_2 a)
 but is expected to have type
-  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f))) a)) (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a)
+  forall {ι : Sort.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_2 : CompleteLattice.{u2} α] [_inst_3 : CompleteLattice.{u1} β] (f : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3))))) {a : ι -> α}, Iff (CompleteLattice.Independent.{u3, u1} ι β _inst_3 (Function.comp.{u3, succ u2, succ u1} ι α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_3)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f) a)) (CompleteLattice.Independent.{u3, u2} ι α _inst_2 a)
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iffₓ'. -/
 @[simp]
 theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLattice α]
Diff
@@ -329,7 +329,7 @@ theorem SetIndependent.disjoint_supₛ {x : α} {y : Set α} (hx : x ∈ s) (hy
 
 omit hs
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 #print CompleteLattice.Independent /-
 /-- An independent indexed family of elements in a complete lattice is one in which every element
   is disjoint from the `supr` of the rest.
@@ -365,7 +365,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (j : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => t j))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def CompleteLattice.independent_defₓ'. -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
 #align complete_lattice.independent_def CompleteLattice.independent_def
@@ -388,7 +388,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {t : ι -> α}, Iff (CompleteLattice.Independent.{succ u2, u1} ι α _inst_1 t) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (t i) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (setOf.{u1} α (fun (a : α) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι j i) (fun (H : Ne.{succ u2} ι j i) => Eq.{succ u1} α (t j) a))))))
 Case conversion may be inaccurate. Consider using '#align complete_lattice.independent_def'' CompleteLattice.independent_def''ₓ'. -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (j «expr ≠ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j «expr ≠ » i) -/
 theorem independent_def'' :
     Independent t ↔ ∀ i, Disjoint (t i) (supₛ { a | ∃ (j : _)(_ : j ≠ i), t j = a }) :=
   by
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
 
 ! This file was ported from Lean 3 source module order.sup_indep
-! leanprover-community/mathlib commit cc70d9141824ea8982d1562ce009952f2c3ece30
+! leanprover-community/mathlib commit 1c857a1f6798cb054be942199463c2cf904cb937
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -201,7 +201,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjointₓ'. -/
 theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDisjoint f :=
   ⟨SupIndep.pairwiseDisjoint, fun hs t ht i hi hit =>
-    disjoint_sup_right.2 fun j hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
+    Finset.disjoint_sup_right.2 fun j hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
 #align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjoint
 
 /- warning: finset.sup_indep.pairwise_disjoint -> Finset.SupIndep.pairwiseDisjoint is a dubious translation:

Changes in mathlib4

mathlib3
mathlib4
chore: Split Data.{Nat,Int}{.Order}.Basic in group vs ring instances (#11924)

Scatter the content of Data.Nat.Basic across:

  • Data.Nat.Defs for the lemmas having no dependencies
  • Algebra.Group.Nat for the monoid instances and the few miscellaneous lemmas needing them.
  • Algebra.Ring.Nat for the semiring instance and the few miscellaneous lemmas following it.

Similarly, scatter

  • Data.Int.Basic across Data.Int.Defs, Algebra.Group.Int, Algebra.Ring.Int
  • Data.Nat.Order.Basic across Data.Nat.Defs, Algebra.Order.Group.Nat, Algebra.Order.Ring.Nat
  • Data.Int.Order.Basic across Data.Int.Defs, Algebra.Order.Group.Int, Algebra.Order.Ring.Int

Also move a few lemmas from Data.Nat.Order.Lemmas to Data.Nat.Defs.

Before pre_11924

After post_11924

Diff
@@ -3,6 +3,7 @@ Copyright (c) 2021 Aaron Anderson, Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
 -/
+import Mathlib.Algebra.Order.Ring.CharZero
 import Mathlib.Data.Finset.Sigma
 import Mathlib.Data.Finset.Pairwise
 import Mathlib.Data.Finset.Powerset
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -141,7 +141,7 @@ theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
     · convert h.symm using 1
       have : ({i, k} : Finset ι).erase k = {i} := by
         ext
-        rw [mem_erase, mem_insert, mem_singleton, mem_singleton, and_or_left, Ne.def,
+        rw [mem_erase, mem_insert, mem_singleton, mem_singleton, and_or_left, Ne,
           not_and_self_iff, or_false_iff, and_iff_right_of_imp]
         rintro rfl
         exact hij
@@ -150,7 +150,7 @@ theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
 
 theorem supIndep_univ_bool (f : Bool → α) :
     (Finset.univ : Finset Bool).SupIndep f ↔ Disjoint (f false) (f true) :=
-  haveI : true ≠ false := by simp only [Ne.def, not_false_iff]
+  haveI : true ≠ false := by simp only [Ne, not_false_iff]
   (supIndep_pair this).trans disjoint_comm
 #align finset.sup_indep_univ_bool Finset.supIndep_univ_bool
 
chore: simplify some proofs for the 2024-03-16 nightly (#11547)

Some small changes to adapt to the 2024-03-16 nightly that can land in advance.

Diff
@@ -267,7 +267,7 @@ theorem supIndep_product_iff {s : Finset ι} {t : Finset ι'} {f : ι × ι' →
   refine' ⟨_, fun h => h.1.product h.2⟩
   simp_rw [supIndep_iff_pairwiseDisjoint]
   refine' fun h => ⟨fun i hi j hj hij => _, fun i hi j hj hij => _⟩ <;>
-      simp_rw [Function.onFun, Finset.disjoint_sup_left, Finset.disjoint_sup_right] <;>
+      simp_rw [Finset.disjoint_sup_left, Finset.disjoint_sup_right] <;>
     intro i' hi' j' hj'
   · exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne Prod.fst hij)
   · exact h (mk_mem_product hi' hi) (mk_mem_product hj' hj) (ne_of_apply_ne Prod.snd hij)
chore: tidy various files (#11490)
Diff
@@ -361,7 +361,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
 theorem independent_def'' :
-    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _) (_ : j ≠ i), t j = a }) := by
+    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ j ≠ i, t j = a }) := by
   rw [independent_def']
   aesop
 #align complete_lattice.independent_def'' CompleteLattice.independent_def''
chore: resolve some porting notes which are fixed now (#11317)

It started with the one in Convex/Combination and spiralled into revisiting all notes with needs in them. The ToLin changes overlap with #11171.

Diff
@@ -432,7 +432,7 @@ theorem Independent.injOn (ht : Independent t) : InjOn t {i | t i ≠ ⊥} := by
     rwa [h, disjoint_self] at ht
   replace contra : j ≠ i := Ne.symm contra
   -- Porting note: needs explicit `f`
-  exact @le_iSup₂ _ _ _ _ (fun x _ => t x) j contra
+  exact le_iSup₂ (f := fun x _ ↦ t x) j contra
 
 theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ ⊥) : Injective t := by
   suffices univ = {i | t i ≠ ⊥} by rw [injective_iff_injOn_univ, this]; exact ht.injOn
chore: move Mathlib to v4.7.0-rc1 (#11162)

This is a very large PR, but it has been reviewed piecemeal already in PRs to the bump/v4.7.0 branch as we update to intermediate nightlies.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: damiano <adomani@gmail.com>

Diff
@@ -368,12 +368,12 @@ theorem independent_def'' :
 
 @[simp]
 theorem independent_empty (t : Empty → α) : Independent t :=
-  fun.
+  nofun
 #align complete_lattice.independent_empty CompleteLattice.independent_empty
 
 @[simp]
 theorem independent_pempty (t : PEmpty → α) : Independent t :=
-  fun.
+  nofun
 #align complete_lattice.independent_pempty CompleteLattice.independent_pempty
 
 /-- If the elements of a set are independent, then any pair within that set is disjoint. -/
feat: add lemma LinearMap.trace_restrict_eq_sum_trace_restrict (#10638)
Diff
@@ -7,6 +7,7 @@ import Mathlib.Data.Finset.Sigma
 import Mathlib.Data.Finset.Pairwise
 import Mathlib.Data.Finset.Powerset
 import Mathlib.Data.Fintype.Basic
+import Mathlib.Order.CompleteLatticeIntervals
 
 #align_import order.sup_indep from "leanprover-community/mathlib"@"c4c2ed622f43768eff32608d4a0f8a6cec1c047d"
 
@@ -473,6 +474,13 @@ theorem Independent.disjoint_biSup {ι : Type*} {α : Type*} [CompleteLattice α
   Disjoint.mono_right (biSup_mono fun _ hi => (ne_of_mem_of_not_mem hi hx : _)) (ht x)
 #align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSup
 
+lemma independent_of_independent_coe_Iic_comp {ι : Sort*} {a : α} {t : ι → Set.Iic a}
+    (ht : Independent ((↑) ∘ t : ι → α)) : Independent t := by
+  intro i x
+  specialize ht i
+  simp_rw [Function.comp_apply, ← Set.Iic.coe_iSup] at ht
+  exact @ht x
+
 end CompleteLattice
 
 theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finset ι} {f : ι → α} :
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -429,8 +429,7 @@ theorem Independent.injOn (ht : Independent t) : InjOn t {i | t i ≠ ⊥} := by
   suffices t j ≤ ⨆ (k) (_ : k ≠ i), t k by
     replace ht := (ht i).mono_right this
     rwa [h, disjoint_self] at ht
-  replace contra : j ≠ i
-  · exact Ne.symm contra
+  replace contra : j ≠ i := Ne.symm contra
   -- Porting note: needs explicit `f`
   exact @le_iSup₂ _ _ _ _ (fun x _ => t x) j contra
 
chore: tidy various files (#9016)
Diff
@@ -413,7 +413,9 @@ theorem independent_ne_bot_iff_independent :
   refine ⟨fun h ↦ ?_, fun h ↦ h.comp Subtype.val_injective⟩
   simp only [independent_def] at h ⊢
   intro i
-  cases' eq_or_ne (t i) ⊥ with hi hi; simp [hi]
+  cases eq_or_ne (t i) ⊥ with
+  | inl hi => simp [hi]
+  | inr hi => ?_
   convert h ⟨i, hi⟩
   have : ∀ j, ⨆ (_ : t j = ⊥), t j = ⊥ := fun j ↦ by simp only [iSup_eq_bot, imp_self]
   rw [iSup_split _ (fun j ↦ t j = ⊥), iSup_subtype]
chore: rename by_contra' to by_contra! (#8797)

To fit with the "please try harder" convention of ! tactics.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -422,7 +422,7 @@ theorem independent_ne_bot_iff_independent :
 
 theorem Independent.injOn (ht : Independent t) : InjOn t {i | t i ≠ ⊥} := by
   rintro i _ j (hj : t j ≠ ⊥) h
-  by_contra' contra
+  by_contra! contra
   apply hj
   suffices t j ≤ ⨆ (k) (_ : k ≠ i), t k by
     replace ht := (ht i).mono_right this
feat: the trace of a direct sum is the sum of the traces (#8369)
Diff
@@ -407,6 +407,19 @@ theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <
   exact ht.comp' surjective_onto_range
 #align complete_lattice.independent.set_independent_range CompleteLattice.Independent.setIndependent_range
 
+@[simp]
+theorem independent_ne_bot_iff_independent :
+    Independent (fun i : {i // t i ≠ ⊥} ↦ t i) ↔ Independent t := by
+  refine ⟨fun h ↦ ?_, fun h ↦ h.comp Subtype.val_injective⟩
+  simp only [independent_def] at h ⊢
+  intro i
+  cases' eq_or_ne (t i) ⊥ with hi hi; simp [hi]
+  convert h ⟨i, hi⟩
+  have : ∀ j, ⨆ (_ : t j = ⊥), t j = ⊥ := fun j ↦ by simp only [iSup_eq_bot, imp_self]
+  rw [iSup_split _ (fun j ↦ t j = ⊥), iSup_subtype]
+  simp only [iSup_comm (ι' := _ ≠ i), this, ne_eq, sup_of_le_right, Subtype.mk.injEq, iSup_bot,
+    bot_le]
+
 theorem Independent.injOn (ht : Independent t) : InjOn t {i | t i ≠ ⊥} := by
   rintro i _ j (hj : t j ≠ ⊥) h
   by_contra' contra
feat: characterise independence in compactly-generated lattices (#8154)

Also some loosely-related short lemmas

Diff
@@ -72,6 +72,7 @@ theorem SupIndep.subset (ht : t.SupIndep f) (h : s ⊆ t) : s.SupIndep f := fun
   ht (hu.trans h) (h hi)
 #align finset.sup_indep.subset Finset.SupIndep.subset
 
+@[simp]
 theorem supIndep_empty (f : ι → α) : (∅ : Finset ι).SupIndep f := fun _ _ a ha =>
   (not_mem_empty a ha).elim
 #align finset.sup_indep_empty Finset.supIndep_empty
@@ -406,10 +407,10 @@ theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <
   exact ht.comp' surjective_onto_range
 #align complete_lattice.independent.set_independent_range CompleteLattice.Independent.setIndependent_range
 
-theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ ⊥) : Injective t := by
-  intro i j h
+theorem Independent.injOn (ht : Independent t) : InjOn t {i | t i ≠ ⊥} := by
+  rintro i _ j (hj : t j ≠ ⊥) h
   by_contra' contra
-  apply h_ne_bot j
+  apply hj
   suffices t j ≤ ⨆ (k) (_ : k ≠ i), t k by
     replace ht := (ht i).mono_right this
     rwa [h, disjoint_self] at ht
@@ -417,6 +418,10 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
   · exact Ne.symm contra
   -- Porting note: needs explicit `f`
   exact @le_iSup₂ _ _ _ _ (fun x _ => t x) j contra
+
+theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ ⊥) : Injective t := by
+  suffices univ = {i | t i ≠ ⊥} by rw [injective_iff_injOn_univ, this]; exact ht.injOn
+  aesop
 #align complete_lattice.independent.injective CompleteLattice.Independent.injective
 
 theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k = j) :
@@ -473,6 +478,10 @@ alias ⟨CompleteLattice.Independent.supIndep, Finset.SupIndep.independent⟩ :=
 #align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndep
 #align finset.sup_indep.independent Finset.SupIndep.independent
 
+theorem CompleteLattice.Independent.supIndep' [CompleteLattice α] {f : ι → α} (s : Finset ι)
+    (h : CompleteLattice.Independent f) : s.SupIndep f :=
+  CompleteLattice.Independent.supIndep (h.comp Subtype.coe_injective)
+
 /-- A variant of `CompleteLattice.independent_iff_supIndep` for `Fintype`s. -/
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
     CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
chore: remove some no longer relevant porting notes (#7108)
Diff
@@ -336,7 +336,6 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
 
   Example: an indexed family of submodules of a module is independent in this sense if
   and only the natural map from the direct sum of the submodules to the module is injective. -/
--- Porting note: needed to use `_H`
 def Independent {ι : Sort*} {α : Type*} [CompleteLattice α] (t : ι → α) : Prop :=
   ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j)
 #align complete_lattice.independent CompleteLattice.Independent
chore: avoid lean3 style have/suffices (#6964)

Many proofs use the "stream of consciousness" style from Lean 3, rather than have ... := or suffices ... from/by.

This PR updates a fraction of these to the preferred Lean 4 style.

I think a good goal would be to delete the "deferred" versions of have, suffices, and let at the bottom of Mathlib.Tactic.Have

(Anyone who would like to contribute more cleanup is welcome to push directly to this branch.)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -107,8 +107,8 @@ theorem SupIndep.image [DecidableEq ι] {s : Finset ι'} {g : ι' → ι} (hs :
   rw [mem_image] at hi
   obtain ⟨i, hi, rfl⟩ := hi
   haveI : DecidableEq ι' := Classical.decEq _
-  suffices hts : t ⊆ (s.erase i).image g
-  · refine' (supIndep_iff_disjoint_erase.1 hs i hi).mono_right ((sup_mono hts).trans _)
+  suffices hts : t ⊆ (s.erase i).image g by
+    refine' (supIndep_iff_disjoint_erase.1 hs i hi).mono_right ((sup_mono hts).trans _)
     rw [sup_image]
   rintro j hjt
   obtain ⟨j, hj, rfl⟩ := mem_image.1 (ht hjt)
feat: patch for new alias command (#6172)
Diff
@@ -203,8 +203,8 @@ theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDi
     Finset.disjoint_sup_right.2 fun _ hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
 #align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjoint
 
-alias supIndep_iff_pairwiseDisjoint ↔
-  sup_indep.pairwise_disjoint _root_.Set.PairwiseDisjoint.supIndep
+alias ⟨sup_indep.pairwise_disjoint, _root_.Set.PairwiseDisjoint.supIndep⟩ :=
+  supIndep_iff_pairwiseDisjoint
 #align set.pairwise_disjoint.sup_indep Set.PairwiseDisjoint.supIndep
 
 /-- Bind operation for `SupIndep`. -/
@@ -469,8 +469,8 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
     simp [iSup_and, @iSup_comm _ (_ ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 
-alias CompleteLattice.independent_iff_supIndep ↔
-  CompleteLattice.Independent.supIndep Finset.SupIndep.independent
+alias ⟨CompleteLattice.Independent.supIndep, Finset.SupIndep.independent⟩ :=
+  CompleteLattice.independent_iff_supIndep
 #align complete_lattice.independent.sup_indep CompleteLattice.Independent.supIndep
 #align finset.sup_indep.independent Finset.SupIndep.independent
 
@@ -481,8 +481,8 @@ theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fint
     simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_iSup]
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 
-alias CompleteLattice.independent_iff_supIndep_univ ↔
-  CompleteLattice.Independent.sup_indep_univ Finset.SupIndep.independent_of_univ
+alias ⟨CompleteLattice.Independent.sup_indep_univ, Finset.SupIndep.independent_of_univ⟩ :=
+  CompleteLattice.independent_iff_supIndep_univ
 #align complete_lattice.independent.sup_indep_univ CompleteLattice.Independent.sup_indep_univ
 #align finset.sup_indep.independent_of_univ Finset.SupIndep.independent_of_univ
 
@@ -498,7 +498,7 @@ theorem setIndependent_iff_pairwiseDisjoint {s : Set α} :
     disjoint_sSup_iff.2 fun _ hj => hs hi hj.1 <| Ne.symm hj.2⟩
 #align complete_lattice.set_independent_iff_pairwise_disjoint CompleteLattice.setIndependent_iff_pairwiseDisjoint
 
-alias setIndependent_iff_pairwiseDisjoint ↔ _ _root_.Set.PairwiseDisjoint.setIndependent
+alias ⟨_, _root_.Set.PairwiseDisjoint.setIndependent⟩ := setIndependent_iff_pairwiseDisjoint
 #align set.pairwise_disjoint.set_independent Set.PairwiseDisjoint.setIndependent
 
 theorem independent_iff_pairwiseDisjoint {f : ι → α} : Independent f ↔ Pairwise (Disjoint on f) :=
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -41,7 +41,7 @@ For the finite version, we avoid the "obvious" definition
 -/
 
 
-variable {α β ι ι' : Type _}
+variable {α β ι ι' : Type*}
 
 /-! ### On lattices with a bottom element, via `Finset.sup` -/
 
@@ -225,7 +225,7 @@ theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset 
 #align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 
 /-- Bind operation for `SupIndep`. -/
-theorem SupIndep.sigma {β : ι → Type _} {s : Finset ι} {g : ∀ i, Finset (β i)} {f : Sigma β → α}
+theorem SupIndep.sigma {β : ι → Type*} {s : Finset ι} {g : ∀ i, Finset (β i)} {f : Sigma β → α}
     (hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩)
     (hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩) : (s.sigma g).SupIndep f := by
   rintro t ht ⟨i, b⟩ hi hit
@@ -337,11 +337,11 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
   Example: an indexed family of submodules of a module is independent in this sense if
   and only the natural map from the direct sum of the submodules to the module is injective. -/
 -- Porting note: needed to use `_H`
-def Independent {ι : Sort _} {α : Type _} [CompleteLattice α] (t : ι → α) : Prop :=
+def Independent {ι : Sort*} {α : Type*} [CompleteLattice α] (t : ι → α) : Prop :=
   ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j)
 #align complete_lattice.independent CompleteLattice.Independent
 
-theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
+theorem setIndependent_iff {α : Type*} [CompleteLattice α] (s : Set α) :
     SetIndependent s ↔ Independent ((↑) : s → α) := by
   simp_rw [Independent, SetIndependent, SetCoe.forall, sSup_eq_iSup]
   refine' forall₂_congr fun a ha => _
@@ -386,14 +386,14 @@ theorem Independent.mono {s t : ι → α} (hs : Independent s) (hst : t ≤ s)
 
 /-- Composing an independent indexed family with an injective function on the index results in
 another indepedendent indexed family. -/
-theorem Independent.comp {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent t)
+theorem Independent.comp {ι ι' : Sort*} {t : ι → α} {f : ι' → ι} (ht : Independent t)
     (hf : Injective f) : Independent (t ∘ f) := fun i =>
   (ht (f i)).mono_right <| by
     refine' (iSup_mono fun i => _).trans (iSup_comp_le _ f)
     exact iSup_const_mono hf.ne
 #align complete_lattice.independent.comp CompleteLattice.Independent.comp
 
-theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent <| t ∘ f)
+theorem Independent.comp' {ι ι' : Sort*} {t : ι → α} {f : ι' → ι} (ht : Independent <| t ∘ f)
     (hf : Surjective f) : Independent t := by
   intro i
   obtain ⟨i', rfl⟩ := hf i
@@ -434,13 +434,13 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 
 /-- Composing an independent indexed family with an order isomorphism on the elements results in
 another independent indexed family. -/
-theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice α]
+theorem Independent.map_orderIso {ι : Sort*} {α β : Type*} [CompleteLattice α]
     [CompleteLattice β] (f : α ≃o β) {a : ι → α} (ha : Independent a) : Independent (f ∘ a) :=
   fun i => ((ha i).map_orderIso f).mono_right (f.monotone.le_map_iSup₂ _)
 #align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIso
 
 @[simp]
-theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLattice α]
+theorem independent_map_orderIso_iff {ι : Sort*} {α β : Type*} [CompleteLattice α]
     [CompleteLattice β] (f : α ≃o β) {a : ι → α} : Independent (f ∘ a) ↔ Independent a :=
   ⟨fun h =>
     have hf : f.symm ∘ f ∘ a = a := congr_arg (· ∘ a) f.left_inv.comp_eq_id
@@ -450,7 +450,7 @@ theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLat
 
 /-- If the elements of a set are independent, then any element is disjoint from the `iSup` of some
 subset of the rest. -/
-theorem Independent.disjoint_biSup {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
+theorem Independent.disjoint_biSup {ι : Type*} {α : Type*} [CompleteLattice α] {t : ι → α}
     (ht : Independent t) {x : ι} {y : Set ι} (hx : x ∉ y) : Disjoint (t x) (⨆ i ∈ y, t i) :=
   Disjoint.mono_right (biSup_mono fun _ hi => (ne_of_mem_of_not_mem hi hx : _)) (ht x)
 #align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSup
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2021 Aaron Anderson, Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
-
-! This file was ported from Lean 3 source module order.sup_indep
-! leanprover-community/mathlib commit c4c2ed622f43768eff32608d4a0f8a6cec1c047d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Finset.Sigma
 import Mathlib.Data.Finset.Pairwise
 import Mathlib.Data.Finset.Powerset
 import Mathlib.Data.Fintype.Basic
 
+#align_import order.sup_indep from "leanprover-community/mathlib"@"c4c2ed622f43768eff32608d4a0f8a6cec1c047d"
+
 /-!
 # Supremum independence
 
feat(Data.Set.Basic/Data.Finset.Basic): rename insert_subset (#5450)

Currently, (for both Set and Finset) insert_subset is an iff lemma stating that insert a s ⊆ t if and only if a ∈ t and s ⊆ t. For both types, this PR renames this lemma to insert_subset_iff, and adds an insert_subset lemma that gives the implication just in the reverse direction : namely theorem insert_subset (ha : a ∈ t) (hs : s ⊆ t) : insert a s ⊆ t .

This both aligns the naming with union_subset and union_subset_iff, and removes the need for the awkward insert_subset.mpr ⟨_,_⟩ idiom. It touches a lot of files (too many to list), but in a trivial way.

Diff
@@ -325,7 +325,7 @@ theorem setIndependent_pair {a b : α} (hab : a ≠ b) :
 subset of the rest. -/
 theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
     Disjoint x (sSup y) := by
-  have := (hs.mono <| insert_subset.mpr ⟨hx, hy⟩) (mem_insert x _)
+  have := (hs.mono <| insert_subset_iff.mpr ⟨hx, hy⟩) (mem_insert x _)
   rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this
   exact this
 #align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
chore: tidy various files (#5482)
Diff
@@ -227,7 +227,7 @@ theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset 
   exact hs.sup hg
 #align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 
-/-- Bind operation for `sup_indep`. -/
+/-- Bind operation for `SupIndep`. -/
 theorem SupIndep.sigma {β : ι → Type _} {s : Finset ι} {g : ∀ i, Finset (β i)} {f : Sigma β → α}
     (hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩)
     (hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩) : (s.sigma g).SupIndep f := by
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -214,7 +214,7 @@ alias supIndep_iff_pairwiseDisjoint ↔
 theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
     (s.sup g).SupIndep f := by
-  simp_rw [supIndep_iff_pairwiseDisjoint] at hs hg⊢
+  simp_rw [supIndep_iff_pairwiseDisjoint] at hs hg ⊢
   rw [sup_eq_biUnion, coe_biUnion]
   exact hs.biUnion_finset hg
 #align finset.sup_indep.sup Finset.SupIndep.sup
feat: More sup_indep lemmas (#5196)

Match https://github.com/leanprover-community/mathlib/pull/11932

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -4,10 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
 
 ! This file was ported from Lean 3 source module order.sup_indep
-! leanprover-community/mathlib commit 1c857a1f6798cb054be942199463c2cf904cb937
+! leanprover-community/mathlib commit c4c2ed622f43768eff32608d4a0f8a6cec1c047d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
+import Mathlib.Data.Finset.Sigma
 import Mathlib.Data.Finset.Pairwise
 import Mathlib.Data.Finset.Powerset
 import Mathlib.Data.Fintype.Basic
@@ -89,6 +90,13 @@ theorem SupIndep.pairwiseDisjoint (hs : s.SupIndep f) : (s : Set ι).PairwiseDis
     sup_singleton.subst <| hs (singleton_subset_iff.2 hb) ha <| not_mem_singleton.2 hab
 #align finset.sup_indep.pairwise_disjoint Finset.SupIndep.pairwiseDisjoint
 
+theorem SupIndep.le_sup_iff (hs : s.SupIndep f) (hts : t ⊆ s) (hi : i ∈ s) (hf : ∀ i, f i ≠ ⊥) :
+    f i ≤ t.sup f ↔ i ∈ t := by
+  refine' ⟨fun h => _, le_sup⟩
+  by_contra hit
+  exact hf i (disjoint_self.1 <| (hs hts hi hit).mono_right h)
+#align finset.sup_indep.le_sup_iff Finset.SupIndep.le_sup_iff
+
 /-- The RHS looks like the definition of `CompleteLattice.Independent`. -/
 theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
     s.SupIndep f ↔ ∀ i ∈ s, Disjoint (f i) ((s.erase i).sup f) :=
@@ -96,6 +104,29 @@ theorem supIndep_iff_disjoint_erase [DecidableEq ι] :
     (hs i hi).mono_right (sup_mono fun _ hj => mem_erase.2 ⟨ne_of_mem_of_not_mem hj hit, ht hj⟩)⟩
 #align finset.sup_indep_iff_disjoint_erase Finset.supIndep_iff_disjoint_erase
 
+theorem SupIndep.image [DecidableEq ι] {s : Finset ι'} {g : ι' → ι} (hs : s.SupIndep (f ∘ g)) :
+    (s.image g).SupIndep f := by
+  intro t ht i hi hit
+  rw [mem_image] at hi
+  obtain ⟨i, hi, rfl⟩ := hi
+  haveI : DecidableEq ι' := Classical.decEq _
+  suffices hts : t ⊆ (s.erase i).image g
+  · refine' (supIndep_iff_disjoint_erase.1 hs i hi).mono_right ((sup_mono hts).trans _)
+    rw [sup_image]
+  rintro j hjt
+  obtain ⟨j, hj, rfl⟩ := mem_image.1 (ht hjt)
+  exact mem_image_of_mem _ (mem_erase.2 ⟨ne_of_apply_ne g (ne_of_mem_of_not_mem hjt hit), hj⟩)
+#align finset.sup_indep.image Finset.SupIndep.image
+
+theorem supIndep_map {s : Finset ι'} {g : ι' ↪ ι} : (s.map g).SupIndep f ↔ s.SupIndep (f ∘ g) := by
+  refine' ⟨fun hs t ht i hi hit => _, fun hs => _⟩
+  · rw [← sup_map]
+    exact hs (map_subset_map.2 ht) ((mem_map' _).2 hi) (by rwa [mem_map'])
+  · classical
+    rw [map_eq_image]
+    exact hs.image
+#align finset.sup_indep_map Finset.supIndep_map
+
 @[simp]
 theorem supIndep_pair [DecidableEq ι] {i j : ι} (hij : i ≠ j) :
     ({i, j} : Finset ι).SupIndep f ↔ Disjoint (f i) (f j) :=
@@ -131,16 +162,39 @@ theorem supIndep_univ_fin_two (f : Fin 2 → α) :
   supIndep_pair this
 #align finset.sup_indep_univ_fin_two Finset.supIndep_univ_fin_two
 
-theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep (f ∘ Subtype.val) := by
+theorem SupIndep.attach (hs : s.SupIndep f) : s.attach.SupIndep fun a => f a := by
   intro t _ i _ hi
   classical
-    rw [← Finset.sup_image]
+    have : (fun (a : { x // x ∈ s }) => f ↑a) = f ∘ (fun a : { x // x ∈ s } => ↑a) := rfl
+    rw [this, ← Finset.sup_image]
     refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
     rw [mem_image] at hi'
     obtain ⟨j, hj, hji⟩ := hi'
     rwa [Subtype.ext hji] at hj
 #align finset.sup_indep.attach Finset.SupIndep.attach
 
+/-
+Porting note: simpNF linter returns
+
+"Left-hand side does not simplify, when using the simp lemma on itself."
+
+However, simp does indeed solve the following. leanprover/std4#71 is related.
+
+example {α ι} [Lattice α] [OrderBot α] (s : Finset ι) (f : ι → α) :
+  (s.attach.SupIndep fun a => f a) ↔ s.SupIndep f := by simp
+-/
+@[simp, nolint simpNF]
+theorem supIndep_attach : (s.attach.SupIndep fun a => f a) ↔ s.SupIndep f := by
+  refine' ⟨fun h t ht i his hit => _, SupIndep.attach⟩
+  classical
+  convert h (filter_subset (fun (i : { x // x ∈ s }) => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩)
+    fun hi => hit <| by simpa using hi using 1
+  refine' eq_of_forall_ge_iff _
+  simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply,
+    Subtype.forall, Subtype.coe_mk]
+  exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩
+#align finset.sup_indep_attach Finset.supIndep_attach
+
 end Lattice
 
 section DistribLattice
@@ -173,6 +227,53 @@ theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset 
   exact hs.sup hg
 #align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 
+/-- Bind operation for `sup_indep`. -/
+theorem SupIndep.sigma {β : ι → Type _} {s : Finset ι} {g : ∀ i, Finset (β i)} {f : Sigma β → α}
+    (hs : s.SupIndep fun i => (g i).sup fun b => f ⟨i, b⟩)
+    (hg : ∀ i ∈ s, (g i).SupIndep fun b => f ⟨i, b⟩) : (s.sigma g).SupIndep f := by
+  rintro t ht ⟨i, b⟩ hi hit
+  rw [Finset.disjoint_sup_right]
+  rintro ⟨j, c⟩ hj
+  have hbc := (ne_of_mem_of_not_mem hj hit).symm
+  replace hj := ht hj
+  rw [mem_sigma] at hi hj
+  obtain rfl | hij := eq_or_ne i j
+  · exact (hg _ hj.1).pairwiseDisjoint hi.2 hj.2 (sigma_mk_injective.ne_iff.1 hbc)
+  · refine' (hs.pairwiseDisjoint hi.1 hj.1 hij).mono _ _
+    · convert le_sup (α := α) hi.2; simp
+    · convert le_sup (α := α) hj.2; simp
+#align finset.sup_indep.sigma Finset.SupIndep.sigma
+
+theorem SupIndep.product {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α}
+    (hs : s.SupIndep fun i => t.sup fun i' => f (i, i'))
+    (ht : t.SupIndep fun i' => s.sup fun i => f (i, i')) : (s ×ˢ t).SupIndep f := by
+  rintro u hu ⟨i, i'⟩ hi hiu
+  rw [Finset.disjoint_sup_right]
+  rintro ⟨j, j'⟩ hj
+  have hij := (ne_of_mem_of_not_mem hj hiu).symm
+  replace hj := hu hj
+  rw [mem_product] at hi hj
+  obtain rfl | hij := eq_or_ne i j
+  · refine' (ht.pairwiseDisjoint hi.2 hj.2 <| (Prod.mk.inj_left _).ne_iff.1 hij).mono _ _
+    · convert le_sup (α := α) hi.1; simp
+    · convert le_sup (α := α) hj.1; simp
+  · refine' (hs.pairwiseDisjoint hi.1 hj.1 hij).mono _ _
+    · convert le_sup (α := α) hi.2; simp
+    · convert le_sup (α := α) hj.2; simp
+#align finset.sup_indep.product Finset.SupIndep.product
+
+theorem supIndep_product_iff {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α} :
+    (s.product t).SupIndep f ↔ (s.SupIndep fun i => t.sup fun i' => f (i, i'))
+      ∧ t.SupIndep fun i' => s.sup fun i => f (i, i') := by
+  refine' ⟨_, fun h => h.1.product h.2⟩
+  simp_rw [supIndep_iff_pairwiseDisjoint]
+  refine' fun h => ⟨fun i hi j hj hij => _, fun i hi j hj hij => _⟩ <;>
+      simp_rw [Function.onFun, Finset.disjoint_sup_left, Finset.disjoint_sup_right] <;>
+    intro i' hi' j' hj'
+  · exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne Prod.fst hij)
+  · exact h (mk_mem_product hi' hi) (mk_mem_product hj' hj) (ne_of_apply_ne Prod.snd hij)
+#align finset.sup_indep_product_iff Finset.supIndep_product_iff
+
 end DistribLattice
 
 end Finset
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -262,7 +262,7 @@ theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' {
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
 theorem independent_def'' :
-    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _)(_ : j ≠ i), t j = a }) := by
+    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _) (_ : j ≠ i), t j = a }) := by
   rw [independent_def']
   aesop
 #align complete_lattice.independent_def'' CompleteLattice.independent_def''
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -240,7 +240,7 @@ theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy :
   and only the natural map from the direct sum of the submodules to the module is injective. -/
 -- Porting note: needed to use `_H`
 def Independent {ι : Sort _} {α : Type _} [CompleteLattice α] (t : ι → α) : Prop :=
-  ∀ i : ι, Disjoint (t i) (⨆ (j) (_H : j ≠ i), t j)
+  ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j)
 #align complete_lattice.independent CompleteLattice.Independent
 
 theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
@@ -252,7 +252,7 @@ theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
 
 variable {t : ι → α} (ht : Independent t)
 
-theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_H : j ≠ i), t j) :=
+theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j) (_ : j ≠ i), t j) :=
   Iff.rfl
 #align complete_lattice.independent_def CompleteLattice.independent_def
 
@@ -313,7 +313,7 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
   intro i j h
   by_contra' contra
   apply h_ne_bot j
-  suffices t j ≤ ⨆ (k) (_hk : k ≠ i), t k by
+  suffices t j ≤ ⨆ (k) (_ : k ≠ i), t k by
     replace ht := (ht i).mono_right this
     rwa [h, disjoint_self] at ht
   replace contra : j ≠ i
chore: fix many typos (#4535)

Run codespell Mathlib and keep some suggestions.

Diff
@@ -334,8 +334,8 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
       rw [(huniv j).resolve_right hj]
 #align complete_lattice.independent_pair CompleteLattice.independent_pair
 
-/-- Composing an indepedent indexed family with an order isomorphism on the elements results in
-another indepedendent indexed family. -/
+/-- Composing an independent indexed family with an order isomorphism on the elements results in
+another independent indexed family. -/
 theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice α]
     [CompleteLattice β] (f : α ≃o β) {a : ι → α} (ha : Independent a) : Independent (f ∘ a) :=
   fun i => ((ha i).map_orderIso f).mono_right (f.monotone.le_map_iSup₂ _)
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -350,7 +350,7 @@ theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLat
     fun h => h.map_orderIso f⟩
 #align complete_lattice.independent_map_order_iso_iff CompleteLattice.independent_map_orderIso_iff
 
-/-- If the elements of a set are independent, then any element is disjoint from the `supr` of some
+/-- If the elements of a set are independent, then any element is disjoint from the `iSup` of some
 subset of the rest. -/
 theorem Independent.disjoint_biSup {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
     (ht : Independent t) {x : ι} {y : Set ι} (hx : x ∉ y) : Disjoint (t x) (⨆ i ∈ y, t i) :=
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -161,23 +161,23 @@ theorem SupIndep.sup [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
     (s.sup g).SupIndep f := by
   simp_rw [supIndep_iff_pairwiseDisjoint] at hs hg⊢
-  rw [sup_eq_bunionᵢ, coe_bunionᵢ]
-  exact hs.bunionᵢ_finset hg
+  rw [sup_eq_biUnion, coe_biUnion]
+  exact hs.biUnion_finset hg
 #align finset.sup_indep.sup Finset.SupIndep.sup
 
 /-- Bind operation for `SupIndep`. -/
-theorem SupIndep.bunionᵢ [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
+theorem SupIndep.biUnion [DecidableEq ι] {s : Finset ι'} {g : ι' → Finset ι} {f : ι → α}
     (hs : s.SupIndep fun i => (g i).sup f) (hg : ∀ i' ∈ s, (g i').SupIndep f) :
-    (s.bunionᵢ g).SupIndep f := by
-  rw [← sup_eq_bunionᵢ]
+    (s.biUnion g).SupIndep f := by
+  rw [← sup_eq_biUnion]
   exact hs.sup hg
-#align finset.sup_indep.bUnion Finset.SupIndep.bunionᵢ
+#align finset.sup_indep.bUnion Finset.SupIndep.biUnion
 
 end DistribLattice
 
 end Finset
 
-/-! ### On complete lattices via `supₛ` -/
+/-! ### On complete lattices via `sSup` -/
 
 
 namespace CompleteLattice
@@ -189,7 +189,7 @@ open Set Function
 /-- An independent set of elements in a complete lattice is one in which every element is disjoint
   from the `Sup` of the rest. -/
 def SetIndependent (s : Set α) : Prop :=
-  ∀ ⦃a⦄, a ∈ s → Disjoint a (supₛ (s \ {a}))
+  ∀ ⦃a⦄, a ∈ s → Disjoint a (sSup (s \ {a}))
 #align complete_lattice.set_independent CompleteLattice.SetIndependent
 
 variable {s : Set α} (hs : SetIndependent s)
@@ -200,12 +200,12 @@ theorem setIndependent_empty : SetIndependent (∅ : Set α) := fun x hx =>
 #align complete_lattice.set_independent_empty CompleteLattice.setIndependent_empty
 
 theorem SetIndependent.mono {t : Set α} (hst : t ⊆ s) : SetIndependent t := fun _ ha =>
-  (hs (hst ha)).mono_right (supₛ_le_supₛ (diff_subset_diff_left hst))
+  (hs (hst ha)).mono_right (sSup_le_sSup (diff_subset_diff_left hst))
 #align complete_lattice.set_independent.mono CompleteLattice.SetIndependent.mono
 
 /-- If the elements of a set are independent, then any pair within that set is disjoint. -/
 theorem SetIndependent.pairwiseDisjoint : s.PairwiseDisjoint id := fun _ hx y hy h =>
-  disjoint_supₛ_right (hs hx) ((mem_diff y).mpr ⟨hy, h.symm⟩)
+  disjoint_sSup_right (hs hx) ((mem_diff y).mpr ⟨hy, h.symm⟩)
 #align complete_lattice.set_independent.pairwise_disjoint CompleteLattice.SetIndependent.pairwiseDisjoint
 
 theorem setIndependent_pair {a b : α} (hab : a ≠ b) :
@@ -215,22 +215,22 @@ theorem setIndependent_pair {a b : α} (hab : a ≠ b) :
     exact h.pairwiseDisjoint (mem_insert _ _) (mem_insert_of_mem _ (mem_singleton _)) hab
   · rintro h c ((rfl : c = a) | (rfl : c = b))
     · convert h using 1
-      simp [hab, supₛ_singleton]
+      simp [hab, sSup_singleton]
     · convert h.symm using 1
-      simp [hab, supₛ_singleton]
+      simp [hab, sSup_singleton]
 #align complete_lattice.set_independent_pair CompleteLattice.setIndependent_pair
 
-/-- If the elements of a set are independent, then any element is disjoint from the `supₛ` of some
+/-- If the elements of a set are independent, then any element is disjoint from the `sSup` of some
 subset of the rest. -/
-theorem SetIndependent.disjoint_supₛ {x : α} {y : Set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
-    Disjoint x (supₛ y) := by
+theorem SetIndependent.disjoint_sSup {x : α} {y : Set α} (hx : x ∈ s) (hy : y ⊆ s) (hxy : x ∉ y) :
+    Disjoint x (sSup y) := by
   have := (hs.mono <| insert_subset.mpr ⟨hx, hy⟩) (mem_insert x _)
   rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this
   exact this
-#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_supₛ
+#align complete_lattice.set_independent.disjoint_Sup CompleteLattice.SetIndependent.disjoint_sSup
 
 /-- An independent indexed family of elements in a complete lattice is one in which every element
-  is disjoint from the `supᵢ` of the rest.
+  is disjoint from the `iSup` of the rest.
 
   Example: an indexed family of non-zero elements in a
   vector space is linearly independent iff the indexed family of subspaces they generate is
@@ -245,9 +245,9 @@ def Independent {ι : Sort _} {α : Type _} [CompleteLattice α] (t : ι → α)
 
 theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
     SetIndependent s ↔ Independent ((↑) : s → α) := by
-  simp_rw [Independent, SetIndependent, SetCoe.forall, supₛ_eq_supᵢ]
+  simp_rw [Independent, SetIndependent, SetCoe.forall, sSup_eq_iSup]
   refine' forall₂_congr fun a ha => _
-  simp [supᵢ_subtype, supᵢ_and]
+  simp [iSup_subtype, iSup_and]
 #align complete_lattice.set_independent_iff CompleteLattice.setIndependent_iff
 
 variable {t : ι → α} (ht : Independent t)
@@ -256,13 +256,13 @@ theorem independent_def : Independent t ↔ ∀ i : ι, Disjoint (t i) (⨆ (j)
   Iff.rfl
 #align complete_lattice.independent_def CompleteLattice.independent_def
 
-theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (supₛ (t '' { j | j ≠ i })) := by
-  simp_rw [supₛ_image]
+theorem independent_def' : Independent t ↔ ∀ i, Disjoint (t i) (sSup (t '' { j | j ≠ i })) := by
+  simp_rw [sSup_image]
   rfl
 #align complete_lattice.independent_def' CompleteLattice.independent_def'
 
 theorem independent_def'' :
-    Independent t ↔ ∀ i, Disjoint (t i) (supₛ { a | ∃ (j : _)(_ : j ≠ i), t j = a }) := by
+    Independent t ↔ ∀ i, Disjoint (t i) (sSup { a | ∃ (j : _)(_ : j ≠ i), t j = a }) := by
   rw [independent_def']
   aesop
 #align complete_lattice.independent_def'' CompleteLattice.independent_def''
@@ -279,11 +279,11 @@ theorem independent_pempty (t : PEmpty → α) : Independent t :=
 
 /-- If the elements of a set are independent, then any pair within that set is disjoint. -/
 theorem Independent.pairwiseDisjoint : Pairwise (Disjoint on t) := fun x y h =>
-  disjoint_supₛ_right (ht x) ⟨y, supᵢ_pos h.symm⟩
+  disjoint_sSup_right (ht x) ⟨y, iSup_pos h.symm⟩
 #align complete_lattice.independent.pairwise_disjoint CompleteLattice.Independent.pairwiseDisjoint
 
 theorem Independent.mono {s t : ι → α} (hs : Independent s) (hst : t ≤ s) : Independent t :=
-  fun i => (hs i).mono (hst i) <| supᵢ₂_mono fun j _ => hst j
+  fun i => (hs i).mono (hst i) <| iSup₂_mono fun j _ => hst j
 #align complete_lattice.independent.mono CompleteLattice.Independent.mono
 
 /-- Composing an independent indexed family with an injective function on the index results in
@@ -291,16 +291,16 @@ another indepedendent indexed family. -/
 theorem Independent.comp {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent t)
     (hf : Injective f) : Independent (t ∘ f) := fun i =>
   (ht (f i)).mono_right <| by
-    refine' (supᵢ_mono fun i => _).trans (supᵢ_comp_le _ f)
-    exact supᵢ_const_mono hf.ne
+    refine' (iSup_mono fun i => _).trans (iSup_comp_le _ f)
+    exact iSup_const_mono hf.ne
 #align complete_lattice.independent.comp CompleteLattice.Independent.comp
 
 theorem Independent.comp' {ι ι' : Sort _} {t : ι → α} {f : ι' → ι} (ht : Independent <| t ∘ f)
     (hf : Surjective f) : Independent t := by
   intro i
   obtain ⟨i', rfl⟩ := hf i
-  rw [← hf.supᵢ_comp]
-  exact (ht i').mono_right (bsupᵢ_mono fun j' hij => mt (congr_arg f) hij)
+  rw [← hf.iSup_comp]
+  exact (ht i').mono_right (biSup_mono fun j' hij => mt (congr_arg f) hij)
 #align complete_lattice.independent.comp' CompleteLattice.Independent.comp'
 
 theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <| range t := by
@@ -319,7 +319,7 @@ theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ 
   replace contra : j ≠ i
   · exact Ne.symm contra
   -- Porting note: needs explicit `f`
-  exact @le_supᵢ₂ _ _ _ _ (fun x _ => t x) j contra
+  exact @le_iSup₂ _ _ _ _ (fun x _ => t x) j contra
 #align complete_lattice.independent.injective CompleteLattice.Independent.injective
 
 theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k = j) :
@@ -328,9 +328,9 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
   · exact fun h => h.pairwiseDisjoint hij
   · rintro h k
     obtain rfl | rfl := huniv k
-    · refine' h.mono_right (supᵢ_le fun i => supᵢ_le fun hi => Eq.le _)
+    · refine' h.mono_right (iSup_le fun i => iSup_le fun hi => Eq.le _)
       rw [(huniv i).resolve_left hi]
-    · refine' h.symm.mono_right (supᵢ_le fun j => supᵢ_le fun hj => Eq.le _)
+    · refine' h.symm.mono_right (iSup_le fun j => iSup_le fun hj => Eq.le _)
       rw [(huniv j).resolve_right hj]
 #align complete_lattice.independent_pair CompleteLattice.independent_pair
 
@@ -338,7 +338,7 @@ theorem independent_pair {i j : ι} (hij : i ≠ j) (huniv : ∀ k, k = i ∨ k
 another indepedendent indexed family. -/
 theorem Independent.map_orderIso {ι : Sort _} {α β : Type _} [CompleteLattice α]
     [CompleteLattice β] (f : α ≃o β) {a : ι → α} (ha : Independent a) : Independent (f ∘ a) :=
-  fun i => ((ha i).map_orderIso f).mono_right (f.monotone.le_map_supᵢ₂ _)
+  fun i => ((ha i).map_orderIso f).mono_right (f.monotone.le_map_iSup₂ _)
 #align complete_lattice.independent.map_order_iso CompleteLattice.Independent.map_orderIso
 
 @[simp]
@@ -352,10 +352,10 @@ theorem independent_map_orderIso_iff {ι : Sort _} {α β : Type _} [CompleteLat
 
 /-- If the elements of a set are independent, then any element is disjoint from the `supr` of some
 subset of the rest. -/
-theorem Independent.disjoint_bsupᵢ {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
+theorem Independent.disjoint_biSup {ι : Type _} {α : Type _} [CompleteLattice α] {t : ι → α}
     (ht : Independent t) {x : ι} {y : Set ι} (hx : x ∉ y) : Disjoint (t x) (⨆ i ∈ y, t i) :=
-  Disjoint.mono_right (bsupᵢ_mono fun _ hi => (ne_of_mem_of_not_mem hi hx : _)) (ht x)
-#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_bsupᵢ
+  Disjoint.mono_right (biSup_mono fun _ hi => (ne_of_mem_of_not_mem hi hx : _)) (ht x)
+#align complete_lattice.independent.disjoint_bsupr CompleteLattice.Independent.disjoint_biSup
 
 end CompleteLattice
 
@@ -364,11 +364,11 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
   classical
     rw [Finset.supIndep_iff_disjoint_erase]
     refine' Subtype.forall.trans (forall₂_congr fun a b => _)
-    rw [Finset.sup_eq_supᵢ]
+    rw [Finset.sup_eq_iSup]
     congr! 1
-    refine' supᵢ_subtype.trans _
+    refine' iSup_subtype.trans _
     congr! 1
-    simp [supᵢ_and, @supᵢ_comm _ (_ ∈ s)]
+    simp [iSup_and, @iSup_comm _ (_ ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 
 alias CompleteLattice.independent_iff_supIndep ↔
@@ -380,7 +380,7 @@ alias CompleteLattice.independent_iff_supIndep ↔
 theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fintype ι] {f : ι → α} :
     CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
   classical
-    simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_supᵢ]
+    simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_iSup]
 #align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 
 alias CompleteLattice.independent_iff_supIndep_univ ↔
@@ -397,7 +397,7 @@ variable [Order.Frame α]
 theorem setIndependent_iff_pairwiseDisjoint {s : Set α} :
     SetIndependent s ↔ s.PairwiseDisjoint id :=
   ⟨SetIndependent.pairwiseDisjoint, fun hs _ hi =>
-    disjoint_supₛ_iff.2 fun _ hj => hs hi hj.1 <| Ne.symm hj.2⟩
+    disjoint_sSup_iff.2 fun _ hj => hs hi hj.1 <| Ne.symm hj.2⟩
 #align complete_lattice.set_independent_iff_pairwise_disjoint CompleteLattice.setIndependent_iff_pairwiseDisjoint
 
 alias setIndependent_iff_pairwiseDisjoint ↔ _ _root_.Set.PairwiseDisjoint.setIndependent
@@ -405,7 +405,7 @@ alias setIndependent_iff_pairwiseDisjoint ↔ _ _root_.Set.PairwiseDisjoint.setI
 
 theorem independent_iff_pairwiseDisjoint {f : ι → α} : Independent f ↔ Pairwise (Disjoint on f) :=
   ⟨Independent.pairwiseDisjoint, fun hs _ =>
-    disjoint_supᵢ_iff.2 fun _ => disjoint_supᵢ_iff.2 fun hij => hs hij.symm⟩
+    disjoint_iSup_iff.2 fun _ => disjoint_iSup_iff.2 fun hij => hs hij.symm⟩
 #align complete_lattice.independent_iff_pairwise_disjoint CompleteLattice.independent_iff_pairwiseDisjoint
 
 end CompleteLattice
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -241,7 +241,6 @@ theorem SetIndependent.disjoint_supₛ {x : α} {y : Set α} (hx : x ∈ s) (hy
 -- Porting note: needed to use `_H`
 def Independent {ι : Sort _} {α : Type _} [CompleteLattice α] (t : ι → α) : Prop :=
   ∀ i : ι, Disjoint (t i) (⨆ (j) (_H : j ≠ i), t j)
-
 #align complete_lattice.independent CompleteLattice.Independent
 
 theorem setIndependent_iff {α : Type _} [CompleteLattice α] (s : Set α) :
chore: forward-port mathlib#18497 (#2662)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Aaron Anderson, Kevin Buzzard, Yaël Dillies, Eric Wieser
 
 ! This file was ported from Lean 3 source module order.sup_indep
-! leanprover-community/mathlib commit 9003f28797c0664a49e4179487267c494477d853
+! leanprover-community/mathlib commit 1c857a1f6798cb054be942199463c2cf904cb937
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -149,7 +149,7 @@ variable [DistribLattice α] [OrderBot α] {s : Finset ι} {f : ι → α}
 
 theorem supIndep_iff_pairwiseDisjoint : s.SupIndep f ↔ (s : Set ι).PairwiseDisjoint f :=
   ⟨SupIndep.pairwiseDisjoint, fun hs _ ht _ hi hit =>
-    disjoint_sup_right.2 fun _ hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
+    Finset.disjoint_sup_right.2 fun _ hj => hs hi (ht hj) (ne_of_mem_of_not_mem hj hit).symm⟩
 #align finset.sup_indep_iff_pairwise_disjoint Finset.supIndep_iff_pairwiseDisjoint
 
 alias supIndep_iff_pairwiseDisjoint ↔
chore: address some porting notes mentioning congr (#2595)

Switch to using congr! instead, which is analogous to mathlib 3's congr'.

Diff
@@ -365,12 +365,11 @@ theorem CompleteLattice.independent_iff_supIndep [CompleteLattice α] {s : Finse
   classical
     rw [Finset.supIndep_iff_disjoint_erase]
     refine' Subtype.forall.trans (forall₂_congr fun a b => _)
-    -- Porting note: `congr` doesn't seem to work with ↔
-    rw [Finset.sup_eq_supᵢ, ←eq_iff_iff]
-    congr 1
+    rw [Finset.sup_eq_supᵢ]
+    congr! 1
     refine' supᵢ_subtype.trans _
-    congr 1 with x
-    simp [supᵢ_and, @supᵢ_comm _ (x ∈ s)]
+    congr! 1
+    simp [supᵢ_and, @supᵢ_comm _ (_ ∈ s)]
 #align complete_lattice.independent_iff_sup_indep CompleteLattice.independent_iff_supIndep
 
 alias CompleteLattice.independent_iff_supIndep ↔
chore: the style linter shouldn't complain about long #align lines (#1643)
Diff
@@ -206,8 +206,7 @@ theorem SetIndependent.mono {t : Set α} (hst : t ⊆ s) : SetIndependent t := f
 /-- If the elements of a set are independent, then any pair within that set is disjoint. -/
 theorem SetIndependent.pairwiseDisjoint : s.PairwiseDisjoint id := fun _ hx y hy h =>
   disjoint_supₛ_right (hs hx) ((mem_diff y).mpr ⟨hy, h.symm⟩)
-#align
-  complete_lattice.set_independent.pairwise_disjoint CompleteLattice.SetIndependent.pairwiseDisjoint
+#align complete_lattice.set_independent.pairwise_disjoint CompleteLattice.SetIndependent.pairwiseDisjoint
 
 theorem setIndependent_pair {a b : α} (hab : a ≠ b) :
     SetIndependent ({a, b} : Set α) ↔ Disjoint a b := by
@@ -309,9 +308,7 @@ theorem Independent.setIndependent_range (ht : Independent t) : SetIndependent <
   rw [setIndependent_iff]
   rw [← coe_comp_rangeFactorization t] at ht
   exact ht.comp' surjective_onto_range
-#align
-  complete_lattice.independent.set_independent_range
-  CompleteLattice.Independent.setIndependent_range
+#align complete_lattice.independent.set_independent_range CompleteLattice.Independent.setIndependent_range
 
 theorem Independent.injective (ht : Independent t) (h_ne_bot : ∀ i, t i ≠ ⊥) : Injective t := by
   intro i j h
@@ -386,8 +383,7 @@ theorem CompleteLattice.independent_iff_supIndep_univ [CompleteLattice α] [Fint
     CompleteLattice.Independent f ↔ Finset.univ.SupIndep f := by
   classical
     simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_supᵢ]
-#align
-  complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
+#align complete_lattice.independent_iff_sup_indep_univ CompleteLattice.independent_iff_supIndep_univ
 
 alias CompleteLattice.independent_iff_supIndep_univ ↔
   CompleteLattice.Independent.sup_indep_univ Finset.SupIndep.independent_of_univ
@@ -404,9 +400,7 @@ theorem setIndependent_iff_pairwiseDisjoint {s : Set α} :
     SetIndependent s ↔ s.PairwiseDisjoint id :=
   ⟨SetIndependent.pairwiseDisjoint, fun hs _ hi =>
     disjoint_supₛ_iff.2 fun _ hj => hs hi hj.1 <| Ne.symm hj.2⟩
-#align
-  complete_lattice.set_independent_iff_pairwise_disjoint
-  CompleteLattice.setIndependent_iff_pairwiseDisjoint
+#align complete_lattice.set_independent_iff_pairwise_disjoint CompleteLattice.setIndependent_iff_pairwiseDisjoint
 
 alias setIndependent_iff_pairwiseDisjoint ↔ _ _root_.Set.PairwiseDisjoint.setIndependent
 #align set.pairwise_disjoint.set_independent Set.PairwiseDisjoint.setIndependent
@@ -414,9 +408,7 @@ alias setIndependent_iff_pairwiseDisjoint ↔ _ _root_.Set.PairwiseDisjoint.setI
 theorem independent_iff_pairwiseDisjoint {f : ι → α} : Independent f ↔ Pairwise (Disjoint on f) :=
   ⟨Independent.pairwiseDisjoint, fun hs _ =>
     disjoint_supᵢ_iff.2 fun _ => disjoint_supᵢ_iff.2 fun hij => hs hij.symm⟩
-#align
-  complete_lattice.independent_iff_pairwise_disjoint
-  CompleteLattice.independent_iff_pairwiseDisjoint
+#align complete_lattice.independent_iff_pairwise_disjoint CompleteLattice.independent_iff_pairwiseDisjoint
 
 end CompleteLattice
 
feat: port Order.SupIndep (#1627)

Dependencies 2 + 175

176 files ported (98.9%)
80000 lines ported (99.8%)
Show graph

The unported dependencies are